Submitted:
19 June 2024
Posted:
19 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Transcriptomics
2.1. Comparative Analysis of Transcriptomics Research Technologies
2.2. Application of Transcriptomics in Plant Stress Resistance Research
3. Metabolomics
3.1. Comparative Analysis of Metabolomics Research Techniques
3.2. Application of Metabolomics in Plant Stress Resistance
4. Studies on Transcriptomics and Metabolomics of Plant Responses to Different Abiotic Stresses
4.1. Studies on Transcriptomics and Metabolomics of Plant Responses to Temperature Stress
4.1.1. Heat Stress
4.1.2. Cold Stress
4.2. Transcriptomic and Metabolomic Studies of Plant Responses to Water Stress
4.2.1. Drought Stress
4.2.2. Waterlogging Stress
4.3. Research on Transcriptomics and Metabolomics of Plant Responses to Heavy Metal Stress
4.4. Research on Transcriptomics and Metabolomics of Plant Response to Salt Stress
5. Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manickam, S.; Rajagopalan, V.R.; Kambale, R.; Rajasekaran, R.; Kanagarajan, S.; Muthurajan, R. Plant Metabolomics: Current Initiatives and Future Prospects. Curr. Issues Mol. Biol. 2023, 45, 8894–8906. [CrossRef]
- Zhang, C.; Ren, H.; Yao, X.; Wang, K.; Chang, J.; Shao, W. Metabolomics and Transcriptomics Analyses Reveal Regulatory Networks Associated with Fatty Acid Accumulation in Pecan Kernels. J. Agric. Food Chem. 2022, 70, 16010–16020. [CrossRef]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life 2023, 13, 706. [CrossRef]
- Zhang, E.; Zhu, X.; Wang, W.; Sun, Y.; Tian, X.; Chen, Z.; Mou, X.; Zhang, Y.; Wei, Y.; Fang, Z.; et al. Metabolomics reveals the response of hydroprimed maize to mitigate the impact of soil salinization. Front. Plant Sci. 2023, 14, 1109460. [CrossRef]
- Zhang, L.; Cui, D.; Ma, X.; Han, B.; Han, L. Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics. Food Chem. 2023, 399, 133926. [CrossRef]
- Yan, D.; Huang, L.; Mei, Z.; Bao, H.; Xie, Y.; Yang, C.; Gao, X. Untargeted metabolomics revealed the effect of soybean metabolites on poly(γ-glutamic acid) production in fermented natto and its metabolic pathway. J. Sci. Food Agric. 2023, 104, 1298–1307. [CrossRef]
- Zhong, C.; Huang, J.; Jiang, D.; Zhong, Y.; Wang, X.; Cai, J.; Chen, W.; Zhou, Q. Metabolomic Analysis Reveals Patterns of Whole Wheat and Pearling Fraction Flour Quality Response to Nitrogen in Two Wheat Lines with Contrasting Protein Content. J. Agric. Food Chem. 2023, 71, 2290–2300. [CrossRef]
- Rortais, A.; Arnold, G.; Dorne, J.-L.; More, S.J.; Sperandio, G.; Streissl, F.; Szentes, C.; Verdonck, F. Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority. Sci. Total. Environ. 2017, 587-588, 524–537. [CrossRef]
- Zhang, H; Zhu, J; Gong, Z; Zhu, J.K. Abiotic stress responses in plants. Nat Rev Genet. 2022, 23, 104-119.
- Velculescu, V.E.; Zhang, L.; Zhou, W.; Vogelstein, J.; Basrai, M.A.; Bassett, D.E., Jr.; Hieter, P.; Vogelstein, B.; Kinzler, K.W. Characterization of the Yeast Transcriptome. Cell 1997, 88, 243–251. [CrossRef]
- Park, H.; Jo, S.H.; Lee, R.H.; Macks, C.P.; Ku, T.; Park, J.; Lee, C.W.; Hur, J.K.; Sohn, C.H. Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research. Adv. Sci. 2023, 10. [CrossRef]
- Mathur, S; Singh, D; Ranjan, R. Recent advances in plant translational genomics for crop improvement. Adv Protein Chem Struct Biol. 2024, 139, 335-382.
- Kharchenko, P.V. The triumphs and limitations of computational methods for scRNA-seq. Nat Methods. 2021, 18, 723-732.
- Yan, L.; Baoxiang, W.; Jingfang, L.; Zhiguang, S.; Ming, C.; Yungao, X.; Bo, X.; Bo, Y.; Jian, L.; Jinbo, L.; et al. A novel SAPK10-WRKY87-ABF1 biological pathway synergistically enhance abiotic stress tolerance in transgenic rice (Oryza sativa). Plant Physiol. Biochem. 2021, 168, 252–262. [CrossRef]
- Gu, S.; Zhuang, J.; Zhang, Z.; Chen, W.; Xu, H.; Zhao, M.; Ma, D. Multi-omics approach reveals the contribution of OsSEH1 to rice cold tolerance. Front. Plant Sci. 2023, 13, 1110724. [CrossRef]
- Zhao, H.; Li, Z.; Wang, Y.; Wang, J.; Xiao, M.; Liu, H.; Quan, R.; Zhang, H.; Huang, R.; Zhu, L.; et al. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. Plant Biotechnol. J. 2021, 20, 468–484. [CrossRef]
- Takasaki, H.; Maruyama, K.; Kidokoro, S.; Ito, Y.; Fujita, Y.; Shinozaki, K.; Yamaguchi-Shinozaki, K.; Nakashima, K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genom. 2010, 284, 173–183. [CrossRef]
- Zhang, H; Li, G; Hu, D; Zhang, Y; Zhang, Y; Shao, H; Zhao, L; Yang, R; Guo, X. Functional characterization of maize heat shock transcription factor gene ZmHsf01 in thermotolerance. PeerJ. 2020, 8, e8926.
- Feng, S; Yue, R; Tao, S; Yang, Y; Zhang, L; Xu, M; Wang, H; Shen, C. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J Integr Plant Biol. 2015, 57, 783-95.
- Jiang, H.; Shi, Y.; Liu, J.; Li, Z.; Fu, D.; Wu, S.; Li, M.; Yang, Z.; Shi, Y.; Lai, J.; et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nat. Plants 2022, 8, 1176–1190. [CrossRef]
- Djemal, R.; Khoudi, H. The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. Protoplasma 2021, 259, 19–31. [CrossRef]
- Li, Q.; Zhou, S.; Liu, W.; Zhai, Z.; Pan, Y.; Liu, C.; Chern, M.; Wang, H.; Huang, M.; Zhang, Z.; et al. A chlorophyll a oxygenase 1 gene ZmCAO1 contributes to grain yield and waterlogging tolerance in maize. J. Exp. Bot. 2021, 72, 3155–3167. [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [CrossRef]
- Taylor, J.; King, R.D.; Altmann, T.; Fiehn, O. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 2002, 18, S241–S248. [CrossRef]
- Peters, K.; Worrich, A.; Weinhold, A.; Alka, O.; Balcke, G.U.; Birkemeyer, C.; Bruelheide, H.; Calf, O.W.; Dietz, S.; Dührkop, K.; et al. Current Challenges in Plant Eco-Metabolomics. Int. J. Mol. Sci. 2018, 19, 1385. [CrossRef]
- Ribbenstedt, A.; Ziarrusta, H.; Benskin, J.P. Development, characterization and comparisons of targeted and non-targeted metabolomics methods. PLOS ONE 2018, 13, e0207082. [CrossRef]
- Song, E.H; Kim, H.J; Jeong, J; Chung, H.J; Kim, H.Y; Bang, E; Hong, Y.S. A (1)H HR-MAS NMR-Based Metabolomic Study for Metabolic Characterization of Rice Grain from Various Oryza sativa L. Cultivars. J Agric Food Chem. 2016, 64, 3009-16.
- Choudhury, F.K; Pandey, P; Meitei, R; Cardona, D; Gujar, A.C; Shulaev, V. GC-MS/MS Profiling of Plant Metabolites. Methods Mol Biol. 2022, 2396, 101-115.
- Zhang, X.; Chen, T.; Li, Z.; Wang, X.; Bao, H.; Zhao, C.; Zhao, X.; Lu, X.; Xu, G. Fine-Scale Characterization of Plant Diterpene Glycosides Using Energy-Resolved Untargeted LC-MS/MS Metabolomics Analysis. J. Am. Soc. Mass Spectrom. 2024. [CrossRef]
- Chi, Z.; Yang, L. Advances in chiral separation and analysis by capillary electrophoresis-mass spectrometry. Chin. J. Chromatogr. 2022, 40, 509–519. [CrossRef]
- Joshi, J.; Hasnain, G.; Logue, T.; Lynch, M.; Wu, S.; Guan, J.-C.; Alseekh, S.; Fernie, A.R.; Hanson, A.D.; McCarty, D.R. A Core Metabolome Response of Maize Leaves Subjected to Long-Duration Abiotic Stresses. Metabolites 2021, 11, 797. [CrossRef]
- Bheemanahalli, R; Impa, S.M; Krassovskaya, I; Vennapusa, A.R; Gill, K.S; Obata, T; Jagadish, S.V.K. Enhanced N-metabolites, ABA and IAA-conjugate in anthers instigate heat sensitivity in spring wheat. Physiol Plant. 2020, 169, 501-514.
- Yu, T.; Zhang, J.; Cao, J.; Li, X.; Li, S.; Liu, C.; Wang, L. Metabolic Insight into Cold Stress Response in Two Contrasting Maize Lines. Life 2022, 12, 282. [CrossRef]
- Urrutia, M; Blein-Nicolas, M; Prigent, S; Bernillon, S; Deborde, C; Balliau, T; Maucourt, M; Jacob, D; Ballias, P; Bénard, C;et al. Maize metabolome and proteome responses to controlled cold stress partly mimic early-sowing effects in the field and differ from those of Arabidopsis. Plant Cell Environ. 2021, 44,1504-1521.
- Garzon, C.D.; Lequart, M.; Rautengarten, C.; Bassard, S.; Sellier-Richard, H.; Baldet, P.; Heazlewood, J.L.; Gibon, Y.; Domon, J.-M.; Giauffret, C.; et al. Regulation of carbon metabolism in two maize sister lines contrasted for chilling tolerance. J. Exp. Bot. 2019, 71, 356–369. [CrossRef]
- Jian, H.; Xie, L.; Wang, Y.; Cao, Y.; Wan, M.; Lv, D.; Li, J.; Lu, K.; Xu, X.; Liu, L. Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses. PeerJ 2020, 8, e8704. [CrossRef]
- Itam, M.; Mega, R.; Tadano, S.; Abdelrahman, M.; Matsunaga, S.; Yamasaki, Y.; Akashi, K.; Tsujimoto, H. Metabolic and physiological responses to progressive drought stress in bread wheat. Sci. Rep. 2020, 10, 1–14. [CrossRef]
- Ackah, M; Shi, Y; Wu, M; Wang, L; Guo, P; Guo, L; Jin, X; Li, S; Zhang, Q; Qiu, C; et al. Metabolomics Response to Drought Stress in Morus alba L. Variety Yu-711. Plants (Basel). 2021, 10, 1636.
- Hong, Y.; Ni, S.-J.; Zhang, G.-P. Transcriptome and metabolome analysis reveals regulatory networks and key genes controlling barley malting quality in responses to drought stress. Plant Physiol. Biochem. 2020, 152, 1–11. [CrossRef]
- Chen, Y.; Wang, J.; Yao, L.; Li, B.; Ma, X.; Si, E.; Yang, K.; Li, C.; Shang, X.; Meng, Y.; et al. Combined Proteomic and Metabolomic Analysis of the Molecular Mechanism Underlying the Response to Salt Stress during Seed Germination in Barley. Int. J. Mol. Sci. 2022, 23, 10515. [CrossRef]
- Jiang, X; Chen, X; Li, H; Jiang, Q. Metabolomic analysis of wheat response to salt stress. Journal of Agricultural Science and Technology. 2023, 25(09):43-56. (in chinese).
- Gao, L; Jia, B; Zhang, W; Li, A; Li, T; Jin, D; Liu, Y; Liu, H; Wu, Y. Physiological characteristics and metabonomics analysis of blueberry leaves under salt stress. Plant Physiology Journal. 2022, 58(01):155-164. (in chinese).
- Tan, B.; Tan, X.; Liu, C.; Zeng, Y.; Li, Y. Effects of lead stress on rice (Oryza sativa L.) growth and metabolism in the rhizosphere microenvironment: the role of eicosanoid compounds. Plant Growth Regul. 2022, 96, 483–495. [CrossRef]
- Lai, J.-L.; Zhang-Xuan, D.; Xiao-Hui, J.; Xue-Gang, L. Absorption and interaction mechanisms of uranium & cadmium in purple sweet potato(Ipomoea batatas L.). J. Hazard. Mater. 2020, 400, 123264. [CrossRef]
- Kopecká, R.; Kameniarová, M.; Černý, M.; Brzobohatý, B.; Novák, J. Abiotic Stress in Crop Production. Int. J. Mol. Sci. 2023, 24, 6603. [CrossRef]
- Zhang, Y.; Xu, J.; Li, R.; Ge, Y.; Li, Y.; Li, R. Plants’ Response to Abiotic Stress: Mechanisms and Strategies. Int. J. Mol. Sci. 2023, 24, 10915. [CrossRef]
- Kan, Y.; Mu, X.-R.; Gao, J.; Lin, H.-X.; Lin, Y. The molecular basis of heat stress responses in plants. Mol. Plant 2023, 16, 1612–1634. [CrossRef]
- Wang, Z; Xiao, Y; Chang, H; Sun, S; Wang, J; Liang, Q; Wu, Q; Wu, J; Qin, Y; Chen, J;et al. The Regulatory Network of Sweet Corn (Zea mays L.) Seedlings under Heat Stress Revealed by Transcriptome and Metabolome Analysis. Int J Mol Sci. 2023, 24, 10845.
- Hu, T.; Sun, X.-Y.; Zhao, Z.-J.; Amombo, E.; Fu, J.-M. High temperature damage to fatty acids and carbohydrate metabolism in tall fescue by coupling deep transcriptome and metabolome analysis. Ecotoxicol. Environ. Saf. 2020, 203, 110943. [CrossRef]
- Wang, J; Lv, J; Liu, Z; Liu, Y; Song, J; Ma, Y; Ou, L; Zhang, X; Liang, C; Wang, F; Juntawong, N; Jiao, C; et al. Integration of Transcriptomics and Metabolomics for Pepper (Capsicum annuum L.) in Response to Heat Stress. Int J Mol Sci. 2019, 20, 5042.
- Guo, J.; Gu, X.; Lu, W.; Lu, D. Multiomics analysis of kernel development in response to short-term heat stress at the grain formation stage in waxy maize. J. Exp. Bot. 2021, 72, 6291–6304. [CrossRef]
- Xiang, N; Hu, J.G; Yan, S; Guo, X. Plant Hormones and Volatiles Response to Temperature Stress in Sweet Corn (Zea mays L.) Seedlings. J Agric Food Chem. 2021, 69, 6779-6790.
- Kidokoro, S.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci. 2022, 27, 922–935. [CrossRef]
- Guo, Q.; Li, X.; Niu, L.; E Jameson, P.; Zhou, W. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress. Plant Physiol. 2021, 186, 677–695. [CrossRef]
- Xu, J.; Chen, Z.; Wang, F.; Jia, W.; Xu, Z. Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation. Sci. Rep. 2020, 10, 5242. [CrossRef]
- Li, F.; Lu, X.; Duan, P.; Liang, Y.; Cui, J. Integrating transcriptome and metabolome analyses of the response to cold stress in pumpkin (Cucurbita maxima). PLOS ONE 2021, 16, e0249108. [CrossRef]
- Barickman, T.C.; Simpson, C.R.; Sams, C.E. Waterlogging Causes Early Modification in the Physiological Performance, Carotenoids, Chlorophylls, Proline, and Soluble Sugars of Cucumber Plants. Plants 2019, 8, 160. [CrossRef]
- Bárzana, G.; Carvajal, M. Genetic regulation of water and nutrient transport in water stress tolerance in roots. J. Biotechnol. 2020, 324, 134–142. [CrossRef]
- Ozturk, M.; Unal, B.T.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant. 2020, 172, 1321–1335. [CrossRef]
- Mathan, J; Singh, A; Ranjan, A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiol Plant. 2021, 171, 620-637.
- Li, H.; Tiwari, M.; Tang, Y.; Wang, L.; Yang, S.; Long, H.; Guo, J.; Wang, Y.; Wang, H.; Yang, Q.; et al. Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress. Ecotoxicol. Environ. Saf. 2022, 246, 114191. [CrossRef]
- Wei, S.; Xia, R.; Chen, C.; Shang, X.; Ge, F.; Wei, H.; Chen, H.; Wu, Y.; Xie, Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnol. J. 2021, 19, 2069–2081. [CrossRef]
- Li, Y.; Su, Z.; Lin, Y.; Xu, Z.; Bao, H.; Wang, F.; Liu, J.; Hu, S.; Wang, Z.; Yu, X.; et al. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress. BMC Plant Biol. 2024, 24, 1–12. [CrossRef]
- Waadt, R; Seller, C.A; Hsu, P.K; Takahashi, Y; Munemasa, S; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol. 2022, 23, 516.
- Xiong, Y; Fan, X.H; Wang, Q; Yin, Z.G; Sheng, X.W; Chen, J; Zhou, Y.B; Chenm M; Ma, Y.Z; Ma, J;et al. Genomic Analysis of Soybean PP2A-B Family and Its Effects on Drought and Salt Tolerance. Front Plant Sci. 2022, 12, 784038.
- Huang, C; Qin, A; Gao, Y; Ma, S; Liu, Z; Zhao, B; Ning, D; Zhang, K; Gong, W; Sun, M;et al. Effects of water deficit at different stages on growth and ear quality of waxy maize. Front Plant Sci. 2023, 14, 1069551.
- Niu, L.; Jiang, F.; Yin, J.; Wang, Y.; Li, Y.; Yu, X.; Song, X.; Ottosen, C.-O.; Rosenqvist, E.; Mittler, R.; et al. ROS-mediated waterlogging memory, induced by priming, mitigates photosynthesis inhibition in tomato under waterlogging stress. Front. Plant Sci. 2023, 14, 1238108. [CrossRef]
- Mansoor, S.; Wani, O.A.; Lone, J.K.; Manhas, S.; Kour, N.; Alam, P.; Ahmad, A.; Ahmad, P. Reactive Oxygen Species in Plants: From Source to Sink. Antioxidants 2022, 11, 225. [CrossRef]
- Luan, H; Li, H; Li, Y; Chen, C; Li, S; Wang, Y; Yang, J; Xu, M; Shen, H; Qiao, H; et al. Transcriptome analysis of barley (Hordeum vulgare L.) under waterlogging stress, and overexpression of the HvADH4 gene confers waterlogging tolerance in transgenic Arabidopsis. BMC Plant Biol. 2023, 23, 62.
- Feng, F.; Wang, Q.; Jiang, K.; Lei, D.; Huang, S.; Wu, H.; Yue, G.; Wang, B. Transcriptome analysis reveals ZmERF055 contributes to waterlogging tolerance in sweetcorn. Plant Physiol. Biochem. 2023, 204, 108087. [CrossRef]
- Hong, B.; Zhou, B.; Peng, Z.; Yao, M.; Wu, J.; Wu, X.; Guan, C.; Guan, M. Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of Brassica napus to Waterlogging Stress. Int. J. Mol. Sci. 2023, 24, 6015. [CrossRef]
- Zheng, Q.; Li, G.; Wang, H.; Zhou, Z. The relationship between ethylene-induced autophagy and reactive oxygen species in Arabidopsis root cells during the early stages of waterlogging stress. PeerJ 2023, 11, e15404. [CrossRef]
- Geng, S.; Lin, Z.; Xie, S.; Xiao, J.; Wang, H.; Zhao, X.; Zhou, Y.; Duan, L. Ethylene enhanced waterlogging tolerance by changing root architecture and inducing aerenchyma formation in maize seedlings. J. Plant Physiol. 2023, 287, 154042. [CrossRef]
- Sreeratree, J.; Butsayawarapat, P.; Chaisan, T.; Somta, P.; Juntawong, P. RNA-Seq Reveals Waterlogging-Triggered Root Plasticity in Mungbean Associated with Ethylene and Jasmonic Acid Signal Integrators for Root Regeneration. Plants 2022, 11, 930. [CrossRef]
- Wu, H.; Yu, H.; Zhang, X.; Wang, Y.; Zhu, H.; Zhao, Y.; Ma, Q. Identification and characterization of waterlogging-responsive genes in the parental line of maize hybrid An’nong 876. Genet. Mol. Biol. 2023, 46, e20230026. [CrossRef]
- Owusu, A.G.; Lv, Y.-P.; Liu, M.; Wu, Y.; Li, C.-L.; Guo, N.; Li, D.-H.; Gao, J.-S. Transcriptomic and metabolomic analyses reveal the potential mechanism of waterlogging resistance in cotton (Gossypium hirsutum L.). Front. Plant Sci. 2023, 14, 1088537. [CrossRef]
- Majhi, S; Sikdar Née Bhakta, M. How heavy metal stress affects the growth and development of pulse crops: insights into germination and physiological processes. 3 Biotech. 2023, 13, 155.
- Zhou, M.; Zheng, S.; Liu, R.; Lu, L.; Zhang, C.; Zhang, L.; Yant, L.; Wu, Y. The genome-wide impact of cadmium on microRNA and mRNA expression in contrasting Cd responsive wheat genotypes. BMC Genom. 2019, 20, 1–19. [CrossRef]
- Dubey, S.; Misra, P.; Dwivedi, S.; Chatterjee, S.; Bag, S.K.; Mantri, S.; Asif, M.H.; Rai, A.; Kumar, S.; Shri, M.; et al. Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genom. 2010, 11, 648–648. [CrossRef]
- Mwamba, T.; Islam, F.; Ali, B.; Lwalaba, J.; Gill, R.; Zhang, F.; Farooq, M.; Ali, S.; Ulhassan, Z.; Huang, Q.; et al. Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. Chemosphere 2020, 250, 126308. [CrossRef]
- Lai, J.-L.; Zhang-Xuan, D.; Xiao-Hui, J.; Xue-Gang, L. Absorption and interaction mechanisms of uranium & cadmium in purple sweet potato(Ipomoea batatas L.). J. Hazard. Mater. 2020, 400, 123264. [CrossRef]
- Wei, Z.; Zhongbing, C.; Xiuqin, Y.; Luying, S.; Huan, M.; Sixi, Z. Integrated transcriptomics and metabolomics reveal key metabolic pathway responses in Pistia stratiotes under Cd stress. J. Hazard. Mater. 2023, 452, 131214. [CrossRef]
- Sharma, A.; Kapoor, D.; Gautam, S.; Landi, M.; Kandhol, N.; Araniti, F.; Ramakrishnan, M.; Satish, L.; Singh, V.P.; Sharma, P.; et al. Heavy metal induced regulation of plant biology: Recent insights. Physiol. Plant. 2022, 174, e13688. [CrossRef]
- Liang, X.; Li, J.; Yang, Y.; Jiang, C.; Guo, Y. Designing salt stress-resilient crops: Current progress and future challenges. J. Integr. Plant Biol. 2024, 66, 303–329. [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of Plant Responses to Salt Stress. Int. J. Mol. Sci. 2021, 22, 4609. [CrossRef]
- Fu, H.; Yang, Y. How Plants Tolerate Salt Stress. Curr. Issues Mol. Biol. 2023, 45, 5914–5934. [CrossRef]
- Xu, Z.; Chen, X.; Lu, X.; Zhao, B.; Yang, Y.; Liu, J. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiol. Biochem. 2021, 160, 315–328. [CrossRef]
- Lu, X.; Chen, G.; Ma, L.; Zhang, C.; Yan, H.; Bao, J.; Nai, G.; Wang, W.; Chen, B.; Ma, S.; et al. Integrated transcriptome and metabolome analysis reveals antioxidant machinery in grapevine exposed to salt and alkali stress. Physiol. Plant. 2023, 175. [CrossRef]
- Han, M.; Cui, R.; Wang, D.; Huang, H.; Rui, C.; Malik, W.A.; Wang, J.; Zhang, H.; Xu, N.; Liu, X.; et al. Combined transcriptomic and metabolomic analyses elucidate key salt-responsive biomarkers to regulate salt tolerance in cotton. BMC Plant Biol. 2023, 23, 1–18. [CrossRef]
- Jin, J.; Wang, J.; Li, K.; Wang, S.; Qin, J.; Zhang, G.; Na, X.; Wang, X.; Bi, Y. Integrated Physiological, Transcriptomic, and Metabolomic Analyses Revealed Molecular Mechanism for Salt Resistance in Soybean Roots. Int. J. Mol. Sci. 2021, 22, 12848. [CrossRef]
- Shu, J.; Ma, X.; Ma, H.; Huang, Q.; Zhang, Y.; Guan, M.; Guan, C. Transcriptomic, proteomic, metabolomic, and functional genomic approaches of Brassica napus L. during salt stress. PLOS ONE 2022, 17, e0262587. [CrossRef]
| Technology | Theory | Advantage | Limitation |
|---|---|---|---|
| Microassay | Hybrid | 1. Fast speed 2. Low cost 3. Simple sample preparation 4. Flexible analysis range |
1. The sensitivity for detecting low-expression genes is insufficient 2. The sensitivity of hybridization technology is limited 3. The prerequisite work requires a high level of foundation 4. It is difficult to detect abnormal transcription products |
| EST | Sanger | 1. The detection range is wide 2. The accuracy is high 3. Improve the efficiency of gene isolation |
1. The sequencing read length is short2. The error rate is high3. The sequencing throughput is low |
| SAGE | Sanger | 1. High-throughput detection 2. It can quantitatively evaluate gene expression levels 3. Gain a comprehensive understanding of gene expression regulation mechanisms |
1. High cost 2. Complex data processing 3. Relying on known gene databases, there are certain limitations in identifying unknown genes |
| MPSS | Sanger | 1. High throughput 2. Quantitatively display the expression of genes within cells |
1. High cost 2. Complex operation 3. Difficulties in bioinformatics processing |
| RNA sequencing | High throughput sequencing | 1. High throughput 2. High accuracy 3. Wide detection range 4. Low cost |
1. The sample preparation is cumbersome. 2. It cannot reveal the heterogeneity of expression among single cells. 3. The bioinformatics analysis tools are limited. |
| scRNA-seq | High throughput sequencing | 1. High accuracy and specificity 2. Clarify cell function and localization |
1. High requirements for sample quality 2. High cost 3. Difficulties in data analysis/interpretation |
| Gene | Crops | Abiotic Stress | Gene Function | References |
|---|---|---|---|---|
| OsWRKY87 | Rice | Drought, salt stress | OsWRKY87 functions as a transcriptional activator | [14] |
| OsSEH1 | Rice | Cold stress | OsSEH1 regulates the expression and metabolite accumulation of genes related to phenylpropanoid and flavonoid biosynthesis, mediating ABA expression levels in response to cold stress | [15] |
| OsCSLD4 | Rice | Salt stress | OsCSLD4, a cell wall polysaccharide synthase, responds to salt stress through ABA-induced osmotic stress | [16] |
| OsNAC5 | Rice | Drought stress, cold stress | It enhances stress tolerance by upregulating the expression of OsLEA3 gene | [17] |
| ZmHsf01 | Maize | Heat stress | Plays an important role in heat shock signal transduction and downstream gene expression | [18] |
| ZmNAC3 | Maize | Cold stress, salt stress | ZmNAC3 encodes a nuclear-targeted protein with a highly conserved NAC domain at its N-terminus | [19] |
| ZmICE1 | Maize | Cold stress | ZmICE1 regulates the expression of DREB1 gene, inhibits the expression of ZmAS, reduces Glu/Asn biosynthesis, thus alleviating the production of reactive oxygen species | [20] |
| TdSHN1 | Wheat | Heavy metal stress | Enhances cadmium tolerance by increasing the activity of superoxide dismutase and catalase | [21] |
| ZmCAO1 | Maize | Waterlogging stress | Mutation of ZmCAO1 leads to downregulation of key photosynthetic genes, increased reactive oxygen species, and sensitivity to waterlogging | [22] |
| Technology | Targets | Advantage | Limitation |
|---|---|---|---|
| NMR | Most compounds in metabolites | 1. Small sample size required 2. No sample preprocessing required 3. Accurate provision of metabolite structure information |
1. Low detection sensitivity and resolution 2. Difficult to detect low-abundance metabolites 3. High requirements for sample preparation |
| GC-MS | Volatile, gasifiable, or small molecules | 1. High resolution and sensitivity 2. Ability to identify metabolite structures 3. Easy qualitative analysis of metabolites |
1. Unable to separate macromolecules 2. Cannot analyze thermally unstable and non-gasifiable substances 3. Complex and time-consuming derivatization preprocessing procedures |
| LC-MS | High boiling point, non-volatile, non-derivatizable, macromolecules | 1. High detection sensitivity 2. Fast analysis speed 3. Ability to separate metabolites with similar structures |
1. Limited database size 2. Limited types of metabolites analyzed 3. Not all metabolites can be accommodated by the same column material |
| CE-MS | Trace, complex samples | 1. High detection sensitivity 2. Fast analysis speed 3. Small sample size required 4. Wide coverage of metabolites |
1. High requirements for equipment and devices 2. Small sample size, poor reproducibility of separation 3. Narrow linear range for quantitative analysis 4. Limited quantitative analysis due to the narrow linear range |
| Abiotic Stress | Crops | Metabolite | Change | References |
|---|---|---|---|---|
| Heat stress | Maize | Tryptophan, Threonine, Histidine, Raffinose, Galactitol, Lactitol | Upregulated | [31] |
| Heat stress | Wheat | N-based Amino Acids, ABA, IAA-conjugates | Upregulated | [32] |
| Cold stress | Maize | Guanosine 30, 50-Cyclic Monophosphate, Sophoroside-7-O-Glucoside, L-Lysine, L-Phenylalanine, L-Glutamine, Shanenol, Feruloyl Tartaric Acid | Upregulated | [33] |
| Cold stress | Maize | Trans-aconitate, Coumaroyl Hydroxycitrate, Geranyl Glucosyl Rhamnoside Rhamnoside, Caffeoylquinate, Ferroylquinate, (Iso)Vitexin, DIBOA-Glucoside | Upregulated | [34] |
| Cold stress | Maize | Chlorophyll, Glucose-6-Phosphate Dehydrogenase, Sucrose to Starch Ratio | Upregulated | [35] |
| Cold stress | Canola seed | Amino Acids, Organic Acids, Sugars | Upregulated | [36] |
| Drought stress | Wheat | 1-Aminocyclopropane-1-Carboxylic Acid, Asn, 5-HT, GABA, Cystine, Deoxyuridine, Tryptamine, Putrescine | Upregulated | [37] |
| Drought stress | Mulberry tree | Galactolipids, Phospholipids, Flavonoids, Cinnamic Acid, Amino Acids, Carbohydrates, Benzenoids, Organic Heterocyclic Compounds | Upregulated | [38] |
| Drought stress | Barley | Amino Acids, Sugars, Abscisic Acid, Jasmonic Acid, Ferulic Acid | Upregulated | [39] |
| Salt stress | Barley | Aminoacyl-tRNA Biosynthesis, Glycine, Serine, and Threonine Metabolism, Glyoxylate and Dicarboxylate Metabolism, Porphyrin and Chlorophyll Metabolism | Upregulated | [40] |
| Salt stress | Wheat | Amino Acids and Derivatives, Flavonoid Compounds, Organic Acids and Derivatives, Nucleotides and Derivatives, Lipids | Upregulated | [41] |
| Salt stress | Blueberry | Glycine, Malic Acid, Octadecanoic Acid, L-Threonic Acid | Upregulated | [42] |
| Heavy metal stress | Rice | Lipids, Eicosanoids | Upregulated | [43] |
| Heavy metal stress | Purple sweet potato | Glutathione, Tryptophan | Upregulated | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).