Submitted:
12 July 2024
Posted:
15 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Layout
2.3. Insect Sampling
2.4. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pagano, M.C.; Miransari, M. The importance of soybean production worldwide. In book: Abiotic and Biotic Stresses in Soybean Production, Editor Mohammad Miransari; Publisher: Academic Press. 2016.
- Faostat. Food and Agriculture Organization of the United Nations (FAO). 2021. Available online: https://www.fao.org/faostat/en/#home (accessed on 10 May 2024).
- ARiMR. Agencja Restrukturyzacji i Modernizacji Rolnictwa (Poland). In English: The Agency for Restructuring and Modernisation of Agriculture (ARMA). 2024. Available online: https://www.gov.pl/web/arimr/agencja-restrukturyzacji-i-modernizacji-rolnictwa (accessed on 10 May 2024).
- Serafin-Andrzejewska, M.; Helios, W.; Białkowska, M.; Kotecki, A.; Kozak, M. Sowing Date as a Factor Affecting Soybean Yield – A Case Study in Poland. Agriculture. 2024, 14, 970. [Google Scholar] [CrossRef]
- Hurej, M.; Twardowski, J. Wpływ rozmieszczenia roślin w łanie na występowanie ważniejszych fitofagów rzepaku ozimego. Zesz. Nauk. UP we Wrocławiu, Seria Rolnictwo. 2007, 553, 67–74. [Google Scholar]
- Cierpisz, M.; Twardowski, J.; Kozak, M. The effect of plant arrangement in soybean crop on more important herbivores – preliminary results. J. Res.Appl. Agric. Eng. 2016, 61, 48–52. [Google Scholar]
- Twardowski, J.; Hurej, M.; Ścibior, R.; Kotecki, A. The effect of different seeding density of linseed (Linum usitatissimum L.) on flax flea beetles (Col., Chrysomelidae). J. Plant Prot. Res. 2017, 57, 158–166. [Google Scholar] [CrossRef]
- Hanh, P.G.; Orrock, J.L. Spatial arrangement of canopy structure and land use history alter the effect that herbivores have on plant growth. Ecosphere. 2015, 10, 1–16. [Google Scholar] [CrossRef]
- Mondal, M.M.A.; Puteh, A.B.; Malek, M.A.; Ismail, M.R. Determination of optimum seed rate for mungbean based on morpho-physiological criteria. Legume Research. 2012, 35, 126–131. [Google Scholar]
- Neves, D.V.C.; Lopes, M.C.; Sarmento, R.A.; Pereira, P.S.; Pires, W.S.; Peluzio, J.M.; Picanço, M.C. Economic injury levels for control decision-making of thrips in soybean crops (Glycine max (L.) Merrill). Res. Soc. Develop. 2022, 11, e52411932114. [Google Scholar] [CrossRef]
- Moritz, G.; Paulsen, M.; Delker, C.; Picl, S.; Kumm, S. Identification of thrips using ITS–RFLP analysis. Thrips and Tospoviruses: Proceedings of the 7th International Symposium on Thysanoptera. 2002, 365–367.
- Thekke-Veetil, T.; Lagos-Kutz, D.; McCoppin, N.K.; Hartman, G.L.; Ju, H.-K.; Lim, H.-S.; Domier, L.L. Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses. Viruses 2020, 12, 1376. [Google Scholar] [CrossRef] [PubMed]
- Kucharczyk, H.; Kucharczyk, M. Characteristic and diagnostic features of the most frequently occurring species of the Thripidae family (Insecta, Thysanoptera) in crown canopies of Central European forests. Leśne Prace Badawcze. 2013, 74, 5–11. [Google Scholar] [CrossRef]
- Sierka, W. Wciornastki, czyli thripsy (Insecta, Thysanoptera). Pol. Pismo Entomol. 2004, 1, 1–12. [Google Scholar]
- Mound, L.A.; Morison, G.D.; Pitkin, B.R.; Palmer, J.M. Thysanoptera. Handbooks for the Identification of British Insects. Royal Entomological Society of London. 1976, 1, 1–79. [Google Scholar]
- Hurej, M.; Kucharczyk, H.; Twardowski, J.; Kozak, M. Thrips (Thysanoptera) associated with narrow-leafed lupin (Lupinus angustifolius L., 1753) intercropped with spring triticale (x Triticosecale Wittm. ex A. Camus, 1927). Rom. Agric. Res. 2014, 31, 337–345. [Google Scholar]
- Gill, H.K.; Garg, H.; Gill, A.K.; Gillett-Kaufman, J.L.; Nault, B.A. Onion thrips (Thysanoptera: Thripidae) biology, ecology, and management in onion production systems. J. Integr. Pest Manag. 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Hurej, M.; Twardowski, J. Thrips (Thysanoptera) occuring in spring triticale intercropped with yellow lupine. Acta Sci. Pol. Agricultura. 2004, 3, 263–270. [Google Scholar]
- Hurej, M.; Twardowski, J.; Chrzanowska-Drożdż, B. Thrips (Thysanoptera) occurring in ears of Triticum durum Desf. in conditions of different protection level. Acta Sci. Pol. Agricultura. 2010, 9, 3–10. [Google Scholar]
- Hurej, M.; Kucharczyk, H.; Twardowski, J.; Kotecki, A. Thrips (Thysanoptera) associated with two morphological forms of Andean lupin (Lupinus mutabilis Sweet). Biologia. 2015, 70, 935–942. [Google Scholar] [CrossRef]
- Hurej, M.; Kucharczyk, H.; Twardowski, J.; Kotecki, A. Thrips (Thysanoptera) associated with two genetically modified types of linseed (Linum usitatissimum L.). J. Plant Dis. Prot. 2017, 124, 81–91. [Google Scholar] [CrossRef]
- Łuczak, I.; Gaborska, M.; Pobożniak, M.; Świderski, A.; Kruczek, M. Occurrence of phytophagous thrips (Thysanoptera) and harmfulness of Thrips tabaci Lind. in carrot (Daucus carota L. ssp. sativus) cultivation (Daucus carota L. ssp. sativus). Prog. Plant Prot. 2014, 54, 198–204. [Google Scholar] [CrossRef]
- Olczyk, M.; Pobożniak, M. Thrips (Thysanoptera) associated with onion (Allium cepa L.) and Welsh onion (Allium fistulosum L.). Folia Hort. 2020, 3, 1–17. [Google Scholar] [CrossRef]
- Trdan, S.; Andjus, L.; Raspudić, E.; Kač, M. Distribution of Aeolothrips intermedius Bagnall (Thysanoptera: Aeolothripidae) and its potential prey Thysanoptera species on different cultivated host plants. J. Pest Sci. 2005, 78, 217–226. [Google Scholar] [CrossRef]
- Gruss, I.; Twardowski, J.P.; Cierpisz, M. The Effects of Locality and Host Plant on the Body Size of Aeolothrips intermedius (Thysanoptera: Aeolothripidae) in the Southwest of Poland. Insects, 2019, 10, 266. [Google Scholar] [CrossRef]
- Włodarczyk, M. Effect of planting date of soybean (Glycine max (L.) Merill) on cultivars growth and yield. Ph.D. Thesis, Institute of Agroecology and Plant Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland, 2020; 96p. (In Polish). [Google Scholar]
- Moritz, G.B. Pictorial key to the economically important species of Thysanoptera in Central Europe. Bulletin OEPP/EPPO 1994, 24, 181–208. [Google Scholar] [CrossRef]
- Mound, L.A.; Kibby, G. Thysanoptera an Identification guide. CAB Intl., ISBN: 0851992110. 1998, 70 pp.
- Zur Strassen, R. Die Terebranten Thysanopteren Europas. Keltern, Germany: Die Tierwelt Deutschlands, 74 Teils. Goecke and Evers. 2003.
- Kucharczyk, H. Comparative morphology of the second larval instar of the Thrips genus species (Thysanoptera: Thripidae) occurring in Poland, Mantis, Olsztyn, ISBN: 8392999770, 2010, 152 pp.
- Nuss, H. Effect of plant density and plant architecture on the abundance and within–plant distribution of stem borers in winter oilseed rape. Ph.D. Thesis, University of Göttingen, in Deutsch, 2004. [Google Scholar]
- Cierpisz, M.; Twardowski, J.; Gruss, I.; Kozak, M. Different soybean plant arrangements affect ground beetle assemblages. J. Plant Prot. Res. 2019, 59, 441–450. [Google Scholar] [CrossRef]
- Santos, J.L.; Pereira, P.S.; Reis, K.H.B.; Freitas, D.R.; Picanço Filho, M.C.; Peluzio, J.M.; Sarmento, R.A.; Guedes, R.N.C.; Picanço, M.C. Decision-making for thrips control in soybean fields using precision agriculture principles. J. Appl. Entomol. 2024, 148, 140–149. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 1973, 43, 95–124. [Google Scholar] [CrossRef]
- Grez, A.A.; González, R.H. Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects. Oecologia. 1995, 103, 471–474. [Google Scholar] [CrossRef]
- Stephens, A.E.A.; Myers, J.H. Resource concentration by insects and implications for plant populations. J. Ecol. 2012, 100, 923–931. [Google Scholar] [CrossRef]
- Pobereżny, J.; Wszelaczyńska, E.; Lamparski, R.; Lemanowicz, J.; Bartkowiak, A.; Szczepanek, M.; Gościnna, K. The impact of spring wheat species and sowing density on soil biochemical properties, content of secondary plant metabolites and the presence of Oulema ssp. PeerJ, 2023, 11, e14916. [Google Scholar] [CrossRef] [PubMed]
- Maron, J.L.; Crone, E. Herbivory: effects on plant abundance, distribution and population growth. Proc. Royal Soc. B. 2006, 273, 2575–2584. [Google Scholar] [CrossRef]
- Krobb, J.L.; Stewart, S.D.; Brown, S.A. Effects of plant density, seed spacing, and seed treatment on thrips injury to cotton. Crop Prot. 2022, 161, 106059. [Google Scholar] [CrossRef]
- Underwood, N.; Halpern, S. Insect herbivores, density dependence, and the performance of the perennial herb Solanum carolinense. Ecology. 2012, 93, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Nowatzki, T.M.; Tollefson, J.J.; Bailey, T.B. Effects of row spacing and plant density on corn rootworm (Coleoptera: Chrysomelidae) emergence and damage potential to corn. J. Econ. Entomol. 2002, 95, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Nerlekar, A. Seasonally dependent relationship between insect herbivores and host plant density in Jatropha nana, a tropical perennial herb. Biology Open. 2018, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pobożniak, M. The occurrence of thrips (Thysanoptera) on food legumes (Fabaceae). J. Plant Dis. Prot. 2011, 118, 185–193. [Google Scholar] [CrossRef]
- Tratwal, A.; Strażyński, P.; Mrówczyński, M. Poradnik sygnalizatora ochrony bobowatych grubonasiennych. Instytut Ochrony Roślin – Państwowy Instytut Badawczy. 2017, 57–121.
- Przybysz, A.; Fiedler, Z.; Obrępalska–Stęplowska, A. Klucze do diagnostyki morfologicznej i molekularnej Frankliniella occidentalis (Pergande) i Thrips palmi (Karny). Instytut Ochrony Roślin – Państwowy Instytut Badawczy. 2015, 5–24.
- Kumar, V.; Kakkar, G.; Palmer, C.L.; McKenzie, C.L.; Osborne, S.L. Thrips Management Program for Horticulture. University of Florida IFAS Extension. 2016; 1–7. [Google Scholar]
- Shimat, J.; Braman, K.; Hudson, W.; Nair, S. Biology and Management of Thrips Affecting the Production Nursery and Landscape. University of Georgia Extension. 2019; 1–5. [Google Scholar]
- Ábrahám, R. Thrips species associated with soybean in Hungary. Acta Phyt. Ent. Hung. 2008, 43, 211–218. [Google Scholar] [CrossRef]
- Kucharczyk, H. Przylżeńce (Thysanoptera) Roztocza. Frag. Faun. 1994, 37, 168–180. [Google Scholar] [CrossRef]
- Pitkin, B.R. A revision of the flower–living genus Odontothrips Amyot & Serville (Thysanoptera: Thripidae). Bulletin of the British Museum (Natural History) Entomology. 1972, 26, 371–402. [Google Scholar]
- Virteiu, A.M.; Steff, R.; Carabet, A.; Molnar, R.; Grozea, I. Revision of the genus Odontothrips Amyot & Serville (Thysanoptera, Thripidae) with the redescription of Odontothrips loti (Haliday, 1852) species on Lotus corniculatus crops. Res. J. Agric. Sci. 2021, 53, 255–261. [Google Scholar]



| Wrocław-Pawłowice (Location 1) | ||
| Research variant | Row spacing (cm) | Number of seeds sown on 1 m2 |
| A1 | 15 | 50 |
| A2 | 15 | 50 |
| A3 | 30 | 90 |
| A4 | 30 | 90 |
| Łosiów (Location 2) | ||
| Research variant | Row spacing (cm) | Soybean variety |
| B1 | 12 | Abeline (variety 1) |
| B2 | 12 | Lissabon (variety 2) |
| B3 | 45 | Abeline (variety 1) |
| B4 | 45 | Lissabon (variety 2) |
| DF | Sum of squares | Mean square | F value | P value | |
|---|---|---|---|---|---|
| Location 1 | |||||
| Row spacing | 1 | 152.11 | 152.11 | 0.44 | 0.51 |
| Sowing density | 1 | 1586.69 | 1586.69 | 4.6 | 0.031 |
| Date of sampling | 2 | 38421.54 | 19210.77 | 55.68 | <0.0001 |
| Sowing density x Date of sampling | 2 | 1127.1 | 563.55 | 1.63 | 0.20 |
| Model | 11 | 41852.83 | 3804.8 | 11.03 | <0.0001 |
| Error | 132 | 45538.17 | 344.991 | ||
| Corrected Total | 143 | 87391 | |||
| Location 2 | |||||
| Variety | 1 | 3.13 | 3.13 | 0.02 | 0.88 |
| Row spacing | 1 | 2.35 | 2.35 | 0.02 | 0.90 |
| Date | 2 | 4547.44 | 2273.72 | 16.16 | <0.0001 |
| Model | 11 | 4726.15 | 429.65 | 3.06 | 0.003 |
| Error | 60 | 8444.5 | 140.74 | ||
| Corrected Total | 71 | 13170.66 | |||
| Permutation N | Total sum of squares | Within-group sum of squares | F | p |
|---|---|---|---|---|
| 9999 | 3.6 | 3.119 | 32.87 | 0.0001 |
| Species | Abreviation | Trophic group | Food specialization | Host (if applicable) |
|---|---|---|---|---|
| Aeolothrips fasciatus (Linnaeus, 1758) | AelFasc | predator | mainly other thrips, adult stages and larvae | supplements the diet with plant pollen |
| Aeolothrips intermedius (Bagnall, 1934) | AeolIntr | predator | mainly other thrips, adult stages and larvae | supplements the diet with plant pollen |
| Chirothrips manicatus (Haliday, 1836) | ChirManc | phytophage | oligophage | associated with monocotyledonous plants |
| Frankliniella intonsa (Trybom, 1895) | FranInt | phytophage | phytophage | wide host spectrum, feeds on flowers and leaves |
| Haplothrips aculeatus (Fabricius, 1803) | HaplAcul | phytophage | oligophage | associated with monocotyledonous plants |
| Haplothrips leucanthemi (Schrank, 1781) | HaplLeuc | phytophage | oligophage | associated with monocotyledonous plants |
| Haplothrips niger (Osborn, 1883) | HaplNigr | phytophage | oligophage | associated with monocotyledonous plants |
| Limothrips cerealium (Haliday, 1836) | LimtCere | phytophage | oligophage | associated with monocotyledonous plants |
| Limothrips denticornis (Haliday, 1836) | LimtDent | phytophage | oligophage | associated with monocotyledonous plants |
| Odontothrips loti (Haliday, 1852) | OdonLoti | phytophage | oligophage | associated with Fabaceae |
| Neohydatothrips gracilicornis (Williams, 1916) | NGracl | phytophage | oligophage | mainly associated with related to Fabaceae |
| Thrips atratus (Haliday, 1836) | ThripAtr | phytophage | oligophage | associated mainly with carnation and Laminaceae |
| Thrips flavus (Schrank, 1776) | ThripFlav | phytophage | phytophage | feeds mainly on flowers, a wide range of host plants |
| Thrips fuscipennis (Hailday, 1836) | ThripFusc | phytophage | phytophage | feeds on flowers and leaves, wide range of hosts, most often Rosaceae |
| Thrips major (Uzel, 1895) | ThripMajr | phytophage | phytophage | feeds on flowers and leaves, wide range of hosts, most often Rosaceae |
| Thrips nigropilosus Uzel, 1985 | ThripNigr | phytophage | phytophage | feeds on flowers and leaves, a wide range of host plants |
| Thrips tabaci (Lindemann, 1889) | ThripTabc | phytophage | phytophage | feeds on flowers and leaves, a wide range of host plants |
| Factor | Year | Location | Explain % | Contribution % | pseudo-F | P |
|---|---|---|---|---|---|---|
| Sampling date | ||||||
| Before flowering | 2015 | Location 1 | 7.7 | 18.8 | 5.5 | 0.001 |
| 2016 | Location 1 | 8.1 | 19.8 | 6 | 0.002 | |
| 2017 | Location 1 | 9.4 | 18.1 | 8.2 | unknown | |
| 2016 | Location 2 | 7 | 18 | 3.5 | 0.001 | |
| 2017 | Location 2 | 6.7 | 9.3 | 7.4 | 0.002 | |
| During flowering | 2015 | Location 1 | 7.7 | 18.8 | 5.5 | 0.001 |
| 2016 | Location 1 | 8.1 | 19.8 | 6 | 0.006 | |
| 2017 | Location 1 | 9.4 | 18.1 | 8.2 | unknown | |
| 2016 | Location 2 | 28.1 | 72.8 | 13.3 | 0.001 | |
| 2017 | Location 2 | 6.7 | 9.3 | 7.4 | 0.001 | |
| After flowering | 2015 | Location 1 | 29.9 | 73.4 | 19.6 | 0.001 |
| 2016 | Location 1 | 31.2 | 76.3 | 20.8 | 0.001 | |
| 2017 | Location 1 | 39 | 74.9 | 29.5 | 0.001 | |
| 2016 | Location 2 | 7 | 18 | 3.5 | 0.001 | |
| 2017 | Location 2 | 63.4 | 88 | 58.8 | 0.001 | |
| Sowing density | 2015 | Location 1 | 2.2 | 5.3 | 1.6 | 0.11 |
| 2016 | Location 1 | 1 | 2.5 | 0.7 | unknown | |
| 2017 | Location 1 | 3.2 | 6.1 | 2.9 | 0.073 | |
| Variety | 2016 | Location 2 | 1.7 | 4.4 | 0.9 | 0.6 |
| 2017 | Location 2 | 0.8 | 1 | 0.8 | 0.48 | |
| Row spacing | 2015 | Location 1 | 1 | 2.5 | 0.7 | 0.71 |
| 2016 | Location 1 | 0.6 | 1.5 | 0.4 | 0.8 | |
| 2017 | Location 1 | 0.5 | 0.9 | 0.4 | 0.69 | |
| 2016 | Location 2 | 1.9 | 4.8 | 0.9 | 0.52 | |
| 2017 | Location 2 | 1.1 | 1.6 | 1.3 | unknown | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
