Submitted:
25 July 2024
Posted:
26 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Treatment Procedures
2.2.1. Motor Activity
2.2.2. Cognitive Activity
2.2.3. tDCS Procedure
2.3. Evaluation Procedures
2.3.1. Primary Outcome
2.3.2. Secondary Outcome
2.4. Statistical Analysis
3. Results
3.1. Primary Outcome
3.2. Secondary Outcomes
4. Discussion
References
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.-C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015: The Global Impact of Dementia – An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer's Disease International: London, 2015; pp. 1–87. [Google Scholar]
- Weintraub, S.; Wicklund, A. H.; Salmon, D. P. The neuropsychological profile of Alzheimer disease. Cold Spring Harbor perspectives in medicine 2012, 2, a006171. [Google Scholar] [CrossRef]
- Graham, W. V.; Bonito-Oliva, A.; Sakmar, T. P. Update on Alzheimer’s Disease Therapy and Prevention Strategies. Annual review of medicine 2017, 68, 413–430. [Google Scholar] [CrossRef]
- Fonte, C.; Smania, N.; Pedrinolla, A.; Munari, D.; Gandolfi, M.; Picelli, A.; et al. Comparison between physical and cognitive treatment in patients with MCI and Alzheimer’s disease. Aging 2019, 11, 3138–3155. [Google Scholar] [CrossRef]
- Wagner, T.; Valero-Cabre, A.; Pascual-Leone, A. Noninvasive Human Brain Stimulation. Annual Review of Biomedical Engineering 2007, 9, 527–565. [Google Scholar] [CrossRef]
- Nitsche, M. A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology 2000, 527 Pt 3(Pt 3), 633–639. [Google Scholar] [CrossRef]
- Pellicciari, M. C.; Miniussi, C. Transcranial Direct Current Stimulation in Neurodegenerative Disorders. The journal of ECT 2018, 34, 193–202. [Google Scholar] [CrossRef]
- Chang, C.-H.; Lane, H.-Y.; Lin, C.-H. Brain Stimulation in Alzheimer’s Disease. Frontiers in psychiatry 2018, 9, 201. [Google Scholar] [CrossRef]
- Cammisuli, D. M.; Cignoni, F.; Ceravolo, R.; Bonuccelli, U.; Castelnuovo, G. Transcranial Direct Current Stimulation (tDCS) as a Useful Rehabilitation Strategy to Improve Cognition in Patients With Alzheimer’s Disease and Parkinson’s Disease: An Updated Systematic Review of Randomized Controlled Trials. Frontiers in neurology. Switzerland 2021, p 798191. [CrossRef]
- Yu, T.-W.; Lane, H.-Y.; Lin, C.-H. Novel Therapeutic Approaches for Alzheimer’s Disease: An Updated Review. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef]
- Davis, S. E.; Smith, G. A. Transcranial Direct Current Stimulation Use in Warfighting: Benefits, Risks, and Future Prospects. Frontiers in human neuroscience 2019, 13, 114. [Google Scholar] [CrossRef]
- Ferrucci, R.; Mameli, F.; Guidi, I.; Mrakic-Sposta, S.; Vergari, M.; Marceglia, S.; et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 2008, 71, 493–498. [Google Scholar] [CrossRef]
- Boggio, P. S.; Ferrucci, R.; Mameli, F.; Martins, D.; Martins, O.; Vergari, M.; et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain stimulation 2012, 5, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Penolazzi, B.; Bergamaschi, S.; Pastore, M.; Villani, D.; Sartori, G.; Mondini, S. Transcranial direct current stimulation and cognitive training in the rehabilitation of Alzheimer disease: A case study. Neuropsychological rehabilitation 2015, 25, 799–817. [Google Scholar] [CrossRef] [PubMed]
- Marceglia, S.; Mrakic-Sposta, S.; Rosa, M.; Ferrucci, R.; Mameli, F.; Vergari, M.; et al. Transcranial Direct Current Stimulation Modulates Cortical Neuronal Activity in Alzheimer’s Disease. Frontiers in neuroscience 2016, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Bystad, M.; Grønli, O.; Rasmussen, I. D.; Gundersen, N.; Nordvang, L.; Wang-Iversen, H.; et al. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial. Alzheimer’s research & therapy 2016, 8, 13. [Google Scholar] [CrossRef]
- Boggio, P. S.; Khoury, L. P.; Martins, D. C. S.; Martins, O. E. M. S.; de Macedo, E. C.; Fregni, F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. Journal of neurology, neurosurgery, and psychiatry 2009, 80, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.; Brighina, F.; Piccoli, T.; Realmuto, S.; Fierro, B. Anodal transcranial direct current stimulation over the right hemisphere improves auditory comprehension in a case of dementia. NeuroRehabilitation 2017, 41, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Gangemi, A.; Fabio, R. Transcranial direct current stimulation for Alzheimer disease. Asian Journal of Gerontology and Geriatrics 2020, 15, 5–9. [Google Scholar] [CrossRef]
- Gangemi, A.; Colombo, B.; Fabio, R. A. Effects of short- and long-term neurostimulation (tDCS) on Alzheimer’s disease patients: two randomized studies. Aging clinical and experimental research 2021, 33, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E. M.; Gamal, N. F. El; El-Fetoh, N. A.; Khalifa, H.; Ahmed, E. M.; Ali, A. M.; et al. A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer’s disease. Frontiers in aging neuroscience 2014, 6, 275. [Google Scholar] [CrossRef]
- Cotelli, M.; Manenti, R.; Brambilla, M.; Petesi, M.; Rosini, S.; Ferrari, C.; et al. Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Frontiers in aging neuroscience 2014, 6, 38. [Google Scholar] [CrossRef]
- Suemoto, C. K.; Apolinario, D.; Nakamura-Palacios, E. M.; Lopes, L.; Leite, R. E. P.; Sales, M. C.; et al. Effects of a non-focal plasticity protocol on apathy in moderate Alzheimer’s disease: a randomized, double-blind, sham-controlled trial. Brain stimulation 2014, 7, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Im, J. J.; Jeong, H.; Bikson, M.; Woods, A. J.; Unal, G.; Oh, J. K.; et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain stimulation 2019, 12, 1222–1228. [Google Scholar] [CrossRef]
- Khedr, E. M.; Salama, R. H.; Abdel Hameed, M.; Abo Elfetoh, N.; Seif, P. Therapeutic Role of Transcranial Direct Current Stimulation in Alzheimer Disease Patients: Double-Blind, Placebo-Controlled Clinical Trial. Neurorehabilitation and neural repair 2019, 33, 384–394. [Google Scholar] [CrossRef]
- Andrade, S. M.; de Oliveira, E. A.; Alves, N. T.; dos Santos, A. C. G.; de Mendonça, C. T. P. L.; Sampaio, D. D. A.; et al. Neurostimulation combined with cognitive intervention in Alzheimer’s disease (NeuroAD): Study protocol of double-blind, randomized, factorial clinical trial. Frontiers in Aging Neuroscience. Frontiers Media S.A.: Switzerland 2018. [CrossRef]
- Marchi, L. Z.; Ferreira, R. G. D.; de Lima, G. N. S.; da Silva, J. A. S.; da Cruz, D. M. C.; Fernandez-Calvo, B.; et al. Multisite transcranial direct current stimulation associated with cognitive training in episodic memory and executive functions in individuals with Alzheimer’s disease: a case report. Journal of medical case reports 2021, 15, 185. [Google Scholar] [CrossRef]
- Pilloni, G.; Charvet, L. E.; Bikson, M.; Palekar, N.; Kim, M.-J. Potential of Transcranial Direct Current Stimulation in Alzheimer’s Disease: Optimizing Trials Toward Clinical Use. Journal of clinical neurology (Seoul, Korea) 2022, 18, 391–400. [Google Scholar] [CrossRef]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H. M.; Ji, Y.; Cohen, L. G.; et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A. R.; Vanderhasselt, M.-A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain and cognition 2014, 86, 1–9. [Google Scholar] [CrossRef]
- Charvet, L.; Shaw, M.; Dobbs, B.; Frontario, A.; Sherman, K.; Bikson, M.; et al. Remotely Supervised Transcranial Direct Current Stimulation Increases the Benefit of At-Home Cognitive Training in Multiple Sclerosis. Neuromodulation: journal of the International Neuromodulation Society 2018, 21, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Elmasry, J.; Loo, C.; Martin, D. A systematic review of transcranial electrical stimulation combined with cognitive training. Restorative neurology and neuroscience 2015, 33, 263–278. [Google Scholar] [CrossRef]
- Gill, J.; Shah-Basak, P. P.; Hamilton, R. It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain stimulation 2015, 8, 253–259. [Google Scholar] [CrossRef]
- Zaninotto, A. L.; El-Hagrassy, M. M.; Green, J. R.; Babo, M.; Paglioni, V. M.; Benute, G. G.; et al. Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: A systematic review. Dementia & neuropsychologia 2019, 13, 172–179. [Google Scholar] [CrossRef]
- Folstein, M. F.; Folstein, S. E.; McHugh, P. R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Styliadis, C.; Kartsidis, P.; Paraskevopoulos, E.; Ioannides, A. A.; Bamidis, P. D. Neuroplastic effects of combined computerized physical and cognitive training in elderly individuals at risk for dementia: an eLORETA controlled study on resting states. Neural plasticity 2015, 2015, 172192. [Google Scholar] [CrossRef] [PubMed]
- Beschin, N.; Urbano, T.; Treccani, B. RIVERMEAD BEHAVIOURAL MEMORY TEST – THIRD EDITION (Adattamento Italiano); 2013.
- Monaco, M.; Costa, A.; Caltagirone, C.; Carlesimo, G. A. Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 2013, 34, 749–754. [Google Scholar] [CrossRef]
- Zappalà, G.; Measso, G.; Cavarzeran, F.; Grigoletto, F.; Lebowitz, B.; Pirozzolo, F.; et al. Aging and memory: Corrections for age, sex and education for three widely used memory tests. The Italian Journal of Neurological Sciences 1995, 16, 177–184. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. italiano per lo studio neuropsicologico dell’invecchiamento, G. Standardizzazione e Taratura Italiana Di Test Neuropsicologic; Italian journal of neurological sciences: Supplementum; Masson Italia Periodici, 1987.
- Robertson, I. H.; Manly, T.; Andrade, J.; Baddeley, B. T.; Yiend, J. “Oops! ”: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 1997, 35, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J. L.; Mega, M.; Gray, K.; Rosenberg-Thompson, S.; Carusi, D. A.; Gornbein, J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994, 44, 2308–2314. [Google Scholar] [CrossRef]
- Fonte, C.; Varalta, V.; Rocco, A.; Munari, D.; Filippetti, M.; Evangelista, E.; et al. Combined transcranial Direct Current Stimulation and robot-assisted arm training in patients with stroke: A systematic review. Restorative Neurology and Neuroscience 2021, 39, 435–446. [Google Scholar] [CrossRef]

| CogA | CogS | MotA | MotS | Baseline comparison p value |
|
|---|---|---|---|---|---|
| Numbers | 7 (3♂/4♀) | 4(2♂/2♀) | 5(1♂/4♀) | 4(2♂/2♀) | |
| Age (years) | 78 ± 11 | 81 ± 5 | 85 ± 5 | 88 ± 3 | .195 |
| Education (years) | 8 ± 3 | 8 ± 3 | 8 ± 6 | 8 ± 4 | .892 |
| Time from onset (years) | 3 ± 2 | 3 ± 4 | 4 ± 4 | 4 ± 3 | .753 |
| MMSE (0-30) | 19.7 ±4.7 | 20.7 ± 6.2 | 19.6 ± 4.1 | 18 ± 3.2 | .947 |
| Pharmacological treatment | |||||
| Cholinesterase inhibitors | 4 | 1 | 4 | 2 | |
| Antipsychotics | 0 | 1 | 2 | 0 | |
| Antidepressant | 4 | 1 | 2 | 1 | |
| Benzodiazepines | 2 | 0 | 2 | 2 | |
| Hypertension medications | 4 | 3 | 3 | 1 | |
| Proton pump inhibitors | 2 | 2 | 1 | 0 | |
| Cholesterol medications | 1 | 1 | 1 | 0 | |
| Diuretics | 0 | 1 | 1 | 2 | |
| Comorbidity | |||||
| Hypertension | 4 | 2 | 1 | 1 | |
| Diabetes | 1 | 1 | 0 | 0 | |
| Hepatic steatosis | 1 | 0 | 0 | 0 | |
| Cholesterol | 1 | 1 | 1 | 0 | |
| Cardiovascular Diseases | 0 | 0 | 1 | 1 | |
| Depression | 0 | 0 | 1 | 1 |
| MotA+CogA | MotS+CogS | Between-group comparisons | ||||
| T1-T0 | T2-T0 | T1-T0 | T2-T0 | T1-T0 p value (Z) |
T2-T0 p value (Z) |
|
| MMSE (0-30) | 3 ± 2.17 | 1.58 ± 2.43 | -0.25 ± 3.61 | 1.12 ± 3.18 | .042 (-2.029)* | .697 (-.389) |
| PR (0-15) | 3.25 ± 3.72 | 1.58 ± 4.12 | 2.12 ± 2.23 | -0.87 ± 2.75 | .558 (-.585) | .212 (-1.247) |
| DSF | -0.16 ± 0.94 | -0.33 ± 1.07 | -0.5 ± 0.75 | -0.37 ± 0.74 | .439 (-.774) | .738 (-.335) |
| DSB | 0.33 ± 0.78 | -0.08 ± 0.67 | -0.12 ± 0.83 | -0.25 ± 1.28 | .242 (-1.169) | .537 (-.617) |
| PFT | 7.08 ± 3.34 | 3.5 ± 11.71 | 2 ± 7.54 | 2.62 ± 8.12 | .062 (-1.864) | .817 (-.232) |
| VST (0-60) | 5.58 ± 2.87 | -0.25 ± 6.55 | -0.37 ± 8.81 | 1.25 ± 5.52 | .012 (-2.515)* | .642 (-.456) |
| SART-FA | -0.7 ± 2.36 | 0.82 ± 4.64 | 6 ± 6.05 | 3.57 ± 7.59 | .012 (-2.504)* | .441 (-.771) |
| SART-RT | -43 ± 89. 01 | 5.27 ± 135.14 | 10 ± 125.41 | 57.14 ± 142.39 | .354 (-.928) | .683 (-.408) |
| SART-OM | -38.9 ± 46.17 | -32.09 ± 51.75 | -47.14 ± 67.58 | -47.28 ± 79.46 | .495 (-.683) | .618 (-.498) |
| NPI (0-144) | -4.82 ± 6.01 | -5.83 ± 6.98 | -1 ± 1.07 | -7.12 ± 7.59 | -112 (-1.591) | .846 (-.194) |
| MotA | CogA | Between-group comparisons | ||||
| T1-T0 | T2-T0 | T1-T0 | T2-T0 | T1-T0 p value (Z) |
T2-T0 p value (Z) |
|
| MMSE (0-30) | 4.2 ± 2.58 | 0.8 ± 2.86 | 2.14 ± 1.46 | 2.14 ± 2.11 | .098 (-1.653) | .409 (-.825) |
| PR (0-15) | 5.2 ± 4.71 | 4.8 ± 3.56 | 1.85 ± 2.26 | -0.71 ± 2.81 | .140 (-1.477) | .027 (-2.212)* |
| DSF | -0.2 ± 0.44 | -0.8 ± 0.83 | -0.14 ± 1.21 | 0 ± 1.15 | 1.0 (.000) | .265 (-1.116) |
| DSB | 0.4 ± 0.89 | 0.2 ± 0.83 | 0.28 ± 0.75 | -0.28 ± 0.48 | .927 (-.091) | .234 (-1.190) |
| PFT | 8.4 ± 2.79 | 10 ± 14.10 | 6.14 ± 3.57 | -1.14 ± 7.64 | .220 (-1.227) | .165 (-1.388) |
| VST (0-60) | 4.4 ± 2.70 | -0.8 ± 2.58 | 6.42 ± 2.87 | 0.14 ± 8.59 | .412 (-.821) | .684 (-.407) |
| SART-FA | -0.25 ± 3.30 | -0.25 ± 4.19 | -1 ± 1.78 | 1.42 ± 5.09 | .828 (-.217) | .569 (-.570) |
| SART-RT | -15.25 ± 66.44 | 115 ± 132.63 | -61.5 ± 102.89 | -57.42 ± 95.02 | .670 (-.426) | .047 (-1.989)* |
| SART-OM | -39.25 ± 19.17 | -9.75 ± 61.16 | -38.66 ± 60.13 | -44.85 ± 45.49 | .522 (-.640) | .345 (-.945) |
| NPI (0-144) | -6 ± 8.45 | -7.2 ± 9.14 | -3.83 ± 3.54 | -4.85 ± 5.55 | 1.0 (.000) | .684 (-.407) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
