Submitted:
01 July 2024
Posted:
02 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Lactococci
2.2. DNA Extraction, PCR Amplification and Sequencing
2.3. Enzymatic Profile of Selected Lactococci
2.4. Susceptibility to Antimicrobials
2.5. Biofilm-Forming Ability of Lactococci
2.6. Concentrated Bacteriocin Substance Preparation and Postbiotic Activity Testing
2.7. Freeze Drying Process (Encapsulation) of Lactococci for Their Application in Yogurts
2.8. Surviving and Stability of Postbiotic Active, Encapsulated Lactococci in Goat Milk Yogurts
3. Results
3.1. Taxonomy and Enzyme Profile of Lactococci
3.2. Susceptibility to Antibiotics (Antimicrobials) and Biofilm-Forming of Lactococci
3.3. Postbiotic Activity Testing of Concentrated Substances Produced by Lactococci
3.4. Surviving and Stability of Postbiotic Active, Encapsulated Lactococci in Goat Milk Yogurts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samaržija, D.; Antunac, N.; Lukač Havranek, J. Taxonomy, physiology and growth of Lactococcus lactis:a review. Mljekarstvo 2001, 51(1), 35–48. [Google Scholar]
- Wu, Fan, Xie, Xinmei, Du, Tao, Jiang Xiaodan, Miao, Wang Tiancheng. Lactococcus lactis, a bacterium with probiotic functions and pathogenicity. World J. Microbiol. Biotechnol. [CrossRef]
- Wessels, S. , Axelsson, L., Bech Hansen, E., De Vuyst, L., Laulund, S., Lähteenmäki, L., Lindgren, S. et al. The lactic acid bacteria, the food chain, and their regulation. Trends in Food Sci. Technol. 4: (10). [CrossRef]
- Widyastuti Yantyati, Febrisiantosa, A., Tidona, F. Health-promoting properties of lactobacilli in fermented dairy products. 2021, 12:Article 673890. [CrossRef]
- Varma, N.R.; Toosa, H.; Foo, H.L.; Alitheen, N.B.; Nor Shamsudin, M.; Arbab, A.S.; Yusoff, K., Abdul Rahim. Display of the viral epitopes on Lactococcus lactis: a model for good grade vaccine against EV71. Biotechnol. Res. Int. 2013, 11, 4032–4036. [Google Scholar] [CrossRef]
- Bernadeau, M.; Vernoux, J.P.; Henri-Dubernet, S.; Gueguen, M. Safety assessment of dairy microorganisms: the Lactobacillus genus. Int. J. Food Microbiol. 2008, 126, 278–285. [Google Scholar] [CrossRef]
- Kok, J.; Buist, G.; Zomer, A.L.; van Hijum, S.A.; Kuipers, O.P. Comparative and functional genomics of lactococci. FEMS Microbiol. Rev. 2005, 29(3), 411–433. [Google Scholar] [CrossRef] [PubMed]
- Van Hylckama Vlieg, J.E.; Rademaker, J.L.; Bachmann, H.; Molenaar, D.; Kelly, W.J.; Siezen, R.J. Natural diversity and adaptive responses of Lactococcus lactis. Current Opinion Biotechnol. 2006, 17(2), (2),183–190. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO 2006. Probiotics in food, health and nutritional properties and guidelines for evaluation. FAO Food and Nutritional Paper, No. 85. Rome:WHO/FAO.
- Nes, I.F.; Diep, D.B.; Ike, Y. Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In Gilmore M.S.; Clewell, D.B.; Ike Y.; Shankar, N. editors, Enterococci:from commensals to leading cause of drug resistant infection, Boston, Massachussetts Eye and ear Infirmary. 2014. [Google Scholar]
- Todorov, S.D.; Stojanovski, S.; Iliev, I.; Moncheva, P.; Nero, L.A.; Ivanova, I.V. Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka". Braz. J. Microbiol. 2017; 48 (3): 576-586. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18(9), 649–667. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, B.H.; Azmal Ali, S.; Betore, P.V.; Yadav, H. Postbiotics-parabiotics:the new horizon in microbial biotherapy and functional food. Microb. Cell Fact. 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Dvorožňáková, E.; Vargová, M.; Ščerbová, J.; Focková, V.; Plachá, I.; Pogány Simonová, M. The bacteriocin-like inhibitory substance producing Lacticaseibacillus paracasei LPa 12/1 from raw goat milk, a potential additive in dairy products. Appl. Sci. 2023, 13, 12223. [Google Scholar] [CrossRef]
- Lauková, A.; Micenková, L.; Grešáková, Ľ.; Maďarová, M.; Pogány Simonová, M.; Focková, V.; Ščerbová, J. Microbiome associated with Slovak raw goat milk, trace minerals, and vitamin E content. Int. J. Food Sci, 2022, article 4595473, 8 pages. [CrossRef]
- Lauková, A.; Zábolyová, N.; Pogány Simonová, M. Postbiotic properties of lactococci isolated from raw goat milk (Postbiotické vlastnosti laktokokov izolovaných zo surového kozieho mlieka (in Slovak), 2023, vol. IIL, 3, pp. 187-188.
- Semedo-Lemsaddek, T.; Santos, M.A.; Lopes, M.F.S.; Figueirdo Marques, J.J.; Barreto Crespo, M.T.; Tenreiro, R. Virulence factors in food, clinical and reference Enterococci:A commom trait in the genus? Syst. Appl. Microbiol. 2003, 26, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Focková, V.; Styková, E.; Pogány Simonová, M.; Maďar, M.; Kačírová, J.; Lauková, A. Horses as a source of bioactive fecal strains Enterococcus mundtii. Vet. Res. Com. 2022, 46, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Focková, V.; Pogány Simonová, M. Enterococcal species associated with Slovak raw goat milk, their safety and susceptibility to lantibiotics and durancin ED 26E/7. Processes, 2021, 9, 681. [CrossRef]
- Chaieb, K.; Chehab, O.; Ymantar, T.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. In vitro effect of pH and ethanol on biofilm formation vy clinical ica-positive Staphylococcus epidermidis strains. Ann. Microbiol. 2007, 57, 431–437. [Google Scholar] [CrossRef]
- Slížová, M.; Nemcová, R.; Maďar, M.; Hadryová, J.; Gancarčíková, S.; Popper, M.; Pistl, J. Analysis of biofilm formation by intestinal lactobacilli. Can. J. Microbiol. 2015, 61, 437–466. [Google Scholar] [CrossRef]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of antagonistic activity of Lactobacillus amylovorus DCE471 and large-scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 19, 9–20. [Google Scholar] [CrossRef]
- Braat, H.; Rottiers, P.; Hommes, D.W.; Huyghebaert, N.; Remaut, E.; Remon, J.P.; van Deventer, S.J.; Neirynck, S.; Peppelenbosh, M.P.; Steidler, L. Clin. Gastroenterol. Hepatol., 2006, 4, 754-759. [CrossRef]
- Smit, G.; Smit, B.A.; Engels, W.J. Flavour formation by lactic acid bacteria and biochemical flavor profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef]
- Pereira, W.A.; Piazentin, A.C.M.; de Oloveira, R.C.; Mendonca, C.M.N.; Tabata, Y.A.; Mendes, M.A.; Fock, R.A.; Makiyamma, E.N.; Correa, B.; Vallejo, N.; et al. Bacteriocinogenic probiotic bacteria isolated from an aquatic environment inhibit the growth of food and fish pathogens. Sci. Rep. 2022, 12, 5530. [Google Scholar] [CrossRef] [PubMed]
- Sanca, F.M.M.; Blanco, I.R.; Dias, M.; Moreno, A.M.; Martins, S.M.M.K.; Stephano, M.A.; Mendes, M.A.; Mendonca, C.M.N.; Pereira, W.A.; Azevedo, P.O.S.; Gierus, M.; Oliveira, R.P.S. Antimicrobial activity of peptides produced by Lactococcus lactis subsp. lactis on swine pathogens. Animals, 2023, 13, 2442. [CrossRef]
- Ross, R.P.; Galvin, M.; McAuliffe, O.; Morgan, S.M.; Ryan, M.P.; Twomey, D.P.; Meaney, W.J.; Hill, C. Developing applications for lactococcal bacteriocins. Ant. Leeuweh. 1999, 76, 337–346. [Google Scholar] [CrossRef]
- Even, S.; Charlier, C.; Nousaille, S.; ben Zakour, N.L.; Cretenet, M.; Cousin, F.J.; Gautier, M.; Cocaign-Bousquet, M.; Loubiere, P.; Le Loir, Y. Staphylococcus aureus virulence expression is impaired by Lactococcus lactis in mixed cultures. Appl. Environ. Microbiol. 2009, 75, 4459–4472. [Google Scholar] [CrossRef] [PubMed]
- Wu Fan, Xie Xinmei, Du Tao, Jiang Xiaodan, Miao Wei, Wang Tiancheng. Lactococcus lactis, a bacterium with probiotic functions and pathogenicity. World J. Microbiol. Biotechnol. 2023, 39, 325. [CrossRef]
- Ali Abkar, Anil Kumar Anal. Occurrence of Staphylococcus aureus and evaluation of anti-staphylococcal activity of Lactococcus lactis subsp. lactis in ready-to-eat poultry meat. Ann. Microbiol, 2014, 64, 131-138. [CrossRef]
- Lauková, A.; Tomáška, M.; Kmeť, V.; Strompfová, V.; Pogány Simonová, M.; Dvorožňáková, E. Slovak local ewes milk lump cheese, a source of beneficial Enterococcus durans strain. Foods, 2021, 10, 3091. [CrossRef]
- Floréz, A.B.; Danielsen, M.; Korhonen, J.; Zycka, J.; von Wright, A.; Bardowski, J.; Mayo, B. Antibiotic survey of Lactococcus lactis strains to six antibiotics by E test, and establishment of new susceptibility-resistance cut-off values. J. Dairy Res. 2007, 74, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Bukvicki, D.; Siroli, L.; Dalessandro, M.; Cosentino, S.; Fliss, I.; Said, L.B.; Hassan, H.; Lanciotti, R.; Patrignani, F. Unravelling the potential of Lactococcus lactis strains to be used in cheesemaking production as biocontrol agents. Foods, 2020, 9, 12. [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Focková, V.; Zábolyová, N.; Bino, E.; Grešáková, Ľ.; Žitňan, R.; Formelová, Z.; Ščerbová, J.; Belzecki, G.; Miltko, R.; Pogány Simonová, M. Dairy-derived and bacteriocin-producing strain Lactiplantibacillus plantarum LP17L/1:An Assessment of its safety and effect using broiler rabbits. Front Biosci-Elite, 2024, accepted. [CrossRef]
- Vargová, M.; Hurníková, Z.; Revajová, V.; Lauková, A.; Dvorožňáková, E. Probiotic bacteria can modulate murine macrophages superoxide production in Trichinella spiralis infection. Helmintologia 2020, 57, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Rajneesh Thakur, Pracharuya Biswal, Sari, T.P.; Deepak Kumar, Narashans Alok Sagar, Sonam Bhardwaj, Hari Om Pandey, Gauri A. Chandratre, Ayon Tarafdar. Therapeutic effect of goat milk and its value-addition:current status and way forward. J. Food Sci. Technol. 2024. [CrossRef]
| Strain | Kan | Str | Pnc | Chc | Ery | Rif | Tc | Va | Gn | Amp |
|---|---|---|---|---|---|---|---|---|---|---|
| MK2/2 | 4/S | 96/S/R | 0.094/S | 5/S | 0.047/S | 6/S | 0.25/S | 0.38/S | 2/S | 0.016/S |
| MK2/7 | 96/S/R | 24/S | 0.38/S | 6/S | 0.064/S | 0.08/S | 0.25/S | 1.5/S | 8/S | 0.19S |
| MK2/8 | 10/S | 3/S | 0.064/S | 12/S | 0.50/S | 0.08/S | 0.38/S | 3/S | 0.094/S | 0.094/S |
| Indicators | MK2/2 | MK2/7 | MK2/8 |
|---|---|---|---|
| E. avium EA5 | 1/1, 800 | 800 | 800 |
| E. gall. | 3/3, 100,400,100 | 100,400,100 | 100,200,100 |
| E. cassel. | 4/4, 100,100,100,100 | 100,100, 100,100 | 100,0,100,100 |
| E. faecium VRE13 | 1/1, 100 | 100 | 100 |
| E. faecalis | 11/10, 100-200 | 11/11, 100-400 | 11/11, 100-200 |
| E. faecium | 9/9,100-400 | 9/9, 100-400 | 9/9,200-400 |
| E. faecium | 17/17, 100-200 | 17/17, 200-400 | 17/17, 200-400 |
| S. felis | 16/14, 100-400 | 16/15, 100-800 | 16/15, 100-800 |
| S. chromogenes | 13/13, 100 | 13/13, 100 | 13/13, 100 |
| S. aureus, human | 6/5, 100 | 6/4, 100-200 | 6/6, 100 |
| S. aureus, milk, cheese | 4/4,100 | 4/3,100-200 | 4/4,100-200 |
| S. aureus, human | 5/5,100-200 | 5/5,100-400 | 5/5, 100-200 |
| S. aureus, cow | 1/1, 100 | 1/1, 100 | 1/1, 100 |
| S. aureus, pig | 34/32, 100 | 34/33,100-400 | 34/31,100-200 |
| S. arlettae | 2/2, 400,800 | 2/2, 400,800 | 2/2, 400 |
| S. schleiferi | 1/1,400 | 1/1,100 | 1/1,200 |
| S. delphini | 1/1, 400 | 1/1, 800 | 1/1,800 |
| S. sciuri human | 2/1,100 | 2/1,100 | 2/1,100 |
| S. haemolyticus cow | 1/1,100 | 1/1,100 | 1/1,100 |
| S. pseudintermedius | 30/30,100-200 | 30/30,100-400 | 30/30,100-200 |
| Sampling | pH | Lactococci Tested | Amylolytic Cocci | LAB |
|---|---|---|---|---|
| Control/24 | 3.35 ± 0.1 | nt | 7.06 ± 0.1 | 7.1 ± 0.0 |
| MK2/2 | 3.30 ± 0.0 | 2.65 ± 0.1 | 7.1 ± 0.0 | 8.96 ± 0.5 |
| MK2/7 | 2.99 ± 0.1 | 4.94 ± 0.2 | 8.17 ± 0.0 | 8.1 ± 0.0 |
| MK2/8 | 3.34 ± 0.1 | 1.30 ± 0.1 | 5.1 71 ± 0.0 | 6.95 ± 0.7 |
| Control/7 day | 3.33 ± 0.1 | nt | 8.38 ± 0.5 | 8.46 ± 0.5 |
| MK2/2 | 3.21 ± 0.1 | 4.60 ± 1.1 | 7.83 ± 1.0 | 8.61± 065 |
| MK2/7 | 2.93 ± 0.1 | 6.56 ± 0.5 | 10.1 ± 1.5 | 8.30± 0.3 |
| MK2/8 | 3.35 ± 0.1 | 4.0 ± 0.0 | 8.93 ± 085 | 7.48± 0.1 |
| Control/10 day | 3.33 ± 0.1 | nt | 8.98 ± 0.7 | 9.18 ± 0.5 |
| MK2/2 | 3.21 ± 0.1 | 5.85 ± 0.3 | 7.1 ± 0.0 | 9.52 ± 0.1 |
| MK2/7 | 2.92 ± 0.1 | 7.34 ± 0.5 | 10.5 ± 1.5 | 8.91 ± 0.2 |
| MK2/8 | 3.35 ± 0.1 | 6.1 ± 0.0 | 8.1 ± 0.0 | 9.48 045 |
| Control/14 day | 3.33 ± 0.1 | nt | 9.51 ± 0.6 | 8.70 ± 0.5 |
| MK2/2 | 3.21 ± 0.1 | 5.78 ± 0.6 | 9.1 ± 0.0 | 9.20 ± 1.0 |
| MK2/7 | 3.29 ± 0.1 | 6.93 ± 0.8 | 10.1 ± 1.2 | 9.69 ± 0.9 |
| MK2/8 | 3.35 ± 0.1 | 8.1 ± 0.0 | 8.88 ± 0.9 | 9.41 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
