Submitted:
03 July 2024
Posted:
04 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Characterization of Stem Rust Resistance in Durum Wheat Accession PI 94701
2.2. Genetic mapping of SrPI94701 on Chromosome Arm 5BL
2.3. Candidate Genes for SrPI94701 within Tetraploid and Hexaploid Wheat Genomes
2.4. Identification of Differentially Expressed Genes (DEGs) within the SrPI94701 Mapping Interval
2.5. Validation of SrPI94701-Linked Markers in Uncharacterized Wheat Accessions
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Mapping Populations
4.2. Evaluation for Stem Rust Resistance
4.3. Bulked Segregant RNA-Seq (BSR-Seq) Analysis
4.4. Development of PCR Markers
4.5. qRT-PCR Analysis
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Yao, P.; Wu, Y.; Bi, Y.; Yang, J. Discovery and verification of an important inoculum source for Puccinia graminis f. sp. tritici in China. Plant Protection 2001, 28, 294–298. [Google Scholar]
- Saari, E.E.; Prescott, J. World distribution in relation to economic losses. In Diseases, distribution, epidemiology, and control; Elsevier: 1985, pp. 259-298.
- Amulaka, F.; Maling’a, J.; Pathak, R.; Cakir, M.; Mulwa, R. Yield evaluation of a wheat line with combined resistance to Russian wheat aphid and stem rust race “Ug99” in Kenya. American Journal of Plant Sciences 2013, 4, 1494–1499. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Bhavani, S.; Njau, P.; Herrera-Foessel, S.; Singh, P.K.; Singh, S.; Govindan, V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 2011, 49, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Hodson, D.P.; Jin, Y.; Lagudah, E.S.; Ayliffe, M.A.; Bhavani, S.; Rouse, M.N.; Pretorius, Z.A.; Szabo, L.J.; Huerta-Espino, J.; et al. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 2015, 105, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Szabo, L.J.; Pretorius, Z.A.; Singh, R.P.; Ward, R.; Fetch, T. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp tritici. Plant Dis 2008, 92, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Szabo, L.J.; Rouse, M.N.; Fetch, T.; Pretorius, Z.A.; Wanyera, R.; Njau, P. Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp tritici. Plant Dis 2009, 93, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, M.; Rouse, O.M.N.; Rouse, M.N.; Szabo, L.J.; Johnson, J.; Gale, S.; Luster, D.G.; Wanyera, R.; Macharia, G.; Bhavani, S.; et al. Kenyan Isolates of Puccinia graminis f. sp tritici from 2008 to 2014: Virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 2016, 106, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Patpour, M.; Hovmøller, M.; Shahin, A.; Newcomb, M.; Olivera, P.; Jin, Y.; Luster, D.; Hodson, D.; Nazari, K.; Azab, M. First report of the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Egypt in 2014. Plant Dis 2016, 100, 863–863. [Google Scholar]
- Terefe, T.G.; Boshoff, W.H.; Park, R.F.; Pretorius, Z.A.; Visser, B. Wheat stem rust surveillance reveals two new races of Puccinia graminis f. sp. tritici in South Africa during 2016 to 2020. Plant Dis 2024, 108, 20–29. [Google Scholar]
- Patpour, M.; Justesen, A.F.; Hovmøller, M.S.; Baidya, S.; Thapa, D.; Basnet, R. First report of Ug99 wheat stem rust (Puccinia graminis f. sp. tritici) in South Asia. Plant Dis 2024. [CrossRef]
- Olivera, P.; Jin, Y.; Rouse, M.; Badebo, A.; Fetch Jr, T.; Singh, R.; Yahyaoui, A. Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Dis 2012, 96, 623–628. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Abate, Z.; Nirmala, J.; Rouse, M.N.; Dubcovsky, J. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc Natl Acad Sci USA 2017, 114, E9483–9492. [Google Scholar] [CrossRef] [PubMed]
- Olivera, P.; Newcomb, M.; Szabo, L.J.; Rouse, M.; Johnson, J.; Gale, S.; Luster, D.G.; Hodson, D.; Cox, J.A.; Burgin, L. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology 2015, 105, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.M.; Persoons, A.; Bebber, D.P.; Kigathi, R.N.; Maintz, J.; Findlay, K.; Bueno-Sancho, V.; Corredor-Moreno, P.; Harrington, S.A.; Kangara, N. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun Biol 2018, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Patpour, M.; Hovmoller, M.; Hansen, J.; Justesen, A.; Thach, T.; Rodriguez-Algaba, J.; Hodson, D.; Randazo, B. Epidemics of yellow rust and stem rust in Southern Italy 2016-2017. In Proceedings of the BGRI 2018 Technical Workshop, 2017; pp. https://www.globalrust.org/content/epidemics-yellow-and-stem-rust-southern-italy-2016-2017.
- Fetch, T.; Zegeye, T.; Park, R.; Hodson, D.; Wanyera, R. Detection of wheat stem rust races TTHSK and PTKTK in the Ug99 race group in Kenya in 2014. Plant Dis 2016, 100, 1495–1495. [Google Scholar] [CrossRef]
- Li, H.; Luo, J.; Zhang, W.; Hua, L.; Li, K.; Wang, J.; Xu, B.; Yang, C.; Wang, G.; Rouse, M.N. High-resolution mapping of SrTm4, a recessive resistance gene to wheat stem rust. Theor Appl Genet 2023, 136, 120. [Google Scholar] [CrossRef]
- Sharma, J.S.; Che, M.; Fetch, T.; McCallum, B.D.; Xu, S.S.; Hiebert, C.W. Identification of Sr67, a new gene for stem rust resistance in KU168-2 located close to the Sr13 locus in wheat. Theor Appl Genet 2024, 137, 30. [Google Scholar] [CrossRef]
- Chen, S.; Guo, Y.; Briggs, J.; Dubach, F.; Chao, S.; Zhang, W.; Rouse, M.N.; Dubcovsky, J. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theor Appl Genet 2018, 131, 625–635. [Google Scholar] [CrossRef]
- Nirmala, J.; Saini, J.; Newcomb, M.; Olivera, P.; Gale, S.; Klindworth, D.; Elias, E.; Talbert, L.; Chao, S.; Faris, J. Discovery of a novel stem rust resistance allele in durum wheat that exhibits differential reactions to Ug99 isolates. G3-Genes Genom Genet 2017, 7, 3481–3490. [Google Scholar] [CrossRef]
- Gill, B.K.; Klindworth, D.L.; Rouse, M.N.; Zhang, J.; Zhang, Q.; Sharma, J.S.; Chu, C.; Long, Y.; Chao, S.; Olivera, P.D. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.). Plant J 2021, 106, 1674–1691. [Google Scholar] [CrossRef]
- Zhang, J.; Nirmala, J.; Chen, S.; Jost, M.; Steuernagel, B.; Karafiatova, M.; Hewitt, T.; Li, H.; Edae, E.; Sharma, K. Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9. Nat Commun 2023, 14, 7354. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-X.; Barbier, H.; Rouse, M.N.; Singh, S.; Singh, R.P.; Bhavani, S.; Huerta-Espino, J.; Sorrells, M.E. A consensus map for Ug99 stem rust resistance loci in wheat. Theor Appl Genet 2014, 127, 1561–1581. [Google Scholar] [CrossRef]
- Bariana, H.S.; Hayden, M.J.; Ahmed, N.; Bell, J.; Sharp, P.; McIntosh, R. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Aer Res 2001, 52, 1247–1255. [Google Scholar] [CrossRef]
- Rondon, M.; Gough, F.; Williams, N.D. Inheritance of stem rust resistance in Triticum aestivum ssp. vulgare ‘Reliance’and PI 94701 of Triticum durum 1. Crop Sci 1966, 6, 177–179. [Google Scholar]
- Ellis, J.; Dodds, P.; Pryor, T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 2000, 3, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hua, L.; Zhao, S.; Hao, M.; Song, R.; Pang, S.; Liu, Y.; Chen, H.; Zhang, W.; Shen, T.; et al. Cloning of the wheat leaf rust resistance gene Lr47 introgressed from Aegilops speltoides. Nat Commun 2023, 14, 6072. [Google Scholar] [CrossRef] [PubMed]
- Marone, D.; Russo, M.A.; Laidò, G.; De Leonardis, A.M.; Mastrangelo, A.M. Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 2013, 14, 7302–7326. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Rouse, M.N.; Zhang, W.; Zhang, X.; Guo, Y.; Briggs, J.; Dubcovsky, J. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol 2020, 225, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Uauy, C.; Distelfeld, A.; Blechl, A.; Epstein, L.; Chen, X.; Sela, H.; Fahima, T.; Dubcovsky, J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 2009, 323, 1357–1360. [Google Scholar] [CrossRef]
- Martin, G.B.; Brommonschenkel, S.H.; Chunwongse, J.; Frary, A.; Ganal, M.W.; Spivey, R.; Wu, T.; Earle, E.D.; Tanksley, S.D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993, 262, 1432–1436. [Google Scholar] [CrossRef]
- Hurni, S.; Scheuermann, D.; Krattinger, S.G.; Kessel, B.; Wicker, T.; Herren, G.; Fitze, M.N.; Breen, J.; Presterl, T.; Ouzunova, M.; et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci USA 2015, 112, 8780–8785. [Google Scholar] [CrossRef]
- Klymiuk, V.; Yaniv, E.; Huang, L.; Raats, D.; Fatiukha, A.; Chen, S.; Feng, L.; Frenkel, Z.; Krugman, T.; Lidzbarsky, G. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 2018, 9, 3735. [Google Scholar] [CrossRef] [PubMed]
- Heermann, R.; Smith, G.; Briggle, L.; Schwilghamer, E. Inheritance of reaction to stem rust in certain durum and emmer wheats. In Proceedings of the Report of the Third International Wheat Rust Conference; 1956; pp. 82–83. [Google Scholar]
- Chen, S.; Zhang, W.; Bolus, S.; Rouse, M.N.; Dubcovsky, J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet 2018, 14, e1007287. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hua, L.; Rouse, M.N.; Li, T.; Pang, S.; Bai, S.; Shen, T.; Luo, J.; Li, H.; Zhang, W. Mapping and characterization of a wheat stem rust resistance gene in durum wheat “Kronos”. Front Plant Sci 2021, 12, 751398. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hou, S.; Chen, S. Kinase fusion proteins: intracellular R-proteins in plant immunity. Trends Plant Sci 2023, 29, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Brueggeman, R.; Rostoks, N.; Kudrna, D.; Kilian, A.; Han, F.; Chen, J.; Druka, A.; Steffenson, B.; Kleinhofs, A. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 2002, 99, 9328–9333. [Google Scholar] [CrossRef]
- Yu, G.; Matny, O.; Champouret, N.; Steuernagel, B.; Moscou, M.J.; Hernández-Pinzón, I.; Green, P.; Hayta, S.; Smedley, M.; Harwood, W.; et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 2022, 13, 1607. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Matny, O.; Gourdoupis, S.; Rayapuram, N.; Aljedaani, F.R.; Wang, Y.L.; Nürnberger, T.; Johnson, R.; Crean, E.E.; Saur, I.M.-L. The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat Genet 2023, 55, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Abrouk, M.; Gourdoupis, S.; Koo, D.-H.; Karafiátová, M.; Molnár, I.; Holušová, K.; Doležel, J.; Athiyannan, N.; Cavalet-Giorsa, E. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat Genet 2023, 55, 914–920. [Google Scholar] [CrossRef]
- Bansal, U.K.; Muhammad, S.; Forrest, K.L.; Hayden, M.J.; Bariana, H.S. Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theor Appl Genet 2015, 128, 2113–2119. [Google Scholar] [CrossRef]
- Bansal, U.; Bariana, H.; Wong, D.; Randhawa, M.; Wicker, T.; Hayden, M.; Keller, B. Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina. Theor Appl Genet 2014, 127, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Megerssa, S.H.; Ammar, K.; Acevedo, M.; Brown-Guedira, G.; Ward, B.; Degete, A.G.; Randhawa, M.S.; Sorrells, M.E. Multiple-race stem rust resistance loci identified in durum wheat using genome-wide association mapping. Front Plant Sci 2020, 11, 1934. [Google Scholar] [CrossRef]
- Saintenac, C.; Zhang, W.; Salcedo, A.; Rouse, M.N.; Trick, H.N.; Akhunov, E.; Dubcovsky, J. Identifcation of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 2013, 341, 783–786. [Google Scholar] [CrossRef]
- Luo, J.; Rouse, M.N.; Hua, L.; Li, H.; Li, B.; Li, T.; Zhang, W.; Gao, C.; Wang, Y.; Dubcovsky, J. Identification and characterization of Sr22b, a new allele of the wheat stem rust resistance gene Sr22 effective against the Ug99 race group. Plant Biotechnol J 2022, 20, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Steuernagel, B.; Periyannan, S.K.; Hernández-Pinzón, I.; Witek, K.; Rouse, M.N.; Yu, G.; Hatta, A.; Ayliffe, M.; Bariana, H.; Jones, J.D.G.; et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature biotechnology 2016, 34, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hewitt, T.C.; Boshoff, W.H.; Dundas, I.; Upadhyaya, N.; Li, J.; Patpour, M.; Chandramohan, S.; Pretorius, Z.A.; Hovmøller, M. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat Commun 2021, 12, 3378. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, D.; Miller, J.; Xu, S. Registration of Rusty durum wheat. Crop Sci 2006, 46, 1012–1014. [Google Scholar] [CrossRef]
- Chen, S.; Rouse, M.N.; Zhang, W.; Jin, Y.; Akhunov, E.; Wei, Y.; Dubcovsky, J. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet 2015, 128, 645–656. [Google Scholar] [CrossRef]
- Rouse, M.; Jin, Y. Genetics of resistance to race TTKSK of Puccinia graminis f. sp. tritici in Triticum monococcum. Phytopathology 2011, 101, 1418–1423. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Shen, T.; Lyu, S.; ur Rehman, S.; Li, H.; Wang, G.; Xu, B.; Wang, Q.; Hu, W.; et al. High-resolution genetic mapping and identification of candidate genes for the wheat stem rust resistance gene Sr8155B1. Crop J 2023, 11, 1852–1861. [Google Scholar] [CrossRef]
- Chen, S.; Hegarty, J.; Shen, T.; Hua, L.; Li, H.; Luo, J.; Li, H.; Bai, S.; Zhang, C.; Dubcovsky, J. Stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal translocation of Triticum monococcum chromosome 5AmL into common wheat. Theor Appl Genet 2021, 134, 2197–2211. [Google Scholar] [CrossRef] [PubMed]
- Stakman, E.C.; Stewart, D.M.; Loegering, W.Q. Identification of physiologic races of Puccinia graminis var. tritici.; Washington DC, 1962.
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Maccaferri, M.; Harris, N.S.; Twardziok, S.O.; Pasam, R.K.; Gundlach, H.; Spannagl, M.; Ormanbekova, D.; Lux, T.; Prade, V.M.; Milner, S.G.; et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 2019, 51, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Bai, S.; Wang, G.; Song, R.; Liu, Y.; Hua, L.; Yang, J.; Zhang, L.; ur Rehman, S.; Hao, X.; Hou, L.; et al. Mutations in wheat TaAPA2 gene result in pleiotropic effects on plant architecture. Sci China Life Sci 2024. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Liu, Q.; Han, Y.; Liu, G.; Wu, J.; Qi, J.; Ni, F.; Bao, Y. PmSN15218: a potential new powdery mildew resistance gene on wheat chromosome 2AL. Front Plant Sci 2022, 13, 931778. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 2013, 74, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Konieczny, A.; Ausubel, F.M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 1993, 4, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 2002, 93, 77–78. [Google Scholar] [CrossRef]





| Markers | Marker type | Forward primer (5’-3’) | Reverse primer (5’-3’) | Enzyme | Expected size (bp) | Ann. T. (°C) |
|---|---|---|---|---|---|---|
| pku68299 | CAPS | GGTTTTAGTGCTGCACCTGGAC | GGCTCTCAGTTCTCTTCTGCACC | HphI | 337 | 63 |
| pku68425 | CAPS | ACAGACCCCCTTAAGCCTTTTTCTT | AGGGGAGATGTGTGTTGCTTTGTGT | BssHII | 441 | 60 |
| pku68823 | CAPS | ACTCCTACGGATCAAATTATCACCTT | GCACGGACATCTTGCTAGTAAGAG | ApoI | 473 | 56 |
| pku69013 | CAPS | CATAATCTTGACGATCCAGGGAC | TATATGCAGGCTATTACTGCTGTGG | HaeIII | 609 | 58 |
| pku69020 | CAPS | CCAGTTTTTATCGTCCAAATCTAGAG | ATCCATAGGTAGCTGCACATGT | HaeIII | 511 | 54 |
| pku69118 | CAPS | GTATGAAACCGCGAACACTTTACA | CGGGTTTCCAAATTTTGTTCTTGAG | XmnI | 394 | 57 |
| pku69119 | CAPS | GGAATTTCACATTTGTTCCCAATC | CGGAGATCGTCAACATCTC | HhaI | 394 | 55 |
| pku69124 | CAPS | TCTTTGTATTAAGAGTTTGCACAGCT | GCAGATTTCACATACTCAACCATC | SspI | 376 | 57 |
| pku69187 | CAPS | GCGCTGATGAAGATAATCTCAT | CGGAGGGAGTACTAGATTATCATG | BbvCI | 526 | 57 |
| pku69211 | CAPS | ATTTGTGTTCATCGATCAAAACAC | TAGTAAGATAAACTCTTGCCTCCTTC | HpyCH4IV | 376 | 52 |
| pku69227 | CAPS | GGCACCTTTAAAATAATACACGGA | AATGAGTTTGTTGTACCAAGTGCAG | PvuII | 354 | 55 |
| pku69228 | CAPS | CCTTCCCTACGGATATGTTTTTAGA | AGAAGTTGGAAGGGTAGATCATCACC | Hpy188III | 386 | 55 |
| pku69231 | CAPS | TGACACTTTCCACTCACTCCTAGG | ATTTGGCACGTTGACCTTAACT | BtgI | 340 | 56 |
| pku69264 | CAPS | AAATTCTATCAACACTTGAAGAGAA | CCAACCAACTATCATTTAGAAGT | BstUI | 503 | 52 |
| pku69384 | CAPS | ACTCCTTCACGCTTCTCGACA | AAATTTCCTGGGTGAGCCATT | BanI | 496 | 56 |
| pku69400 | CAPS | GGTGGTGGAGAACATGCATGC | ATGGCGATGACCGTGCAAGG | MspI | 336 | 60 |
| pku69560 | CAPS | CGTGGTCCGTTTCTCAGAAGA | CGGGAACAGAAGACACACTATATTT | BfuAI | 350 | 56 |
| pku69883 | CAPS | GTTCATGTTGTTGAGAAGCTAGAC | CACCTTACAAACAAGTGGTCAAC | BsmAI | 600 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
