Submitted:
23 July 2024
Posted:
23 July 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
1.1. Executive Functions
1.1. “Cool” Executive Functions
1.2. “Hot” Executive Functions
1.3. A Hot–Cool Gradient
2. How May Motor Learning Promote Executive Function Development?
2.1. Skill Acquisition and Functional Adaptations
2.2. Skill Retention and Structural Adaptations
2.3. Exercise-Related Structural Adaptations
3. Developmental Perspectives on Motor Competence and Executive Functions
3.1. Linking Motor Competence Assessments to Cognitive Outcomes
3.2. Limitations of Current Motor Competence Assessments and Their Mis/Alignment with Executive Functions
3.3. Integration of Executive Functions and Motor Tasks: Dual-Task Paradigms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campos, J.J.; Anderson, D.I.; Barbu-Roth, M.A.; Hubbard, E.M.; Hertenstein, M.J.; Witherington, D. Travel Broadens the Mind. Infancy 2000, 1, 149–219. [Google Scholar] [CrossRef]
- Kenny, L.; Hill, E.; Hamilton, A.F. de C. The Relationship between Social and Motor Cognition in Primary School Age-Children. Front. Psychol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Skulmowski, A.; Rey, G.D. Embodied Learning: Introducing a Taxonomy Based on Bodily Engagement and Task Integration. Cogn. Res. Princ. Implic. 2018, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.F.; Lakes, K.D.; Côté, J.; Aadland, E.; Brian, A.; Draper, C.E.; Ekkekakis, P.; Fumagalli, G.; Laukkanen, A.; Mavilidi, M.F.; et al. Exploration: An Overarching Focus for Holistic Development. Braz. J. Mot. Behav. 2021, 15. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu Rev Psychol 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Stodden, D.F.; Lakes, K.D. Physical Activity “Enrichment”: A Joint Focus on Motor Competence, Hot and Cool Executive Functions. Front. Psychol. 2021, 12.
- Barkley, R.A. Executive Functions: What They Are, How They Work, and Why They Evolved; Guilford Press, 2012; ISBN 1-4625-0535-X.
- Goldstein, S.; Naglieri, J.A.; Princiotta, D.; Otero, T.M. Introduction: A History of Executive Functioning as a Theoretical and Clinical Construct. In The handbook of executive functioning; Springer: New York, 2014.
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognit. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.; Ling, D.S. Conclusions about Interventions, Programs, and Approaches for Improving Executive Functions That Appear Justified and Those That, despite Much Hype, Do Not. Dev. Cogn. Neurosci. 2016, 18, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Zelazo, P.D.; Carlson, S.M. Hot and Cool Executive Function in Childhood and Adolescence: Development and Plasticity. Child Dev. Perspect. 2012, 6, 354–360. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Müller, U. Executive Function in Typical and Atypical Development. In Blackwell handbook of childhood cognitive development; Blackwell Publishing, 2002; pp. 445–469.
- Peterson, E.; Welsh, M.C. The Development of Hot and Cool Executive Functions in Childhood and Adolescence: Are We Getting Warmer. In Handbook of Executive Functioning; Goldstein, S., Naglieri, J.A., Eds.; Springer New York: New York, NY, 2014; pp. 45–65. ISBN 978-1-4614-8106-5. [Google Scholar]
- Luria, A.R. Higher Cortical Functions in Man; New York: Basic, 1966.
- Tueber, H. The Riddle of Frontal Lobe Function in Man. In The frontal granular cortex and behavior; J. Warren, Akert, K., Ed.; New York: McGraw-Hill, 1964; pp. 410–440. [Google Scholar]
- Alvarez, J.A.; Emory, E. Executive Function and the Frontal Lobes: A Meta-Analytic Review. Neuropsychol. Rev. 2006, 16, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.P.; Robbins, T.W. The Role of Prefrontal Cortex in Cognitive Control and Executive Function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef]
- Dosenbach, N.U.F.; Fair, D.A.; Miezin, F.M.; Cohen, A.L.; Wenger, K.K.; Dosenbach, R.A.T.; Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E.; et al. Distinct Brain Networks for Adaptive and Stable Task Control in Humans. Proc. Natl. Acad. Sci. 2007, 104, 11073–11078. [Google Scholar] [CrossRef]
- Bechara, A. The Role of Emotion in Decision-Making: Evidence from Neurological Patients with Orbitofrontal Damage. Brain Cogn. 2004, 55, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A.; Damasio, A.R.; Damasio, H.; Anderson, S.W. Insensitivity to Future Consequences Following Damage to Human Prefrontal Cortex. Cognition 1994, 50, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Firat, R.B. Opening the “Black Box”: Functions of the Frontal Lobes and Their Implications for Sociology. Front. Sociol. 2019, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Okon-Singer, H.; Hendler, T.; Pessoa, L.; Shackman, A.J. The Neurobiology of Emotion–Cognition Interactions: Fundamental Questions and Strategies for Future Research. Front. Hum. Neurosci. 2015, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Desimone, R.; Duncan, J. Neural Mechanisms of Selective Visual Attention. Annu. Rev. Neurosci. 1995, 18, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed]
- Stout, D.M.; Shackman, A.J.; Johnson, J.S.; Larson, C.L. Worry Is Associated with Impaired Gating of Threat from Working Memory. Emotion 2015, 15, 6. [Google Scholar] [CrossRef]
- Sheppes, G.; Levin, Z. Emotion Regulation Choice: Selecting between Cognitive Regulation Strategies to Control Emotion. Front. Hum. Neurosci. 2013, 7, 179. [Google Scholar] [CrossRef] [PubMed]
- Leshem, R. Using Dual Process Models to Examine Impulsivity throughout Neural Maturation. Dev. Neuropsychol. 2016, 41, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.M. The Prefrontal Cortex—an Update: Time Is of the Essence. Neuron 2001, 30, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.E. The Brain’s Default Mode Network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A Default Mode of Brain Function. Proc. Natl. Acad. Sci. 2001, 98, 676–682. [Google Scholar] [CrossRef]
- Pujol, J.; Reixach, J.; Harrison, B.J.; Timoneda-Gallart, C.; Vilanova, J.C.; Pérez-Alvarez, F. Posterior Cingulate Activation during Moral Dilemma in Adolescents. Hum. Brain Mapp. 2008, 29, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Barbas, H. Connections Underlying the Synthesis of Cognition, Memory, and Emotion in Primate Prefrontal Cortices. Brain Res. Bull. 2000, 52, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Otero, T.M.; Barker, L.A. The Frontal Lobes and Executive Functioning. In Handbook of Executive Functioning; Goldstein, S., Naglieri, J.A., Eds.; Springer New York: New York, NY, 2014; pp. 29–44. ISBN 978-1-4614-8106-5. [Google Scholar]
- Padoa-Schioppa, C.; Conen, K.E. Orbitofrontal Cortex: A Neural Circuit for Economic Decisions. Neuron 2017, 96, 736–754. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, L. On the Relationship between Emotion and Cognition. Nat. Rev. Neurosci. 2008, 9, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, P.; Castellanos, F.X. Top-down Dysregulation—from ADHD to Emotional Instability. Front. Behav. Neurosci. 2016, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Bush, G.; Luu, P.; Posner, M.I. Cognitive and Emotional Influences in Anterior Cingulate Cortex. Trends Cogn. Sci. 2000, 4, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Cieslik, E.C.; Mueller, V.I.; Eickhoff, C.R.; Langner, R.; Eickhoff, S.B. Three Key Regions for Supervisory Attentional Control: Evidence from Neuroimaging Meta-Analyses. Neurosci. Biobehav. Rev. 2015, 48, 22–34. [Google Scholar] [CrossRef]
- Nee, D.E.; Wager, T.D.; Jonides, J. Interference Resolution: Insights from a Meta-Analysis of Neuroimaging Tasks. Cogn. Affect. Behav. Neurosci. 2007, 7, 1–17. [Google Scholar] [CrossRef]
- Quadt, L.; Critchley, H.; Nagai, Y. Cognition, Emotion, and the Central Autonomic Network. Auton. Neurosci. 2022, 238, 102948. [Google Scholar] [CrossRef] [PubMed]
- Bj⊘rnebekk, G. Positive Affect and Negative Affect as Modulators of Cognition and Motivation: The Rediscovery of Affect in Achievement Goal Theory. Scand. J. Educ. Res. 2008, 52, 153–170. [Google Scholar] [CrossRef]
- Doyon, J.; Benali, H. Reorganization and Plasticity in the Adult Brain during Learning of Motor Skills. Curr. Opin. Neurobiol. 2005, 15, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Doyon, J.; Ungerleider, L.G. Functional Anatomy of Motor Skill Learning. In Neuropsychology of memory; Squire, L., Schacter, D., Eds.; The Guilford Press, 2002; Vol. 3, pp. 225–238.
- Dayan, E.; Cohen, L.G. Neuroplasticity Subserving Motor Skill Learning. Neuron 2011, 72, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.R.; D’Esposito, M. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition. J. Neurosci. 2016, 36, 12083–12094. [Google Scholar] [CrossRef] [PubMed]
- Mohr, H.; Wolfensteller, U.; Betzel, R.F.; Mišić, B.; Sporns, O.; Richiardi, J.; Ruge, H. Integration and Segregation of Large-Scale Brain Networks during Short-Term Task Automatization. Nat. Commun. 2016, 7, 13217. [Google Scholar] [CrossRef] [PubMed]
- Reijneveld, J.C.; Ponten, S.C.; Berendse, H.W.; Stam, C.J. The Application of Graph Theoretical Analysis to Complex Networks in the Brain. Clin. Neurophysiol. 2007, 118, 2317–2331. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q.; Supekar, K.S.; Ryali, S.; Menon, V. Dynamic Reconfiguration of Structural and Functional Connectivity Across Core Neurocognitive Brain Networks with Development. J. Neurosci. 2011, 31, 18578–18589. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, O.; Nakamura, K.; Sakai, K.; Nakahara, H. Central Mechanisms of Motor Skill Learning. Curr. Opin. Neurobiol. 2002, 12, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Spreng, R.N.; Turner, G.R. Functional Brain Changes Following Cognitive and Motor Skills Training: A Quantitative Meta-Analysis. Neurorehabil. Neural Repair 2013, 27, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Cisek, P. Cortical Mechanisms of Action Selection: The Affordance Competition Hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1585–1599. [Google Scholar] [CrossRef]
- Pezzulo, G.; Cisek, P. Navigating the Affordance Landscape: Feedback Control as a Process Model of Behavior and Cognition. Trends Cogn. Sci. 2016, 20, 414–424. [Google Scholar] [CrossRef]
- Gusnard, D.A.; Raichle, M.E. Searching for a Baseline: Functional Imaging and the Resting Human Brain. Nat. Rev. Neurosci. 2001, 2, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.S.; Roebroeck, A.; Maurer, K.; Linden, D.E. Specialization in the Default Mode: Task-induced Brain Deactivations Dissociate between Visual Working Memory and Attention. Hum. Brain Mapp. 2010, 31, 126–139. [Google Scholar] [CrossRef]
- McKiernan, K.A.; Kaufman, J.N.; Kucera-Thompson, J.; Binder, J.R. A Parametric Manipulation of Factors Affecting Task-Induced Deactivation in Functional Neuroimaging. J. Cogn. Neurosci. 2003, 15, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Hikosaka, O.; Miyauchi, S.; Takino, R.; Sasaki, Y.; Pütz, B. Transition of Brain Activation from Frontal to Parietal Areas in Visuomotor Sequence Learning. J. Neurosci. 1998, 18, 1827–1840. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.; Ling, D.S. Review of the Evidence on, and Fundamental Questions about, Efforts to Improve Executive Functions, Including Working Memory. Cogn. Work. Mem. Train. Perspect. Psychol. Neurosci. Hum. Dev. 2020, 145–389. [Google Scholar] [CrossRef]
- Diamond, A. Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Doyon, J.; Song, A.W.; Karni, A.; Lalonde, F.; Adams, M.M.; Ungerleider, L.G. Experience-Dependent Changes in Cerebellar Contributions to Motor Sequence Learning. Proc. Natl. Acad. Sci. 2002, 99, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Braun-Benjamin, O.; Melillo, R. Cognitive-Motor Interactions of the Basal Ganglia in Development. Front. Syst. Neurosci. 2014, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Seidler, R.; Noll, D.; Chintalapati, P. Bilateral Basal Ganglia Activation Associated with Sensorimotor Adaptation. Exp. Brain Res. 2006, 175, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Saxe, M.D.; Gallina, I.S.; Gage, F.H. Adult-Born Hippocampal Dentate Granule Cells Undergoing Maturation Modulate Learning and Memory in the Brain. J. Neurosci. 2009, 29, 13532–13542. [Google Scholar] [CrossRef] [PubMed]
- Kleim, J.A.; Barbay, S.; Cooper, N.R.; Hogg, T.M.; Reidel, C.N.; Remple, M.S.; Nudo, R.J. Motor Learning-Dependent Synaptogenesis Is Localized to Functionally Reorganized Motor Cortex. Neurobiol. Learn. Mem. 2002, 77, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Shors, T.J. The Adult Brain Makes New Neurons, and Effortful Learning Keeps Them Alive. Curr. Dir. Psychol. Sci. 2014, 23, 311–318. [Google Scholar] [CrossRef]
- Sampaio, A.S.B.; Real, C.C.; Gutierrez, R.M.S.; Singulani, M.P.; Alouche, S.R.; Britto, L.R.; Pires, R.S. Neuroplasticity Induced by the Retention Period of a Complex Motor Skill Learning in Rats. Behav. Brain Res. 2021, 414, 113480. [Google Scholar] [CrossRef] [PubMed]
- Waddell, J.; Shors, T.J. Neurogenesis, Learning and Associative Strength. Eur. J. Neurosci. 2008, 27, 3020–3028. [Google Scholar] [CrossRef]
- Kleim, J.A.; Hogg, T.M.; VandenBerg, P.M.; Cooper, N.R.; Bruneau, R.; Remple, M. Cortical Synaptogenesis and Motor Map Reorganization Occur during Late, but Not Early, Phase of Motor Skill Learning. J. Neurosci. 2004, 24, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, L.; Larsen, M.N.; Madsen, M.J.; Grey, M.J.; Nielsen, J.B.; Lundbye-Jensen, J. Long-Term Motor Skill Training with Individually Adjusted Progressive Difficulty Enhances Learning and Promotes Corticospinal Plasticity. Sci. Rep. 2020, 10, 15588. [Google Scholar] [CrossRef] [PubMed]
- Guadagnoli, M.A.; Lee, T.D. Challenge Point: A Framework for Conceptualizing the Effects of Various Practice Conditions in Motor Learning. J. Mot. Behav. 2004, 36, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Moreau, D. Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement. Educ. Psychol. Rev. 2015, 27, 475–482. [Google Scholar] [CrossRef]
- Moreau, D.; Morrison, A.B.; Conway, A.R.A. An Ecological Approach to Cognitive Enhancement: Complex Motor Training. Acta Psychol. (Amst.) 2015, 157, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Croce, R.; Ben-Soussan, T.D.; Vazou, S.; McCullick, B.; Tomporowski, P.D.; Horvat, M. Variability of Practice as an Interface between Motor and Cognitive Development. Int. J. Sport Exerc. Psychol. 2019, 17, 133–152. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be Smart, Exercise Your Heart: Exercise Effects on Brain and Cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-Y.; Chen, F.-T.; Li, R.-H.; Hillman, C.H.; Cline, T.L.; Chu, C.-H.; Hung, T.-M.; Chang, Y.-K. Effects of Acute Resistance Exercise on Executive Function: A Systematic Review of the Moderating Role of Intensity and Executive Function Domain. Sports Med. - Open 2022, 8, 141. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Ha, C.H. The Effect of Exercise Intensity on Brain Derived Neurotrophic Factor and Memory in Adolescents. Environ. Health Prev. Med. 2017, 22, 27. [Google Scholar] [CrossRef] [PubMed]
- Morland, C.; Andersson, K.A.; Haugen, Ø.P.; Hadzic, A.; Kleppa, L.; Gille, A.; Rinholm, J.E.; Palibrk, V.; Diget, E.H.; Kennedy, L.H.; et al. Exercise Induces Cerebral VEGF and Angiogenesis via the Lactate Receptor HCAR1. Nat. Commun. 2017, 8, 15557. [Google Scholar] [CrossRef]
- Hugues, N.; Pellegrino, C.; Rivera, C.; Berton, E.; Pin-Barre, C.; Laurin, J. Is High-Intensity Interval Training Suitable to Promote Neuroplasticity and Cognitive Functions after Stroke? Int. J. Mol. Sci. 2021, 22, 3003. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.J. The Theory of Affordances. The Ecological Approach to Visual Perception. In The People, Place and, Space Reader; Routledge New York and London, 1979; pp. 56–60.
- Newell, K. Constraints on the Development of Coordination. In Motor Development in Children: Aspects of Coordination and Control; Wade, M.G., Whiting, H.T.A., Eds.; Martinus Nijhoff: Dordrecht, 1986; pp. 341–360. [Google Scholar]
- Davids, K.; Button, C.; Bennett, S. Dynamics of Skill Acquisition: A Constraints-Led Approach; Human kinetics, 2008; ISBN 0-7360-3686-5.
- Mulder, H.; Oudgenoeg-Paz, O.; Hellendoorn, A.; Jongmans, M.J. How Children Learn to Discover Their Environment: An Embodied Dynamic Systems Perspective on the Development of Spatial Cognition. In Neuropsychology of space: Spatial functions of the human brain; Elsevier Academic Press: San Diego, CA, US, 2017; pp. 309–360. ISBN 978-0-12-801638-1. [Google Scholar]
- Rietveld, E.; Kiverstein, J. A Rich Landscape of Affordances. Ecol. Psychol. 2014, 26, 325–352. [Google Scholar] [CrossRef]
- Beckmann, P.; Köstner, G.; Hipólito, I. An Alternative to Cognitivism: Computational Phenomenology for Deep Learning. Minds Mach. 2023. [Google Scholar] [CrossRef]
- Davids, K.; Araújo, D.; Shuttleworth, R.; Button, C. Acquiring Skill in Sport: A Constraints-Led Perspective. Int. J. Comput. Sci. Sport 2003, 2, 31–39. [Google Scholar]
- Turvey, M.T. Coordination. Am. Psychol. 1990, 45, 938–953. [Google Scholar] [CrossRef] [PubMed]
- Bril, B.; Brenière, Y. Posture and Independent Locomotion in Early Childhood: Learning to Walk or Learning Dynamic Postural Control? In Advances in psychology; Elsevier, 1993; Vol. 97, pp. 337–358 ISBN 0166-4115.
- Gibson, E.J. Exploratory Behavior in the Development of Perceiving, Acting, and the Acquiring of Knowledge. Annu. Rev. Psychol. 1988, 39, 1–42. [Google Scholar] [CrossRef]
- Lazarus, J.C.; Todor, J.I. The Role of Attention in the Regulation of Associated Movement in Children. Dev. Med. Child Neurol. 1991, 33, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.; Lopez, L.D. Studying Hot Executive Function in Infancy: Insights from Research on Emotional Development. Infant Behav. Dev. 2022, 69, 101773. [Google Scholar] [CrossRef]
- Adolph, K.E.; Hoch, J.E. Motor Development: Embodied, Embedded, Enculturated, and Enabling. Annu. Rev. Psychol. 2019, 70, 141–164. [Google Scholar] [CrossRef] [PubMed]
- Magill, R.A.; Lee, T.D. Motor Learning: Concepts and Applications; 6th ed.; WCB McGraw-Hill, 1998; ISBN 0-697-38953-7.
- O’Connell, M.A.; Basak, C. Effects of Task Complexity and Age-Differences on Task-Related Functional Connectivity of Attentional Networks. Neuropsychologia 2018, 114, 50–64. [Google Scholar] [CrossRef]
- Shashidhara, S.; Mitchell, D.J.; Erez, Y.; Duncan, J. Progressive Recruitment of the Frontoparietal Multiple-Demand System with Increased Task Complexity, Time Pressure, and Reward. J. Cogn. Neurosci. 2019, 31, 1617–1630. [Google Scholar] [CrossRef] [PubMed]
- Abrams, T.C.; Terlizzi, B.M.; De Meester, A.; Sacko, R.S.; Irwin, J.M.; Luz, C.; Rodrigues, L.P.; Cordovil, R.; Lopes, V.P.; Schneider, K.; et al. Potential Relevance of a Motor Skill" Proficiency Barrier" on Health-Related Fitness in Youth. Eur. J. Sport Sci. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cattuzzo, M.T.; dos Santos Henrique, R.; Ré, A.H.N.; de Oliveira, I.S.; Melo, B.M.; de Sousa Moura, M.; de Araújo, R.C.; Stodden, D. Motor Competence and Health Related Physical Fitness in Youth: A Systematic Review. J. Sci. Med. Sport 2016, 19, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The Relationship between Motor Competence and Physical Fitness from Early Childhood to Early Adulthood: A Meta-Analysis. Sports Med. 2019, 49, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.F.; Gao, Z.; Goodway, J.D.; Langendorfer, S.J. Dynamic Relationships between Motor Skill Competence and Health-Related Fitness in Youth. Pediatr. Exerc. Sci. 2014, 26, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.F.; True, L.K.; Langendorfer, S.J.; Gao, Z. Associations Among Selected Motor Skills and Health-Related Fitness: Indirect Evidence for Seefeldt’s Proficiency Barrier in Young Adults? Res. Q. Exerc. Sport 2013, 84, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Sacko, R.S.; Nesbitt, D.; McIver, K.; Brian, A.; Bardid, F.; Stodden, D.F. Children’s Metabolic Expenditure during Object Projection Skill Performance: New Insight for Activity Intensity Relativity. J. Sports Sci. 2019, 37, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Sacko, R.S.; Utesch, T.; Bardid, F.; Stodden, D.F. The Impact of Motor Competence on Energy Expenditure during Object Control Skill Performance in Children and Young Adults. Braz. J. Mot. Behav. 2021. [Google Scholar] [CrossRef]
- Rudd, J.R.; Pesce, C.; Strafford, B.W.; Davids, K. Physical Literacy - A Journey of Individual Enrichment: An Ecological Dynamics Rationale for Enhancing Performance and Physical Activity in All. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Fodor, J.A.; Pylyshyn, Z.W. Connectionism and Cognitive Architecture: A Critical Analysis. Cognition 1988, 28, 3–71. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S. Analogy, Cognitive Architecture and Universal Construction: A Tale of Two Systematicities. PLOS ONE 2014, 9, e89152. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.; Maselli, A.; Lancia, G.L.; Thiery, T.; Cisek, P.; Pezzulo, G. The Road towards Understanding Embodied Decisions. Neurosci. Biobehav. Rev. 2021, 131, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.B.M.; Hayden, B.Y.; Pearson, J.M. Continuous Decisions. Philos. Trans. R. Soc. B 2021, 376, 20190664. [Google Scholar] [CrossRef] [PubMed]
- Barca, L.; Pezzulo, G. Unfolding Visual Lexical Decision in Time. PloS One 2012, 7, e35932. [Google Scholar] [CrossRef] [PubMed]
- Resulaj, A.; Kiani, R.; Wolpert, D.M.; Shadlen, M.N. Changes of Mind in Decision-Making. Nature 2009, 461, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, I.; Davids, K.; Araújo, D.; Lucas, A.; Roberts, W.M.; Newcombe, D.J.; Franks, B. Evaluating Weaknesses of “Perceptual-Cognitive Training” and “Brain Training” Methods in Sport: An Ecological Dynamics Critique. Front. Psychol. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-J.; Mercer, V.S. Dual-Task Methodology: Applications in Studies of Cognitive and Motor Performance in Adults and Children. Pediatr. Phys. Ther. Off. Publ. Sect. Pediatr. Am. Phys. Ther. Assoc. 2001, 13, 133–140. [Google Scholar]
- Walshe, E.A.; Patterson, M.R.; Commins, S.; Roche, R.A. Dual-Task and Electrophysiological Markers of Executive Cognitive Processing in Older Adult Gait and Fall-Risk. Front. Hum. Neurosci. 2015, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Hulteen, R.M.; Terlizzi, B.M.; Abrams, T.C.; Sacko, R.S.; De Meester, A.; Pesce, C.; Stodden, D.F. Reinvest to Assess: Advancing Approaches to Motor Competence Measurement Across the Lifespan. Sports Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Terlizzi, B.M.; Hulteen, R.M.; Rudd, J.; Sacko, R.S.; Sgrò, F.; Jaakkola, T.; Abrams, T.C.; Brian, A.; Nesbitt, D.; De Meester, A.; et al. A Pre-Longitudinal Screen of Performance in an Integrated Assessment of Throwing and Catching Competence. Phys. Educ. Sport Pedagogy 2024, 1–13. [Google Scholar] [CrossRef]
- Terlizzi, B.; Abrams, T.C.; Sacko, R.S.; Hand, A.F.; Silvey, K.; Stodden, D.F. The Relationship Between Functional Motor Competence and Performance on the Army Combat Fitness Test in Army Reserve Officer Training Corps Cadets. Mil. Med. 2022, 188, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.S.; Yang, M.; Wymbs, N.F.; Grafton, S.T. Learning-Induced Autonomy of Sensorimotor Systems. Nat. Neurosci. 2015, 18, 744–751. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
