Submitted:
18 August 2024
Posted:
19 August 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
- GR is the correct theory of gravity in 4D.
- There are no dark matter particles in the universe.
2. Setup and Emergence of Dark Matter
3. Discussion: Dark Matter or Higher Dimension?
- should not have instabilities and ghosts
- should have a correct Newtonian and post-Newtonian limit
- should be compatible with the data
- should have a well-defined Cauchy problem
Funding
Data Availability Statement
Conflicts of Interest
References
- Cirelli, M.; Strumia, A.; Zupan, J. Dark Matter. arXiv preprint arXiv:2406.01705, arXiv:2406.01705 2024.
- Amin, M.A.; Mirbabayi, M. A lower bound on dark matter mass. Physical Review Letters 2024, 132, 221004. [Google Scholar] [CrossRef] [PubMed]
- Drlica-Wagner, A.; Prescod-Weinstein, C.; Yu, H.B.; Albert, A.; Amin, M.; Banerjee, A.; Baryakhtar, M.; Bechtol, K.; Bird, S.; Birrer, S. ; others. Report of the topical group on cosmic probes of dark matter for Snowmass 2021. arXiv preprint arXiv:2209.08215, arXiv:2209.08215 2022.
- O’Hare, C.A. Cosmology of axion dark matter. arXiv preprint arXiv:2403.17697, arXiv:2403.17697 2024.
- Cembranos, J.; Dobado, A.; Maroto, A.L. Brane-world dark matter. Physical review letters 2003, 90, 241301. [Google Scholar] [CrossRef]
- Maroto, A.L. Nature of branon dark matter. Physical Review D 2004, 69, 043509. [Google Scholar] [CrossRef]
- Shankaranarayanan, S.; Johnson, J.P. Modified theories of gravity: Why, how and what? General Relativity and Gravitation 2022, 54, 44. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models. Physics Reports 2011, 505, 59–144. [Google Scholar]
- Nojiri, S.; Odintsov, S.; Oikonomou, V. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Physics Reports 2017, 692, 1–104. [Google Scholar]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 270, July 15, 1983, p. 365-370. Research supported by the US-Israel Binational Science Foundation. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics-Implications for galaxies. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 270, July 15, 1983, p. 371-383. 1983, 270, 371–383. [Google Scholar] [CrossRef]
- Moffat, J.W. Scalar–tensor–vector gravity theory. Journal of Cosmology and Astroparticle Physics 2006, 2006, 004. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Dark energy, inflation and dark matter from modified F (R) gravity. arXiv preprint arXiv:0807.0685, arXiv:0807.0685 2008.
- Boyle, L.; Finn, K.; Turok, N. CPT-symmetric universe. Physical review letters 2018, 121, 251301. [Google Scholar] [CrossRef]
- Kumar, N. On the Accelerated Expansion of the Universe. Gravitation and Cosmology 2024, 30, 85–88. [Google Scholar] [CrossRef]
- Grumiller, D.; Kummer, W.; Vassilevich, D. Dilaton gravity in two dimensions. Physics Reports 2002, 369, 327–430. [Google Scholar] [CrossRef]
- Grumiller, D. Model for gravity at large distances. Physical review letters 2010, 105, 211303. [Google Scholar] [CrossRef] [PubMed]
- Perivolaropoulos, L.; Skara, F. Reconstructing a model for gravity at large distances from dark matter density profiles. Physical Review D 2019, 99, 124006. [Google Scholar] [CrossRef]
- Das, S.; Sur, S. Dark matter or strong gravity? International Journal of Modern Physics D 2022, 31, 2242020. [Google Scholar] [CrossRef]
- Das, S.; Sur, S. Gravitational lensing and missing mass. Physics Open 2023, 15, 100150. [Google Scholar] [CrossRef]
- Kumar, N. 2D behavior of Gravity at Large Distance. Preprints 2023. [Google Scholar]
- Dvali, G.; Gabadadze, G.; Porrati, M. 4D gravity on a brane in 5D Minkowski space. Physics Letters B 2000, 485, 208–214. [Google Scholar] [CrossRef]
- Dvali, G.; Gabadadze, G. Gravity on a brane in infinite-volume extra space. Physical Review D 2001, 63, 065007. [Google Scholar] [CrossRef]
- Luty, M.A.; Porrati, M.; Rattazzi, R. Strong interactions and stability in the DGP model. Journal of High Energy Physics 2003, 2003, 029. [Google Scholar] [CrossRef]
- Nicolis, A.; Rattazzi, R. Classical and quantum consistency of the DGP model. Journal of High Energy Physics 2004, 2004, 059. [Google Scholar] [CrossRef]
- Koyama, K. Ghosts in the self-accelerating brane universe. Physical Review D—Particles, Fields, Gravitation, and Cosmology 2005, 72, 123511. [Google Scholar] [CrossRef]
- Gorbunov, D.; Koyama, K.; Sibiryakov, S. More on ghosts in the Dvali-Gabadaze-Porrati model. Physical Review D—Particles, Fields, Gravitation, and Cosmology 2006, 73, 044016. [Google Scholar] [CrossRef]
- De Rham, C.; Dvali, G.; Hofmann, S.; Khoury, J.; Pujolas, O.; Redi. f.M.; Tolley, A.J. Cascading gravity: Extending the Dvali-Gabadadze-Porrati model to higher dimension. Physical Review Letters 2008, 100, 251603. [Google Scholar] [CrossRef]
- De Rham, C.; Hofmann, S.; Khoury, J.; Tolley, A.J. Cascading gravity and degravitation. Journal of Cosmology and Astroparticle Physics 2008, 2008, 011. [Google Scholar] [CrossRef]
- Trodden, M. Cosmic acceleration and the challenge of modifying gravity. Journal of Physics: Conference Series. IOP Publishing, 2011, Vol. 284, p. 012004.
- de Rham, C.; Khoury, J.; Tolley, A.J. Cascading gravity is ghost free. Physical Review D—Particles, Fields, Gravitation, and Cosmology 2010, 81, 124027. [Google Scholar] [CrossRef]
- Mistele, T.; McGaugh, S.; Lelli, F.; Schombert, J.; Li, P. Indefinitely Flat Circular Velocities and the Baryonic Tully–Fisher Relation from Weak Lensing. The Astrophysical Journal Letters 2024, 969, L3. [Google Scholar] [CrossRef]
- Lo, M.W.Y. Galactic Dynamics Using 1/r Force Without Dark Matter. arXiv preprint arXiv:1305.6847, arXiv:1305.6847 2013.
- Kumar, N. Variable brane tension and dark energy. Europhysics Letters 2024, 145, 39001. [Google Scholar] [CrossRef]
- Minamitsuji, M. Self-accelerating solutions in the cascading DGP braneworld. Physics Letters B 2010, 684, 92–95. [Google Scholar] [CrossRef]
- Faraoni, V. f (R) gravity: successes and challenges. arXiv preprint arXiv:0810.2602, arXiv:0810.2602 2008.
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Physical Review D 2004, 70, 043528. [Google Scholar] [CrossRef]
- Erickcek, A.L.; Smith, T.L.; Kamionkowski, M. Solar system tests do rule out 1/R gravity. Physical Review D—Particles, Fields, Gravitation, and Cosmology 2006, 74, 121501. [Google Scholar] [CrossRef]
- Chiba, T.; Smith, T.L.; Erickcek, A.L. Solar System constraints to general f (R) gravity. Physical Review D—Particles, Fields, Gravitation, and Cosmology 2007, 75, 124014. [Google Scholar] [CrossRef]
- Chiba, T. 1/R gravity and scalar-tensor gravity. Physics Letters B 2003, 575, 1–3. [Google Scholar] [CrossRef]
| 1 | Since is force per unit fluid volume, we have converted this to total force and, therefore, mass M appears instead of mass density . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
