Submitted:
05 August 2024
Posted:
05 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Species Occurrence Data
2.2. Environmental Variables
2.3. Species Distribution Modeling Methodology
2.4. Geospatial Analysis
2.5. Conservation Gap Analysis
3. Results
3.1. Optimal Model and Model Evaluation
3.2. Key Environmental Variables
3.3. Current Suitable Distribution
3.4. Past and Future Distribution Shift
3.5. Centroid Migration of Suitable Area
4. Discussion
4.1. Model Selection and Evaluation
4.2. The Key Influencing Factors of C. amoena
4.3. Current Suitable Area of C. amoena
4.4. Suitable Area Change under Different Climate Scenarios
4.5. Conservation implications for C. amoena
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. 2008, 105, 11823–11826. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Chen, Y.; Yu, S. Climate factors drive plant distributions at higher taxonomic scales and larger spatial scales. Front. Ecol. Evol. 2024, 11, 1233936. [Google Scholar] [CrossRef]
- Gao, Q.H.; Qin, Y.Y.; Liang, M.C.; Gao, X. Interpretation of the main conclusions and suggestions of IPCC AR6 synthesis report. Environ. Prot. 2023, 51, 82–84. [Google Scholar]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; et al. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.D.; Lu, A.M.; Liu, B.; Ye, J.F. Tree of Life for Chinese Vascular Plants; Science Press: Beijing, China, 2020; ISBN 9787030635600. [Google Scholar]
- Jin, X.H.; Li, J.W.; Ye, D.P. Atlas of Native Orchids in China; Henan Science and Technology Press: Zhengzhou, China, 2019; ISBN 9787534991066. [Google Scholar]
- Wotavová, K.; Balounová, Z.; Kindlmann, P. Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol. Conserv. 2004, 118, 271–279. [Google Scholar] [CrossRef]
- Tsiftsis, S.; Tsiripidis, I. Temporal and spatial patterns of orchid species distribution in Greece: Implications for conservation. Biodivers. Conserv. 2020, 29, 3461–3489. [Google Scholar] [CrossRef]
- Ren, Z.X.; Wang, H.; Luo, Y.B. Deceptive pollination of orchids. Biodivers. Sci. 2012, 20, 270. [Google Scholar]
- Chen, X.H.; Tan, S.L.; Liang, Y.L.; Huang, L.; Xiao, H.W.; Luo, H.L.; Xiong, D.J.; Yang, B.Y.; Ren, Z.X. The pollination of Habenaria rhodocheila (Orchidaceae) in South China: When butterflies take sides. Ecol. Evol. 2021, 11, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Jacquemyn, H.; Burgess, K.S.; Zhang, L.G.; Zhou, Y.D.; Yang, B.Y.; Tan, S.L. Contrasting range changes of terrestrial orchids under future climate change in China. Sci. Total Environ. 2023, 895, 165128. [Google Scholar]
- Xu, Y.D.; Huang, Y.; Zhao, H.R.; Yang, M.; Zhuang, Y.Q.; Ye, X.P. Modelling the effects of climate change on the distribution of endangered Cypripedium japonicum in China. Forests 2021, 12, 429. [Google Scholar] [CrossRef]
- Swarts, N.D.; Dixon, K.W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009, 104, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Wonkka, C.L.; Treglia, M.L.; Grant, W.E.; Smeins, F.E.; Rogers, W.E. Species distribution modelling for conservation of an endangered endemic orchid. AOB Plants 2015, 7, plv039. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Peter, H.R. Flora of China; Science Press: Beijing, China, 2009; Volume 25, ISBN 9787030255334. [Google Scholar]
- Wu, Z.Y.; Raven, P.H.; Hong, D.Y. Flora of China; Science Press: Beijing, China, 1999; Volume 18, ISBN 9787030073228. [Google Scholar]
- Liu, G.Y. Flora of Zhejiang: The second edition; Zhejiang Science and Technology Press: Hangzhou, China, 2021; Volume 10, ISBN 9787534191763. [Google Scholar]
- Li, A.; Ge, S. Genetic variation and conservation of Changnienia amoena, an endangered orchid endemic to China. Plant Syst. Evol. 2006, 258, 251–260. [Google Scholar] [CrossRef]
- Li, A.; Luo, Y.B.; Xiong, Z.T.; Ge, S. A preliminary study on conservation genetics of three endangered orchid species. Acta Bot. Sin. 2002, 44, 250–252. [Google Scholar]
- Fu, L.G. China plant red data book -rare and endangered plants; Science Press: Beijing, China, 1992; Volume I, ISBN 703000485X. [Google Scholar]
- Sun, H.Q.; Luo, Y.B.; Alexandersson, R.; Ge, S. Pollination biology of the deceptive orchid Changnienia amoena. Bot. J. Linn. Soc. 2006, 150, 165–175. [Google Scholar] [CrossRef]
- Zhang, H.S. Distribution of Changnienia amoena S. S. Chien in Wenxian County, Gansu Province. J. Plants 1996, 29. [Google Scholar]
- Chen, S.; Ma, Y.; Wang, X.B. A rare and endangered flower, Changnienia amonena S. S. Chien, was found in Chengkou County. South China Agriculture 2013, 7, 7–12. [Google Scholar]
- Qin, Y.; Zou, C.Y.; Meng, T. Two newly recorded genera of Orchidaceae from Guangxi, China. Guihaia 2018, 38, 1475–1479. [Google Scholar]
- Fleishman, E.; Ray, C.; Sjögren-Gulve, P.; Boggs, C.L.; Murphy, D.D. Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv. Biol. 2002, 16, 706–716. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Watling, J.I.; Brandt, L.A.; Bucklin, D.N.; Fujisaki, I.; Mazzotti, F.J.; Romanach, S.S.; Speroterra, C. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models. Ecol. Modell. 2015, 309, 48–59. [Google Scholar] [CrossRef]
- Thuiller, W.; Araújo, M.B.; Lavorel, S. Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J. Veg. Sci. 2003, 14, 669–680. [Google Scholar] [CrossRef]
- Fang, Y.Q.; Zhang, X.H.; Wei, H.Y.; Wang, D.J.; Chen, R.D.; Wang, L.K.; Gu, W. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. Sci. Total Environ. 2021, 756, 143841. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.F.; Hu, X.K.; Hao, Y.W.; Luo, Z.W.; Feng, J.X.; Xue, J.B.; Guo, Z.Y.; Li, Y.L.; Zhang, L.J.; Xia, S.; et al. Projecting the proliferation risk of Oncomelania hupensis in China driven by SSPs: A multi-scenario comparison and integrated modeling study. Adv. Clim. Change Res. 2022, 13, 258–265. [Google Scholar] [CrossRef]
- Dormann, C.F.; Calabrese, J.M.; Guillera-Arroita, G.; Matechou, E.; Bahn, V.; Bartoń, K.; Beale, C.M.; Ciuti, S.; Elith, J.; Gerstner, K.; et al. Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecol. Monogr. 2018, 88, 485–504. [Google Scholar] [CrossRef]
- Wang, Z.W.; Yin, J.; Wang, X.; Chen, Y.; Mao, Z.K.; Lin, F.; Gong, Z.Q.; Wang, X.G. Habitat suitability evaluation of invasive plant species Datura stramonium in Liaoning Province: Based on Biomod2 combination model. J. Appl. Ecol. 2023, 34, 1272–1280. [Google Scholar]
- Yu, Y.J.; Luo, H.L.; Liu, N.N.; Xiong, D.J.; Luo, Y.B.; Yang, B.Y. Influence of the climate change on suitable areas of Calanthe sieboldii and its pollinators in China. Biodivers. Sci. 2020, 28, 769. [Google Scholar] [CrossRef]
- Chen, Y.R. Phylogentic Diversity and its Structure of Wild Orchid Plants in Jiangxi Province and the Change Trend of the Suitable Areas; Nanchang University: Nanchang, China, 2019. [Google Scholar]
- Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Kong, W.; Li, X.; Zou, H. Optimization of Maximum Entropy Model in species distribution prediction. J. Appl. Ecol. 2019, 30, 2116. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. J. Geophys. Res. Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- Gao, T.; Xu, Q.; Liu, Y.; Zhao, J.; Shi, J. Predicting the potential geographic distribution of Sirex nitobei in China under climate change using Maximum entropy model. Forests 2021, 12, 151. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, K.J.; Liu, X.F.; Yang, L.; Shen, S.K. Interspecific variance of suitable habitat changes for four alpine Rhododendron species under climate change: Implications for their reintroductions. Forests 2021, 12, 1520. [Google Scholar] [CrossRef]
- Duan, Y.Z.; Yu, H.; Wang, H.T.; Du, Z.Y. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica. Plant Sci. J. 2019, 37, 337–347. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, G.J.R.; Gruber, B.; Lafourcade, B.; Leitão, P.J. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, T.; Wu, Y.; Hu, R.; Huang, K.; Shao, X. Past distribution of epiphyllous liverworts in China: The usability of historical data. Ecol. Evol. 2018, 8, 7436–7450. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Wang, D.; Cui, B.; Duan, S.; Chen, J.; Fan, H.; Lu, B.; Zheng, J. Moving north in China: The habitat of Pedicularis kansuensis in the context of climate change. Sci. Total Environ. 2019, 697, 133979. [Google Scholar] [CrossRef]
- Pavlović, L.; Stojanović, D.; Mladenović, E.; Lakićević, M.; Orlović, S. Potential elevation shift of the European beech stands (Fagus sylvatica L.) in Serbia. Front. Plant Sci. 2019, 10, 436609. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, B.; Wan, F.; Xiao, Q.; Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodivers. Sci. 2007, 15, 365. [Google Scholar]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Jalaeian, M.; Golizadeh, A.; Sarafrazi, A.; Naimi, B. Inferring climatic controls of rice stem borers’ spatial distributions using maximum entropy modelling. J. Appl. Entomol. 2018, 142, 388–396. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Chen, Q.H.; Yin, Y.J.; Zhao, R.; Yang, Y.; Teixeira da Silva, J.A.; Yu, X.N. Incorporating local adaptation into species distribution modeling of Paeonia mairei, an endemic plant to China. Front. Plant Sci. 2020, 10, 1717. [Google Scholar] [CrossRef]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; McCarthy, M.A.; Tingley, R.; Wintle, B.A. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecol. Biogeogr. 2015, 24, 276–292. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef]
- Yu, J.H.; Qin, F.; Xue, T.T.; Zhang, W.D.; Liu, Q.; AN, M.T.; Yu, S.X. Conservation status and prediction analysis of potential distribution of National Key Protected Wild Plants. Guihaia 2023, 43, 1404–1413. [Google Scholar]
- Yang, X.; Liu, B.; Bussmann, R.W.; Guan, X.; Xu, W.B.; Xue, T.T.; Xia, C.Y.; Li, J.; Jiang, H.; Wu, L.; et al. Integrated plant diversity hotspots and long-term stable conservation strategies in the unique karst area of southern China under global climate change. Forest Ecol. Manage. 2021, 498, 119540. [Google Scholar] [CrossRef]
- Xue, T.T.; Gadagkar, S.R.; Albright, T.P.; Yang, X.D.; Li, J.; Xia, C.Y.; Wu, J.Y.; Yu, S.X. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecol. Conserv. 2021, 32, e01885. [Google Scholar] [CrossRef]
- Chi, X.; Zhang, Z.; Xu, X.; Zhang, X.; Zhao, Z.; Liu, Y.; Wang, Q.G.; Wang, H.; Li, Y.; Yang, G.; et al. Threatened medicinal plants in China: Distributions and conservation priorities. Biol. Conserv. 2017, 210, 89–95. [Google Scholar] [CrossRef]
- Ren, Z.; Zagortchev, L.; Ma, J.; Yan, M.; Li, J. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming. BMC Ecol. 2020, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Zhang, G. Predicting the potential distribution of endangered Parrotia subaequalis in China. Forests 2022, 13, 1595. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, R.; Zhang, G. Predicting the potential distribution of four endangered holoparasites and their primary hosts in China under climate change. Front. Plant Sci. 2022, 13, 942448. [Google Scholar] [CrossRef] [PubMed]
- Grenouillet, G.; Buisson, L.; Casajus, N.; Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 2011, 34, 9–17. [Google Scholar] [CrossRef]
- Liu, H.; Feng, C.L.; Luo, Y.B.; Chen, B.S.; Wang, Z.S.; Gu, H.Y. Potential challenges of climate change to orchid conservation in a wild orchid hotspot in southwestern China. Bot. Rev. 2010, 76, 174–192. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Yang, C.D. A new taxa record genus and species of Orchidaceae in Guizhou Province (Changnienia S. S. Chien: Changnienia amoena S. S. Chien). Seed 2010, 29, 65–66. [Google Scholar]
- Sun, H.Q.; Luo, Y.B.; Ge, S. A preliminary study on pollination biology of an endangered orchid, Changnienia amoena, in Shennongjia. Acta Bot. Sin. 2003, 45, 1019–1023. [Google Scholar]
- Wu, H.Z.; Song, X.Q.; Yang, F.S.; Zhu, G.P. Pseudobulbs on the Survival and Mating System of Dendrobium sinense (Orchidaceae) in Hainan Island. Chin. J. Trop. Crops 2013, 34, 625–629. [Google Scholar]
- Ng, C.K.Y.; Hew, C.S. Orchid pseudobulbs–false'bulbs with a genuine importance in orchid growth and survival! Sci. Hortic. 2000, 83, 165–172. [Google Scholar] [CrossRef]
- Yan, H.; Ma, S.M.; Wei, B.; Zhang, H.X.; Zhang, D. Historical distribution patterns and environmental drivers of relict shrub Amygdalus pedunculata. Chin. J. Plant Ecol. 2022, 46, 766. [Google Scholar] [CrossRef]
- He, X.; Ma, W.X.; Zhao, T.T.; Ma, Q.H.; Liang, L.S.; Wang, G.X.; Yang, Z. Prediction of potential distribution of endangered species Corylus chinensis Franch in climate change context. Forest Res. 2022, 35, 104–114. [Google Scholar]
- Dhyani, A.; Kadaverugu, R.; Nautiyal, B.P.; Nautiyal, M.C. Predicting the potential distribution of a critically endangered medicinal plant Lilium polyphyllum in Indian Western Himalayan Region. Reg. Environ. Change 2021, 21, 30. [Google Scholar] [CrossRef]
- Kong, F.; Tang, L.; He, H.; Yang, F.; Tao, J.; Wang, W. Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environ. Sci. Pollut. Res. 2021, 28, 34655–34663. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.H.; Jiang, M.K.; Xu, W.G.; He, Z.H. Assessment of in situ conservation of 1,334 native orchids in China. Biodivers. Sci. 2012, 20, 177. [Google Scholar]
- Jin, X.H. A comment on “Assessment of in situ conservation of 1,334 native orchids in China”. Biodivers. Sci. 2012, 20, 235. [Google Scholar]
- Zhang, Y.B.; Du, H.D.; Jin, X.H.; Ma, K.P. Species diversity and geographic distribution of wild Orchidaceae in China. Chin. Sci. Bull. 2015, 60, 179–188. [Google Scholar]







| Environmental variables | Description | Unit | Percent Contribution (%) | ||
|---|---|---|---|---|---|
| LIG | MH | Current | |||
| Bio2 | Mean diurnal range (mean of monthly(max temp-min temp)) | °C | 38.6 | 37.8 | 43.7 |
| Bio3 | Isothermality ( (Bio2/Bio7)×100) | % | 6.6 | 2.4 | - |
| Bio4 | Temperature seasonality (standard deviation×100) | - | - | 7.1 | 14.4 |
| Bio5 | Max temperature of warmest month | °C | 0.4 | - | - |
| Bio6 | Min temperature of coldest month | °C | - | - | 14.8 |
| Bio7 | 16.2 | - | - | ||
| Bio8 | Mean temperature of wettest quarter | °C | - | 0.1 | 0.4 |
| Bio11 | - | 9.4 | - | - | |
| Bio12 | - | - | 6.4 | - | |
| Bio13 | Precipitation of wettest month | mm | 0.1 | 2.4 | - |
| Bio14 | Precipitation of driest month | mm | - | - | 0.6 |
| Bio15 | 0.4 | 12 | - | ||
| Bio18 | Precipitation of warmest quarter | mm | - | 3.7 | 13.2 |
| Bio19 | Precipitation of coldest quarter | mm | 1.3 | - | - |
| Elevation | - | m | - | - | 1.6 |
| Slope | - | ° | - | - | 2.6 |
| T-BS | Topsoil Base Saturation | % | - | - | 0.3 |
| T-CaCO3 | Topsoil Calcium Carbonate | % | - | - | 0.3 |
| T-CEC-CLAY | Topsoil CEC (clay) | - | - | - | 0.7 |
| T-CLAY | Topsoil Clay Fraction | % | - | - | 0.6 |
| T-ESP | Topsoil Sodicity | - | - | - | 0.6 |
| T-GRAVEL | Topsoil Gravel Content | % | - | - | 0.2 |
| T-OC | Topsoil Organic Carbon | % | - | - | 1.9 |
| T-SILT | Topsoil Silt Fraction | % | - | - | 0.1 |
| T-TEB | Topsoil Exchangeable Base | - | - | - | 0.1 |
| Models | AUC | TSS |
|---|---|---|
| ANN | 0.9082 ± 0.1260 | 0.7526 ± 0.1259 |
| CTA | 0.9098 ± 0.1259 | 0.8120 ± 0.1258 |
| FDA | 0.9393 ± 0.1269 | 0.7587 ± 0.1272 |
| GAM | 0.8127 ± 0.1202 | 0.6222 ± 0.1215 |
| GBM | 0.9653 ± 0.1217 | 0.8596 ± 0.1214 |
| GLM | 0.9301 ± 0.1214 | 0.8029 ±0 .1214 |
| MARS | 0.9358 ± 0.1269 | 0.8122 ± 0.1269 |
| RF | 0.9680 ± 0.1270 | 0.8430 ± 0.1267 |
| SRE | 0.7655 ± 0.1262 | 0.5311 ± 0.1267 |
| MaxEnt | 0.9550 ± 0.0010 | 0.8577 ± 0.0136 |
| Ensemble model | 0.9940 ± 0.1270 | 0.9160 ± 0.1269 |
| Ensemble model (GBM, RF, and MaxEnt) | 0.9950 ± 0.0056 | 0.9330 ± 0.0074 |
| Environmental variables | Percent Contribution (%) | Suitable range | Optimum | Maximum probability of existence |
|---|---|---|---|---|
| Bio2 (°C) | 43.7 | 6.8 -8.9 | 7.4 | 0.73 |
| Bio6 (°C) | 14.8 | -6.0 -2.5 | -2 | 0.85 |
| Bio4 | 14.4 | 7.2 -9.1(×100) | 7.8(×100) | 0.82(×100) |
| Bio18 (mm) | 13.2 | 420 -720 | 625 | 0.84 |
| Climate scenarios | Unsuitable area |
Low suitable area |
Moderately suitable area |
Highly suitable area |
Suitable area(moderately and highly) | ||||||
| Area(×104 km2) | Trend(%) | Area(×104 km2) | Trend(%) | Area(×104 km2) | Trend(%) | Area(×104 km2) | Trend(%) | Area(×104 km2) | Trend(%) | ||
| Last Inter Glacial (LIG) | 839.70 | ↑2.20 | 56.79 | ↓27.70 | 44.13 | ↑0.32 | 20.38 | ↑42.12 | 64.51 | ↑10.59 | |
| Mid-Holocene (MH) | 835.92 | ↑1.74 | 49.83 | ↓36.56 | 41.89 | ↓4.77 | 33.36 | ↑57.01 | 75.25 | ↑29.01 | |
| Current | 821.64 | - | 78.55 | - | 43.99 | - | 14.34 | - | 58.33 | - | |
| 2050s | RCP2.6 | 820.39 | ↓0.15 | 88.09 | ↑12.14 | 37.49 | ↓14.78 | 12.54 | ↓12.55 | 50.03 | ↓14.23 |
| RCP4.5 | 823.84 | ↑0.27 | 86.18 | ↑ 9.71 | 34.18 | ↓22.30 | 14.31 | ↓ 0.21 | 48.49 | ↓16.87 | |
| RCP8.5 | 827.99 | ↑0.77 | 68.29 | ↑13.06 | 44.88 | ↑ 2.02 | 17.35 | ↑20.99 | 62.23 | ↑ 6.69 | |
| 2070s | RCP2.6 | 817.76 | ↓0.47 | 69.11 | ↓12.02 | 43.90 | ↓ 0.20 | 27.74 | ↑93.44 | 71.64 | ↑22.82 |
| RCP4.5 | 823.45 | ↑0.22 | 80.46 | ↑ 2.43 | 37.67 | ↓14.37 | 16.92 | ↑17.99 | 54.59 | ↓ 6.41 | |
| RCP8.5 | 809.52 | ↓1.47 | 93.90 | ↑19.54 | 41.22 | ↓ 6.30 | 13.87 | ↓ 3.28 | 55.09 | ↓ 5.55 | |
| The mean value of six future climate scenarios | 820.49 | ↓0.14 | 81.01 | ↑3.13 | 39.89 | ↓9.32 | 17.12 | ↑19.39 | 57.01 | ↓2.26 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
