Submitted:
19 July 2024
Posted:
22 July 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Material and Agroclimatic Study Area Characteristics
2.2. Physicochemical Analyses
2.3. Fatty Acid Composition
2.4. Ultrasonic-Assisted Extraction (UAE)
2.5. Oily Extract Pretreatment
2.6. Total Phenolic Content (TPC) Determinations
2.7. Capsaicin Quantification
2.8. Total Carotenoid (TC) Determinations
2.8. Antioxidant Activity Determinations
2.8.1. ABTS Radical Scavenging Assay
2.9. Statistical Analyses
3. Results and Discussion
3.1. Physicochemical Analyses
3.2. Total Phenolic Contents
3.3. Capsaicin
3.4. Total Carotenoids
3.5. Fatty Acid Vegetable Oil Profiles
3.5. Antioxidant Activity Determined by the ABTS and β-Carotene/Linoleic Acid System Assays
3.6. A Brief Overview on the Cost-Benefits of Organic Solvent Extraction Compared to Vegetable Oils in Obtaining Bioactive Compounds Yields
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howard, L.; Talcott, S.; Brenes, C.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. Journal of agricultural and food chemistry 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-K.; Abd El-Aty, A.; Shin, H.-C.; Lee, H.B.; Kim, I.-S.; Shim, J.-H. Analysis of volatile compounds in fresh healthy and diseased peppers (Capsicum annuum L.) using solvent free solid injection coupled with gas chromatography-flame ionization detector and confirmation with mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2007, 45, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Materska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). Journal of Agricultural and food Chemistry 2005, 53, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Menezes, R.d.P.; Bessa, M.A.d.S.; Siqueira, C.d.P.; Teixeira, S.C.; Ferro, E.A.V.; Martins, M.M.; Cunha, L.C.S.; Martins, C.H.G. Antimicrobial, antivirulence, and antiparasitic potential of Capsicum chinense Jacq. extracts and their isolated compound capsaicin. Antibiotics 2022, 11, 1154. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pérez, T.; Gómez-García, M.d.R.; Valverde, M.E.; Paredes-López, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Comprehensive Reviews in Food Science and Food Safety 2020, 19, 2972–2993. [Google Scholar] [CrossRef]
- Kaur, M.; Verma, B.R.; Zhou, L.; Lak, H.M.; Kaur, S.; Sammour, Y.M.; Kapadia, S.R.; Grimm, R.A.; Griffin, B.P.; Xu, B. Association of pepper intake with all-cause and specific cause mortality-A systematic review and meta-analysis. American journal of preventive cardiology 2022, 9, 100301. [Google Scholar] [CrossRef]
- Sharma, S.K.; Vij, A.S.; Sharma, M. Mechanisms and clinical uses of capsaicin. European journal of pharmacology 2013, 720, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xue, Y.; Fu, L.; Wang, Y.; He, M.; Zhao, L.; Liao, X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: a review. Critical Reviews in Food Science and Nutrition 2022, 62, 5322–5348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. Journal of clinical pharmacy and therapeutics 2020, 45, 16–28. [Google Scholar] [CrossRef]
- Popescu, G.D.A.; Scheau, C.; Badarau, I.A.; Dumitrache, M.-D.; Caruntu, A.; Scheau, A.-E.; Costache, D.O.; Costache, R.S.; Constantin, C.; Neagu, M. The effects of capsaicin on gastrointestinal cancers. Molecules 2020, 26, 94. [Google Scholar] [CrossRef]
- Snitker, S.; Fujishima, Y.; Shen, H.; Ott, S.; Pi-Sunyer, X.; Furuhata, Y.; Sato, H.; Takahashi, M. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. The American journal of clinical nutrition 2009, 89, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.R.; Tavares, M.T.; Fernandes, T.B.; Parise-Filho, R. Peppers: a “Hot” natural source for antitumor compounds. Molecules 2021, 26, 1521. [Google Scholar] [CrossRef] [PubMed]
- Calniquer, G.; Khanin, M.; Ovadia, H.; Linnewiel-Hermoni, K.; Stepensky, D.; Trachtenberg, A.; Sedlov, T.; Braverman, O.; Levy, J.; Sharoni, Y. Combined effects of carotenoids and polyphenols in balancing the response of skin cells to UV irradiation. Molecules 2021, 26, 1931. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Paital, B.; Jena, S.; Swain, S.S.; Kumar, S.; Yadav, M.K.; Chainy, G.B.; Samanta, L. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Scientific reports 2019, 9, 7408. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Seidel, V.; Izabela, M.; Monserrat-Mequida, M.; Sureda, A.; Ormazabal, V.; Zuniga, F.A.; Mangalpady, S.S.; Pezzani, R.; Ydyrys, A. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Communication and Signaling 2023, 21, 89. [Google Scholar] [CrossRef] [PubMed]
- Varshney, V.; Kumar, A.; Parashar, V.; Goyal, A.; Garabadu, D. Therapeutic Potential of Capsaicin in various Neurodegenerative Diseases with Special Focus on Nrf2 Signaling. Current Pharmaceutical Biotechnology 2024. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Xu, Y.; Liehn, E.A.; Rusu, M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. International Journal of Molecular Sciences 2024, 25, 3114. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Gontarek-Castro, E.; Jafari, S.M. Up-to-date strategies and future trends towards the extraction and purification of Capsaicin: A comprehensive review. Trends in Food Science & Technology 2022, 123, 161–171. [Google Scholar]
- de Sá Mendes, N.; de Andrade Gonçalves, É.C.B. The role of bioactive components found in peppers. Trends in Food Science & Technology 2020, 99, 229–243. [Google Scholar]
- Andrade, K.S.; Poncelet, D.; Ferreira, S.R. Sustainable extraction and encapsulation of pink pepper oil. Journal of Food Engineering 2017, 204, 38–45. [Google Scholar] [CrossRef]
- Romo-Hualde, A.; Yetano-Cunchillos, A.; González-Ferrero, C.; Sáiz-Abajo, M.; González-Navarro, C. Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products. Food Chemistry 2012, 133, 1045–1049. [Google Scholar] [CrossRef]
- Olguín-Rojas, J.A.; Vázquez-León, L.A.; Palma, M.; Fernández-Ponce, M.T.; Casas, L.; Fernández Barbero, G.; Rodríguez-Jimenes, G.d.C. Re-Valorization of Red Habanero Chili Pepper (Capsicum chinense Jacq.) Waste by Recovery of Bioactive Compounds: Effects of Different Extraction Processes. Agronomy 2024, 14, 660. [Google Scholar] [CrossRef]
- Fernández-Trujillo, J.P. Extracción convencional de oleorresina de pimentón dulce y picante I. Generalidades, composición, proceso e innovaciones y aplicaciones. Grasas y aceites 2007, 58, 252–263. [Google Scholar]
- Grande-Villanuevaa, P.; de Aguiarb, A.C.; Pereira-Coutinhob, J.; Teixeira-Godoyb, H.; Escamilla-Silva, E.M.; Martinezb, J. Oleoresin Extraction from Jalapeño Pepper (Capsicum annuum) with Supercritical Carbon Dioxide: Effects in the Global Yield, Capsaicinoid Concentration and Antioxidant Activity.
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. International journal of molecular sciences 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, C.; Fabiano-Tixier, A.-S.; Claux, O.; Abert-Vian, M.; Tabasso, S.; Cravotto, G.; Chemat, F. Towards substitution of hexane as extraction solvent of food products and ingredients with no regrets. Foods 2022, 11, 3412. [Google Scholar] [CrossRef]
- Xiong, Y.; Du, K.; Huang, Y. One-third of global population at cancer risk due to elevated volatile organic compounds levels. npj Climate and Atmospheric Science 2024, 7, 54. [Google Scholar] [CrossRef]
- Duan, C.; Liao, H.; Wang, K.; Ren, Y. The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources: A systematic quantitative review. Environmental Research 2023, 216, 114386. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A. Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. International journal of molecular sciences 2020, 21, 5179. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chemical Society Reviews 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Li, Y.; Fabiano-Tixier, A.S.; Tomao, V.; Cravotto, G.; Chemat, F. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics sonochemistry 2013, 20, 12–18. [Google Scholar] [CrossRef]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Current Opinion in Food Science 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Rodriguez Garcia, S.L.; Raghavan, V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review. Critical Reviews in Food Science and Nutrition 2022, 62, 6446–6466. [Google Scholar] [CrossRef] [PubMed]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends in Food Science & Technology 2022, 128, 296–315. [Google Scholar]
- Fernández-Ronco, M.; Gracia, I.; Zetzl, C.; De Lucas, A.; García, M.; Rodríguez, J.F. Equilibrium data for the separation of oleoresin capsicum using supercritical CO2: A theoretical design of a countercurrent gas extraction column. The journal of supercritical fluids 2011, 57, 1–8. [Google Scholar] [CrossRef]
- Oliveira, R.; Oliveira, V.; Aracava, K.K.; da Costa Rodrigues, C.E. Effects of the extraction conditions on the yield and composition of rice bran oil extracted with ethanol—A response surface approach. Food and bioproducts processing 2012, 90, 22–31. [Google Scholar] [CrossRef]
- Chutia, H.; Mahanta, C.L. Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: Optimization, comparison, kinetics, and thermodynamic studies. Innovative Food Science & Emerging Technologies 2021, 67, 102547. [Google Scholar]
- Viñas-Ospino, A.; López-Malo, D.; Esteve, M.J.; Frígola, A.; Blesa, J. Green solvents: emerging alternatives for carotenoid extraction from fruit and vegetable by-products. Foods 2023, 12, 863. [Google Scholar] [CrossRef] [PubMed]
- Achat, S.; Tomao, V.; Madani, K.; Chibane, M.; Elmaataoui, M.; Dangles, O.; Chemat, F. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrasonics sonochemistry 2012, 19, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics sonochemistry 2017, 34, 821–830. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.K.; Chowdhury, P. Efficient extraction and recovery of Lignosulfonate using sunflower oil as green solvent in liquid membrane transport: Equilibrium and kinetic study. Journal of Industrial and Engineering Chemistry 2018, 67, 109–122. [Google Scholar] [CrossRef]
- Pu, J.; Bechtel, P.J.; Sathivel, S. Extraction of shrimp astaxanthin with flaxseed oil: effects on lipid oxidation and astaxanthin degradation rates. Biosystems engineering 2010, 107, 364–371. [Google Scholar] [CrossRef]
- Li, Y.; Fabiano-Tixier, A.S.; Ginies, C.; Chemat, F. Direct green extraction of volatile aroma compounds using vegetable oils as solvents: Theoretical and experimental solubility study. LWT-Food Science and Technology 2014, 59, 724–731. [Google Scholar] [CrossRef]
- Mnayer, D.; Fabiano-Tixier, A.-S.; Petitcolas, E.; Ruiz, K.; Hamieh, T.; Chemat, F. Extraction of green absolute from thyme using ultrasound and sunflower oil. Resource-Efficient Technologies 2017, 3, 12–21. [Google Scholar] [CrossRef]
- Parjikolaei, B.R.; El-Houri, R.B.; Fretté, X.C.; Christensen, K.V. Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste. Journal of Food Engineering 2015, 155, 22–28. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics sonochemistry 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry 2023, 106646. [Google Scholar] [CrossRef] [PubMed]
- Sicaire, A.-G.; Vian, M.A.; Fine, F.; Carré, P.; Tostain, S.; Chemat, F. Ultrasound induced green solvent extraction of oil from oleaginous seeds. Ultrasonics Sonochemistry 2016, 31, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Barbero, G.F.; Ruiz, A.G.; Liazid, A.; Palma, M.; Vera, J.C.; Barroso, C.G. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.). Food chemistry 2014, 153, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Paz, B.; Yahia, E.M.; de Jesús Ornelas-Paz, J.; Victoria-Campos, C.I.; Ibarra-Junquera, V.; Pérez-Martínez, J.D.; Escalante-Minakata, P. Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food chemistry 2014, 146, 188–196. [Google Scholar] [CrossRef]
- Menichini, F.; Tundis, R.; Bonesi, M.; Loizzo, M.R.; Conforti, F.; Statti, G.; De Cindio, B.; Houghton, P.J.; Menichini, F. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chemistry 2009, 114, 553–560. [Google Scholar] [CrossRef]
- Bastos, T.; Pacheco, N. Características agroclimatológicas de Igarapé-Açu, PA e suas implicações para as culturas anuais: feijão caupi, milho, arroz e mandioca. 1999.
- Pacheco, N.; Bastos, T. Boletim agrometeorológico 2006-Igarapé-Açu. 2007.
- RODRIGUES, T.; dos SANTOS, P.; VALENTE, M.; da SILVA, J.; ROLLIM, P.; SANTOS, E. Caracterização e classificação de solos do Município de Santo Antônio do Tauá, Estado do Pará. 2004.
- Horwitz, W.; International, A. Official methods of analysis of AOAC International, 17. ed., current through revision ed.; AOAC International: Gaithersburg, Md, 2002. [Google Scholar]
- Williams, S. Official methods of analysis of the Association of Official Analytical Chemists; 1984.
- Rodrigues, A.M.; Darnet, S.; Silva, L.H. Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and inaja (Maximiliana maripa) fruits. Journal of the Brazilian Chemical Society 2010, 21, 2000–2004. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Georgé, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid determination of polyphenols and vitamin C in plant-derived products. Journal of Agricultural and food chemistry 2005, 53, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Perucka, I.; Oleszek, W. Extraction and determination of capsaicinoids in fruit of hot pepper Capsicum annuum L. by spectrophotometry and high-performance liquid chromatography. Food Chemistry 2000, 71, 287–291. [Google Scholar] [CrossRef]
- Godoy, H.T.; Rodriguez-Amaya, D.B. Occurrence of cis-isomers of provitamin A in Brazilian fruits. Journal of Agricultural and Food Chemistry 1994, 42, 1306–1313. [Google Scholar] [CrossRef]
- Rufino, M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; Sampaio, C.d.G.; Pérez-Jimenez, J.; Saura-Calixto, F.D. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. 2007.
- Matthäus, B. Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry 2002, 50, 3444–3452. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, A.; Martinez, S.; Alvarez, M.; Fernandez, A.; Lopez, M. The composition of two Spanish pepper varieties (Fresno de la Vega and Benavente-Los Valles) in different ripening stages. Journal of food Quality 2008, 31, 701–716. [Google Scholar] [CrossRef]
- Martínez, S.; Curros, A.; Bermúdez, J.; Carballo, J.; Franco, I. The composition of Arnoia peppers (Capsicum annuum L.) at different stages of maturity. International Journal of Food Sciences and Nutrition 2007, 58, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.V.; de Andrade Mattietto, R.; de Oliveira Rios, A.; de Almeida Maciel, R.; Moresco, K.S.; de Souza Oliveira, T.C. Bioactive compounds and antioxidant activity of pepper (C apsicum sp.) genotypes. Journal of Food Science and Technology 2015, 52, 7457–7464. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Ocampo, C.; Oldham, C. Evapotranspiration rates and evapotranspirative cooling of green façades under different irrigation scenarios. Energy and Buildings 2022, 270, 112223. [Google Scholar] [CrossRef]
- INPE, I.N.D.P.E.-. Centro de Previsão de Tempo e Estudos Climáticos. Available online: https://www.cptec.inpe.br/rj/rio-de-janeiro (accessed on October 9th, 2016).
- Vendramini, A.L.; Trugo, L.C. Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food chemistry 2000, 71, 195–198. [Google Scholar] [CrossRef]
- Carvalho, A.V.; Mattietto, R.d.A.; Rios, A.d.O.; Moresco, K.S. Mudanças nos compostos bioativos e atividade antioxidante de pimentas da região amazônica. Pesquisa Agropecuária Tropical 2014, 44, 399–408. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L. Química de alimentos de Fennema; Artmed editora: 2018.
- Ribeiro, C.S.D.C.; Lopes, C.A.; Carvalho, S.I.C.D.; Henz, G.P.; Reifschneider, F.J.B. Valor Nutricional. In Pimentas Capsicum, Lutz, D.L., Freitas, S.C., Eds.; Embrapa Hortaliças: Brasília, 2008; pp. 31–38. [Google Scholar]
- Guijarro-Real, C.; Adalid-Martínez, A.M.; Pires, C.K.; Ribes-Moya, A.M.; Fita, A.; Rodríguez-Burruezo, A. The effect of the varietal type, ripening stage, and growing conditions on the content and profile of sugars and capsaicinoids in Capsicum peppers. Plants 2023, 12, 231. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Zhang, Q.; Xing, Y.; Yan, J.; Liu, L.; Nie, K. A development-associated decrease in osmotic potential contributes to fruit ripening initiation in strawberry (Fragaria ananassa). Frontiers in plant science 2020, 11, 1035. [Google Scholar] [CrossRef] [PubMed]
- Antoniali, S.; Leal, P.A.M.; Magalhães, A.M.d.; Fuziki, R.T.; Sanches, J. Physico-chemical characterization of'Zarco HS'yellow bell pepper for different ripeness stages. Scientia Agricola 2007, 64, 19–22. [Google Scholar] [CrossRef]
- da Silva, E.G.; Takata, W.H.S.; de Almeida, G.V.B.; Evangelista, R.M.; Ono, E.O.; Rodrigues, J.D. Qualidade de frutos de pimentão em função de concentrações de ethephon durante o amadurecimento. Revista Iberoamericana de Tecnologia Postcosecha 2011, 12, 199–205. [Google Scholar]
- Chitarra, M.I.F. Pós-colheita de frutas e hortaliças: fisiologia e manuseio; Universidade Federal de Lavras: 2005.
- Deepa, N.; Kaur, C.; George, B.; Singh, B.; Kapoor, H. Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT-Food Science and Technology 2007, 40, 121–129. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. Journal of functional foods 2011, 3, 44–49. [Google Scholar] [CrossRef]
- Intakes, S.C.o.t.S.E.o.D.R.; Interpretation, S.o.; Intakes, U.o.D.R.; Nutrients, S.o.U.R.L.o.; Antioxidants, P.o.D.; Compounds, R. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids; National Academies Press: 2000.
- Chávez-Mendoza, C.; Sanchez, E.; Muñoz-Marquez, E.; Sida-Arreola, J.P.; Flores-Cordova, M.A. Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants 2015, 4, 427–446. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive characteristics and antioxidant activities of nine peppers. Journal of functional foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; Vazquez-Flores, A.A.; de la Rosa, L.A.; Rodrigo-García, J.; Martínez-Ruiz, N.R.; Alvarez-Parrilla, E. Enriched red wine: phenolic profile, sensory evaluation and in vitro bioaccessibility of phenolic compounds. Foods 2023, 12, 1194. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.L.B.; Sergio, C.S.A.; Santos, P.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Ultrasound-assisted extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L.): Effects on the vegetable matrix and mathematical modeling. Journal of Food Engineering 2017, 198, 36–44. [Google Scholar] [CrossRef]
- Conforti, F.; Statti, G.A.; Menichini, F. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. acuminatum L.) in relation to maturity stage. Food Chemistry 2007, 102, 1096–1104. [Google Scholar] [CrossRef]
- Ruiz-Lau, N.; Medina-Lara, F.; Minero-García, Y.; Zamudio-Moreno, E.; Guzmán-Antonio, A.; Echevarría-Machado, I.; Martínez-Estévez, M. Water Deficit Affects the Accumulation of Capsaicinoids in Fruits of Capsicum chinense Jacq. HortScience 2011, 46, 487–492. [Google Scholar] [CrossRef]
- de Aguiar, A.C.; dos Santos, P.; Coutinho, J.P.; Barbero, G.F.; Godoy, H.T.; Martínez, J. Supercritical fluid extraction and low pressure extraction of Biquinho pepper (Capsicum chinense). LWT-Food Science and Technology 2014, 59, 1239–1246. [Google Scholar] [CrossRef]
- Topuz, A.; Ozdemir, F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. Journal of food composition and analysis 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Mazzutti, S.; Ferreira, S.R.; Riehl, C.A.; Smania Jr, A.; Smania, F.A.; Martínez, J. Supercritical fluid extraction of Agaricus brasiliensis: antioxidant and antimicrobial activities. The Journal of Supercritical Fluids 2012, 70, 48–56. [Google Scholar] [CrossRef]
- Brock, J.; Nogueira, M.R.; Zakrzevski, C.; Corazza, F.d.C.; Corazza, M.L.; Oliveira, J.V.d. Experimental measurements of viscosity and thermal conductivity of vegetable oils. Food Science and Technology 2008, 28, 564–570. [Google Scholar] [CrossRef]
- Ceriani, R.; Paiva, F.R.; Goncalves, C.B.; Batista, E.A.; Meirelles, A.J. Densities and viscosities of vegetable oils of nutritional value. Journal of Chemical & Engineering Data 2008, 53, 1846–1853. [Google Scholar]
- Agropalma. Oleina de Palma Refinada PN6. Available online: http://www.agropalma.com.br (accessed on October 9th, 2016).
- Jeong, W.Y.; Jin, J.S.; Cho, Y.A.; Lee, J.H.; Park, S.; Jeong, S.W.; Kim, Y.H.; Lim, C.S.; El-Aty, A.A.; Kim, G.S. Determination of polyphenols in three Capsicum annuum L.(bell pepper) varieties using high-performance liquid chromatography-tandem mass spectrometry: Their contribution to overall antioxidant and anticancer activity. Journal of separation Science 2011, 34, 2967–2974. [Google Scholar] [CrossRef]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresources and Bioprocessing 2022, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Stéphane, F.F.Y.; Jules, B.K.J.; Batiha, G.E.-S.; Ali, I.; Bruno, L.N. Extraction of bioactive compounds from medicinal plants and herbs. Natural medicinal plants 2021, 1–39. [Google Scholar]
- Bennour, N.; Mighri, H.; Eljani, H.; Zammouri, T.; Akrout, A. Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. South African Journal of Botany 2020, 129, 181–190. [Google Scholar] [CrossRef]
| Analyses | TAUÁ | IGARAPÉ-AÇU | ||
|---|---|---|---|---|
| Immature | Mature | Immature | Mature | |
| Moisture (g.100 g-1) | 91.46±0.17a | 90.92±0.17a | 87.90±0.24c | 87.76±0.45c |
| Total proteins (g.100 g-1) | 1.22±0.09b | 0.97±0.22c | 1.49±0.04a | 1.50±0.026a |
| Total lipids (g.100 g-1) | 1.41±0.09a | 1.49±0.05a | 0.94±0.07b | 1.64±0.06c |
| Ashes (g.100 g-1) | 0.65±0.04b | 0.71±0.05b | 0.76±0.05ab | 0.94±0.04a |
| Carbohydrate (g.100 g-1) | 5.26±0.21d | 5.91±0.13 c | 8.91±0.35 a | 8.16±0.69 b |
| Soluble solids (ºBrix) | 8.57±0.26d | 9.30±0.06b | 9.2±0.00c | 10.26±0.06a |
| Titratable acidity (% citric acid) | 0.45±0.01a | 0.34±0.01c | 0.40±0.01b | 0.35±0.00 c |
| pH | 5.07±0.00c | 5.25±0.02b | 5.33±0.02a | 5.36±0.00a |
| Bioactive compounds | ||||
| Vitamin C (mg.100 g-1) | 128.16±0.79a | 77.15±0.46c | 101.91±0.55b | 64.55±0.36d |
| Total phenolic content (mg GAE.100g-1) | 697.64±5.36d | 757.49±6.39b | 724.69±6.42c | 825.21±3.32a |
| Capsaicin (mg.g-1) | 1.42±0.01d | 1.77±0.00c | 3.12±0.01b | 3.26±0.01a |
| Total carotenoids (μg.g-1) | 11.43±0.07d | 22.97±0.08b | 17.17±0.01c | 29.41±0.06a |
| Antioxidant analyses | ||||
| β-carotene/linoleic acid (%AA) | 24.48±0.46c | 27.26±0.48b | 27.06±0.27b | 31.77±0.49a |
| ABTS (µM trolox.g-1) | 46.79±1.67c | 50.23±0.47b | 50.17±1.98b | 65.83±2.20a |
| Total phenolic contents (mg GAE 100g-1) |
TAUÁ | IGARAPÉ-AÇU | ||
|---|---|---|---|---|
| Immature | Mature | Immature | Mature | |
| OSE/acetone 70% | 1332.25±8.02Ca | 1435.23±17.73Ba | 1367.27±12.88Ca | 1542.21±8.02Aa |
| OE/Soybean | 53.02±0.73Db | 77.46±1.69Cb | 87.10±0.71Cb | 113.58±0.73Ab |
| OE/Brazilian nut | 52.05±0.62Db | 70.18±1.04Cb | 85.99±1.54Bb | 106.98±0.62Ab |
| OE/Palm olein | 51.08±0.43Db | 67.73±1.81Cb | 80.01±0.89Bb | 100.56±0.43Ab |
| Capsaicin (mg.g-1) | TAUÁ | IGARAPÉ-AÇU | ||
|---|---|---|---|---|
| Immature | Mature | Immature | Mature | |
| OSE/ethanol | 2.73±0.02Da | 3.38±0.01Ca | 5.86±0.03Ba | 6.13±0.02Aa |
| OE /Soybean | 0.271±0.03Db | 0.394±0.06Cb | 0.492±0.05Bb | 0.576±0.03Ab |
| OE /Brazil nut | 0.269±0.04Db | 0.354±0.04Cb | 0.482±0.01Bb | 0.500±0.05Ab |
| OE /Palm olein | 0.252±0.03Db | 0.273±0.01Cc | 0.479±0.08Bb | 0.496±0.04Ab |
| Total carotenoids (μg.g-1) | TAUÁ | IGARAPÉ-AÇU | ||
|---|---|---|---|---|
| Immature | Mature | Immature | Mature | |
| OSE/acetone, petroleum ether | 21.90±0.14Da | 43.87±0.16Ba | 32.25±0.30Ca | 55.23±0.12Aa |
| OE/Soybean | 18.86±0.17Db | 34.63±0.11Bb | 24.68±0.19Cb | 38.22±0.16Ab |
| OE/Brazilian nut | 13.77±0.12Dc | 23.81±0.17Bc | 19.58±0.22Cc | 30.91±0.06Ac |
| OE/Palm olein | 12.62±0.17Dd | 21.65±0.23Bd | 18.72±0.36Cd | 28.04±0.28Ad |
| Fatty acid (g.100g-1) | |||
|---|---|---|---|
| Vegetable oil | Palmitic acid (C16:0) | Oleic acid (C18:1, ω-9) |
Linoleic acid (C18:2, ω-6) |
| Soybean | 12.40 ± 0.05c | 23.30 ± 0.05c | 58.21 ± 0.07a |
| Brazilian nut | 15.25 ± 0.03b | 38.48 ± 0.02b | 35.87 ± 0.02b |
| Palm olein | 37.81 ± 0.10a | 44.62 ± 0.09a | 10.70 ± 0.12c |
|
ABTS (µM trolox g-1) |
TAUÁ | IGARAPÉ-AÇU | ||||
| Immature | Mature | Immature | Mature | |||
| OSE/methanol, acetone | 89.58±1.73Ca | 95.89±0.77Ba | 94.27±1.30Ba | 123.61±2.61Aa | ||
| OE/Soybean | 16.08±0.26Db | 24.05±0.50Cb | 26.44±0.18Bb | 42.45±0.68Ab | ||
| OE/Brazil nut | 13.57±0.14Cb | 22.84±0.21Bb | 24.16±0.50Bb | 40.50±0.35Ab | ||
| OE/Palm olein | 10.56±0.11Cb | 21.17±0.44Bb | 22.92±0.30Bb | 39.12±0.45Ab | ||
|
β-carotene/linoleic acid %AA (60 min) |
TAUÁ | IGARAPÉ-AÇU | ||||
| Immature | Mature | Immature | Mature | |||
| OSE/methanol, acetone | 46.88±0.79Ca | 52.06±0.80Ba | 50.86±0.51Ba | 59.66±0.92Aa | ||
| OE/Soybean | 9.24±0.19Db | 16.20±0.40Bb | 14.97±0.33Cb | 24.09±0.51Ab | ||
| OE/Brazil nut | 7.90±0.32Dbc | 14.82±0.19Bbc | 12.25±0.54Cc | 22.18±0.83Ab | ||
| OE/Palm olein | 6.70±0.38Cc | 13.22±0.19Bc | 11.34±0.57Bc | 19.08±0.24Ac | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
