Submitted:
27 June 2024
Posted:
28 June 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction

2. Advances in DP Genomics
2.1. Genetic linkage Maps and Marker-Assisted Selection
2.2. Exploitation of Genetic Diversity and Domestication History
2.3. Genome Editing Applications
| Techniques | Key Findings | Data Points | Applications | Limitations |
|---|---|---|---|---|
| RAPD & ISSR Studies.[36] | High throughput screening for genetic variations | Over 100 polymorphic bands identified in various genotypes | Population structure analysais (Soma clonal Variation détection -Germplasm management) | Low marker specificity -Dominant markers complicate heterozygosity analysis- |
| AFLP studies [37,38] | Multi locus fingerprinting for comprehensive diversity assessment | Up to 300 polymorphic markers detected per study. Shannon-Weaver diversity index ranging from 0.24 to 0.48 across population. | Evolutionary history reconstruction Identification of unique genetic signatures Marker assisted selection |
Technically demanding and expensive Requires specialized equipment and analysis software |
| Microsatellite Markers [39] | Highly polymorphic loci for accurate cultivar identification and genotyping. | Able to distinguish >90% of cultivars with high accuracy Unique markers identified for specific cultivars like Medjool and Zahed. |
Breeding program development Cultivar traceability and certification Gene mapping and QTL Analysis |
Costly compared to other techniques Labor intensive for large scale genotyping. |
| SCoT Polymorphism [40] | Targeting functional regions for the insights into gene expression and adaptation | Potential for Marker-Assisted selection of stress tolerance traits | -Early-stage technology with limited data availability Development of specific primers needed for targeted loci |
N/A |
| Conserved DNA derived polymorphism (CDDP) [41,42] | Cost effective genotyping platform for large population studies. | Efficient analysis for pre designed primer set for conserved genomics regions. | Rapid diversity assessment in germplasm collection. Population genetic analysis and gene flow studies |
Limited marker resolution compared to highly polymorphic techniques May not capture rare or novel variations |
| Next -Generation Sequencing (NGS) [43] |
Unprecedented depth and details for SNP population genomics | Over 100,000 SNPs identified in single date palm genomes. | Fine grained evolutionary history reconstruction. GWAS for complex traits. Identification of candidate genes for breeding programs |
High Cost and computational requirements-Complex data analysis pipelines |
3. Pest Management

| Agent | Target Pest | Mechanism of Action |
|---|---|---|
| Beauveria bassiana [53,54] | Red palm weevil | Entomopathogenic fungus |
| Metarhizium anisopliae [55] | Dubas bug | Entomopathogenic fungus |
| Bacillus thuringiensis [56] | Various pests | Bacterial toxins |
| Trichogramma spp. [57,58] | Date moth | Egg parasitoid |
4. Salinity Stress Management
| Technique Used | Environmental Stress | Experiment Details | Plant Material |
| RNA Sequencing (RNA-seq) [60] | High Salt Levels (Salinity) | Studied gene activity in Deglet Beida seedling roots after exposure to salt stress. | Seedling Roots |
| RNA-seq [61] | High Salt Levels (Salinity) | Analyzed gene activity in both leaves and roots of Khalas seedlings after salt stress. | Seedling Leaves & Roots |
| Small RNA Sequencing (Small RNA-seq) [62] | High Salt Levels (Salinity) | Identified genes targeted by microRNAs (miRNAs) and studied gene activity in Khalas seedling leaves and roots after salt stress. | Seedling Leaves & Roots |
| RNA-seq [63] | Abscisic Acid (ABA) Treatment | Compared gene activity in leaves of seedlings treated with ABA, a stress hormone, to untreated controls. | Seedling Leaves |
| RNA-seq & Methylomics [64] | High Salt Levels (Salinity) | Investigated changes in DNA methylation and gene activity in Khalas seedling roots due to salt stress. | Seedling Roots |
| Proteomics Analysis [65] | Water Depletion (Drought) & High Salt Levels (Salinity) | Analyzed protein profiles in 18-month-old palms grown in tissue culture and subjected to drought and salt stress. | Tissue Culture |
| Metabolomics Analysis [66] | High Salt Levels (Salinity) & Silicon | Analyzed metabolite levels in leaves and roots of seedlings after treatment with salt and silicon. | Seedling Leaves & Roots |
| RNA-seq & Metabolomics Analysis [67] | Mild Heat, Water Depletion (Drought), & Combined Stress | Analyzed genes and metabolites in seedlings subjected to mild heat, drought, and combined stress conditions. | Seedlings |
4. Genome Editing for Trait Improvement
5. Advancements in In Vitro Propagation and Micropropagation

| Explant type | Optimal media | Key growth regulators | Multiplication rate |
|---|---|---|---|
| Shoot tips [70] | MS + supplements | BAP,2iP, NAA | Up to 8-fold |
| Lateral buds [71] | ½ MS + additives | TDZ, IBA | Up to 12-fold |
| Somatic embryos [72] | DCR media | 2,4-D, BAP | Up to 20-fold |

6. Bioreactor-Based Systems
7. Challenges and AI-Powered Solutions
8. Revolutionizing Agriculture with IoT: Enhanced Efficiency, Yield, and Sustainability
9. Computer Vision and Image Analysis
10. Integration with Precision Agriculture
Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soomro, Aijaz Hussain, Asadullah Marri, and Nida Shaikh. “Date Palm (Phoenix Dactylifera): A Review of Economic Potential, Industrial Valorization, Nutritional and Health Significance.” Neglected Plant Foods of South Asia: Exploring and valorizing nature to feed hunger (2023): 319-350.
- Singh, R. S. , and Ramkesh Meena. “Date Palm Cultivation in Arid Ecosystem.” In Dryland Horticulture, pp. 255-276. CRC Press, 2021.
- Al-Kutti, W.; Islam, A.S.; Nasir, M. Potential use of date palm ash in cement-based materials. J. King Saud Univ. - Eng. Sci. 2019, 31, 26–31. [Google Scholar] [CrossRef]
- Jonoobi, M. , Shafie, M., Shirmohammadli, Y., Ashori, A., Hosseinabadi, H. Z., & Mekonnen, T. (2019). A review on date palm tree: Properties, characterization and its potential applications. Journal of Renewable Materials, 7(11), 1055-1075.
- El Hadrami, A., & Al-Khayri, J. M. (2012). Socioeconomic and traditional importance of date palm. Emirates Journal of food and Agriculture, 24(5), 371.
- Sporchia, F.; Patrizi, N.; Pulselli, F.M. Date Fruit Production and Consumption: A Perspective on Global Trends and Drivers from a Multidimensional Footprint Assessment. Sustainability 2023, 15, 4358. [Google Scholar] [CrossRef]
- Wakil, Waqas, Jose Romeno Faleiro, Thomas A. Miller, Geoffrey O. Bedford, and Robert R. Krueger. “Date palm production and pest management challenges.” Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges (2015): 1-11.
- El-Juhany, Loutfy I. “Degradation of date palm trees and date production in Arab countries: causes and potential rehabilitation.” Australian Journal of Basic and Applied Sciences 4, no. 8 (2010): 3998-4010.
- Abul-Soad, Adel A., S. Mohan Jain, and Mushtaque A. Jatoi. “Biodiversity and conservation of date palm.” Biodiversity and conservation of woody plants (2017): 313-353.
- Abdul Aziz, Mughair, Faical Brini, Hatem Rouached, and Khaled Masmoudi. “Genetically engineered crops for sustainably enhanced food production systems.” Frontiers in plant science 13 (2022): 1027828.
- Kordrostami, M.; Mafakheri, M.; Al-Khayri, J.M. Date palm (Phoenix dactylifera L.) genetic improvement via biotechnological approaches. Tree Genet. Genomes 2022, 18, 1–28. [Google Scholar] [CrossRef]
- Hazzouri, K.M.; Flowers, J.M.; Nelson, D.; Lemansour, A.; Masmoudi, K.; Amiri, K.M.A. Prospects for the Study and Improvement of Abiotic Stress Tolerance in Date Palms in the Post-genomics Era. Front. Plant Sci. 2020, 11, 293. [Google Scholar] [CrossRef]
- Kordrostami, M.; Mafakheri, M.; Al-Khayri, J.M. Date palm (Phoenix dactylifera L.) genetic improvement via biotechnological approaches. Tree Genet. Genomes 2022, 18, 1–28. [Google Scholar] [CrossRef]
- Al-Dous, E.K.; George, B.; E Al-Mahmoud, M.; Al-Jaber, M.Y.; Wang, H.; Salameh, Y.M.; Al-Azwani, E.K.; Chaluvadi, S.; Pontaroli, A.C.; DeBarry, J.; et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat. Biotechnol. 2011, 29, 521–527. [Google Scholar] [CrossRef]
- Hadrami, A. El, F. Daayf, and I. El Hadrami. “Date palm genetics and breeding.” Date palm biotechnology (2011): 479-512.
- Mathew, L.S.; Spannagl, M.; Al-Malki, A.; George, B.; Torres, M.F.; Al-Dous, E.K.; Al-Azwani, E.K.; Hussein, E.; Mathew, S.; Mayer, K.F.; et al. A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Genom. 2014, 15, 285–285. [Google Scholar] [CrossRef]
- Zhao, Y.; Williams, R.; Prakash, C.S.; He, G. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.). BMC Plant Biol. 2012, 12, 237–237. [Google Scholar] [CrossRef]
- Mokhtar, Morad M., Sami S. Adawy, Salah El-Din S. El-Assal, and Ebtissam HA Hussein. “Genic and intergenic SSR database generation, SNPs determination and pathway annotations, in date palm (Phoenix dactylifera L.).” PLOS one 11, no. 7 (2016): e0159268.
- Ahmed, T.A.; Al-Qaradaw, A.Y. Molecular Phylogeny Of Qatari Date Palm Genotypes Using Simple Sequence Repeats Markers. Biotechnology 2008, 8, 126–131. [Google Scholar] [CrossRef]
- Mathew, L.S.; A Seidel, M.; George, B.; Mathew, S.; Spannagl, M.; Haberer, G.; Torres, M.F.; Al-Dous, E.K.; Al-Azwani, E.K.; Diboun, I.; et al. A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations inPhoenix dactylifera. G3 Genes|Genomes|Genetics 2015, 5, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Al-Mssallem, I.S.; Hu, S.; Zhang, X.; Lin, Q.; Liu, W.; Tan, J.; Yu, X.; Liu, J.; Pan, L.; Zhang, T.; et al. Genome sequence of the date palm Phoenix dactylifera L. Nat. Commun. 2013, 4, 2274. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, Ehab MB, and Sherif F. El-Sharabasy. “Date palm genetic identification and improvement utilizing molecular markers and DNA barcoding.” In The Date Palm Genome, Vol. 1: Phylogeny, Biodiversity and Mapping, pp. 101-134. Cham: Springer International Publishing, 2021.
- Ahmad, R.; Anjum, M.A.; Naz, S.; Balal, R.M. Applications of Molecular Markers in Fruit Crops for Breeding Programs—A Review. Phyton 2021, 90, 17–34. [Google Scholar] [CrossRef]
- Al-Khayri, Jameel M., Poornananda M. Naik, Shri Mohan Jain, and Dennis V. Johnson. “Advances in date palm (Phoenix dactylifera L.) breeding.” Advances in Plant Breeding Strategies: Fruits: Volume 3 (2018): 727-771.
- Mahdy, Ehab MB, and Sherif F. El-Sharabasy. “Date palm genetic identification and improvement utilizing molecular markers and DNA barcoding.” In The Date Palm Genome, Vol. 1: Phylogeny, Biodiversity and Mapping, pp. 101-134. Cham: Springer International Publishing, 2021.
- Ibrahimi, Maha, Najiba Brhadda, Rabea Ziri, Mohamed Fokar, Driss Iraqi, Fatima Gaboun, Mustapha Labhilili et al. “Analysis of genetic diversity and population structure of Moroccan date palm (Phoenix dactylifera L.) using SSR and DAMD molecular markers.” Journal of Genetic Engineering and Biotechnology 21, no. 1 (2023): 66.
- Hazzouri, K.M.; Flowers, J.M.; Visser, H.J.; Khierallah, H.S.M.; Rosas, U.; Pham, G.M.; Meyer, R.S.; Johansen, C.K.; Fresquez, Z.A.; Masmoudi, K.; et al. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat. Commun. 2015, 6, 8824–8824. [Google Scholar] [CrossRef]
- Hadrami, A. El, F. Daayf, and I. El Hadrami. “Date palm genetics and breeding.” Date palm biotechnology (2011): 479-512.
- Lalrinmawii, Hidayatullah Mir, and Nusrat Perveen. “Recent Advances in the Use of Molecular Markers for Fruit Crop Improvement.” Molecular Marker Techniques: A Potential Approach of Crop Improvement (2023): 339-355.
- Mahdy, Ehab MB, and Sherif F. El-Sharabasy. “Date palm genetic identification and improvement utilizing molecular markers and DNA barcoding.” In The Date Palm Genome, Vol. 1: Phylogeny, Biodiversity and Mapping, pp. 101-134. Cham: Springer International Publishing, 2021.
- Flowers, J.M.; Hazzouri, K.M.; Gros-Balthazard, M.; Mo, Z.; Koutroumpa, K.; Perrakis, A.; Ferrand, S.; Khierallah, H.S.M.; Fuller, D.Q.; Aberlenc, F.; et al. Cross-species hybridization and the origin of North African date palms. Proc. Natl. Acad. Sci. USA 2019, 116, 1651–1658. [Google Scholar] [CrossRef]
- Gros-Balthazard, M.; Galimberti, M.; Kousathanas, A.; Newton, C.; Ivorra, S.; Paradis, L.; Vigouroux, Y.; Carter, R.; Tengberg, M.; Battesti, V.; et al. The Discovery of Wild Date Palms in Oman Reveals a Complex Domestication History Involving Centers in the Middle East and Africa. Curr. Biol. 2017, 27, 2211–2218. [Google Scholar] [CrossRef]
- Mathew, L.S.; A Seidel, M.; George, B.; Mathew, S.; Spannagl, M.; Haberer, G.; Torres, M.F.; Al-Dous, E.K.; Al-Azwani, E.K.; Diboun, I.; et al. A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations inPhoenix dactylifera. G3 Genes|Genomes|Genetics 2015, 5, 1429–1438. [Google Scholar] [CrossRef]
- Sattar, M.N.; Iqbal, Z.; Tahir, M.N.; Shahid, M.S.; Khurshid, M.; Al-Khateeb, A.A.; Al-Khateeb, S.A. CRISPR/Cas9: A Practical Approach in Date Palm Genome Editing. Front. Plant Sci. 2017, 8, 1469. [Google Scholar] [CrossRef]
- Sebastian, Joseph Kadanthottu, Praveen Nagella, Epsita Mukherjee, Vijayalaxmi S. Dandin, Poornananda M. Naik, S. Mohan Jain, Jameel M. Al-Khayri, and Dennis V. Johnson. “Date Palm: Genomic Designing for Improved Nutritional Quality.” In Compendium of Crop Genome Designing for Nutraceuticals, pp. 1-64. Singapore: Springer Nature Singapore, 2023.
- Hassanzadeh Khankahdani, Hamed, and Abdoolnabi Bagheri. “Identification of genetic variation of male and female date palm (Phoenix dactylifera L.) cultivars using morphological and molecular markers.” International Journal of Horticultural Science and Technology 6, no. 1 (2019): 63-76.
- El-Assar, Ashraf M., Robert R. Krueger, Pachanoor S. Devanand, and Chih-Cheng T. Chao. “Genetic analysis of Egyptian date (Phoenix dactylifera L.) accessions using AFLP markers.” Genetic Resources and Crop Evolution 52 (2005): 601-607.
- Saboori, S.; Noormohammadi, Z.; Sheidai, M.; Marashi, S. Insight into Date Palm Diversity: Genetic and Morphological Investigations. Plant Mol. Biol. Rep. 2021, 39, 137–145. [Google Scholar] [CrossRef]
- Zahid, G.; Iftikhar, S.; Farooq, M.U.; Soomro, S.A. Advances in DNA based Molecular Markers for the Improvement of Fruit Cultivars in Pakistan-A Review. Sarhad J. Agric. 2022, 38. [Google Scholar] [CrossRef]
- Saboori, S.; Noormohammadi, Z.; Sheidai, M.; Marashi, S. SCoT molecular markers and genetic fingerprinting of date palm (Phoenix dactylifera L.) cultivars. Genet. Resour. Crop. Evol. 2019, 67, 73–82. [Google Scholar] [CrossRef]
- Hasan, Mehfuz, Hasan M. Abdullah, Abu Sayeed Md Hasibuzzaman, and Mir Aszad Ali. “Date palm genetic resources for breeding.” Cash Crops: Genetic Diversity, Erosion, Conservation and Utilization (2022): 479-503.
- Ghazzawy, Hesham Sayed, Ehab Mohamed Mahdy, Hassan Muzzamil Ali-Dinar, and Hossam S. El-Beltagi. “Impact of geographical distribution on genetic variation of two date palm cultivars in arid regions.” (2021): 11513-11523.
- Ibrahimi, Maha, Najiba Brhadda, Rabea Ziri, Mohamed Fokar, Ilham Amghar, Fatima Gaboun, Aicha Habach et al. “Molecular Identification of Genetic Diversity and Population Structure in Moroccan Male Date Palm (Phoenix dactylifera L.) Using Inter-Simple Sequence Repeat, Direct Amplification of Minisatellite DNA, and Simple Sequence Repeat Markers.” Horticulturae 10, no. 5 (2024): 508.
- Abdel-Banat, Babiker MA, and Hamadttu AF El-Shafie. “Genomics approaches for insect control and insecticide resistance development in date palm.” In The Date Palm Genome, Vol. 2: Omics and Molecular Breeding, pp. 215-248. Cham: Springer International Publishing, 2021.
- Kassem, H.S.; Alotaibi, B.A.; Ahmed, A.; Aldosri, F.O. Sustainable Management of the Red Palm Weevil: The Nexus between Farmers’ Adoption of Integrated Pest Management and Their Knowledge of Symptoms. Sustainability 2020, 12, 9647. [Google Scholar] [CrossRef]
- Naveed, H.; Andoh, V.; Islam, W.; Chen, L.; Chen, K. Sustainable Pest Management in Date Palm Ecosystems: Unveiling the Ecological Dynamics of Red Palm Weevil (Coleoptera: Curculionidae) Infestations. Insects 2023, 14, 859. [Google Scholar] [CrossRef] [PubMed]
- El Bouhssini, Mustapha. “Date palm pests and diseases: Integrated management guide.” (2018).
- Shabani, F.; Kumar, L.; Taylor, S. Climate Change Impacts on the Future Distribution of Date Palms: A Modeling Exercise Using CLIMEX. PLOS ONE 2012, 7, e48021. [Google Scholar] [CrossRef] [PubMed]
- Bouri, M.; Arslan, K.S.; Şahin, F. Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges. Sustainability 2023, 15, 4592. [Google Scholar] [CrossRef]
- Nasraoui, Bouzid, Marwan Jaddou, Zakaria Musallam, Abdulaziz Al-Shareedi, Yousef Al-Fahid, Hamda Chebbi, Mousa Asiri, and Ayman Al-Ghamdi. “Research Paper (Control: Insects) Control of the Apical and Trunk Infestations of Date Palm by Red Palm Weevil, Rhynchophorus ferrugineus, Using a Simple and Inexpensive Injection Technique.” (2024).
- Mendel, Zvi, Hillary Voet, Ilan Nazarian, Svetlana Dobrinin, and Dana Ment. “Comprehensive Analysis of Management Strategies for Red Palm Weevil in Date Palm Settings, Emphasizing Sensor-Based Infestation Detection.” Agriculture 14, no. 2 (2024): 260.
- Mendel, Z.; Voet, H.; Modan, N.; Naor, R.; Ment, D. Seismic sensor-based management of the red palm weevil Rhynchophorus ferrugineus in date palm plantations. Pest Manag. Sci. 2023, 80, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Gindin, G.; Levski, S.; Glazer, I.; Soroker, V. Evaluation of the entomopathogenic fungiMetarhizium anisopliae andBeauveria bassiana against the red palm weevilRhynchophorus ferrugineus. Phytoparasitica 2006, 34, 370–379. [Google Scholar] [CrossRef]
- Dembilio. ; Quesada-Moraga, E.; Santiago-Álvarez, C.; Jacas, J.A. Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus. J. Invertebr. Pathol. 2010, 104, 214–221. [Google Scholar] [CrossRef]
- Khudhair, Mohammad Waleed, Hussain Fadhel Alrubeai, and Mohammed Zaidan Khalaf. “Innovative method to control Dubas bug, Ommatissus lybicus (Deberg)(Homoptera: Tropiduchidae) in date palm orchards using endophytic beauveria bassiana isolates.” Journal of Agricultural Science and Technology 6 (2016): 394-402.
- Elsharkawy, Mohsen Mohamed, Mustafa Almasoud, Yasser Mohamed Alsulaiman, Rowida S. Baeshen, Hayam Elshazly, Roqayah H. Kadi, Mohamed M. Hassan, and Rady Shawer. “Efficiency of Bacillus thuringiensis and Bacillus cereus against Rhynchophorus ferrugineus.” Insects 13, no. 10 (2022): 905.
- El-Shafie, H.A.F.; Abdel-Banat, B.M.A.; Al-Hajhoj, M.R. Arthropod pests of date palm and their management. CAB Rev. Perspect. Agric. Veter- Sci. Nutr. Nat. Resour. 18. [CrossRef]
- Abdel-Galil, F.A.; Mousa, S.E.; Rizk, M.M.A.; Hagag, G.H.A.E.; Hesham, A.E.-L. Morphogenetic traits of the egg parasitoid Trichogramma for controlling certain date palms lepidopteran insect pests in the New Valley Governorate. Egypt. J. Biol. Pest Control. 2018, 28, 88. [Google Scholar] [CrossRef]
- A Altemimy, H.M.; Altemimy, I.H.H.; Abed, A.M. Evaluation the efficacy of nano-fertilization and Disper osmotic in treating salinity of irrigation water in quality and productivity properties of date palm Phoenix dactylifera L. IOP Conf. Series: Earth Environ. Sci. 2019, 388, 012072. [Google Scholar] [CrossRef]
- Radwan, O.; Arro, J.; Keller, C.; Korban, S.S. RNA-Seq Transcriptome Analysis in Date Palm Suggests Multi-Dimensional Responses to Salinity Stress. Trop. Plant Biol. 2015, 8, 74–86. [Google Scholar] [CrossRef]
- Yaish, Mahmoud W., Himanshu V. Patankar, Dekoum VM Assaha, Yun Zheng, Rashid Al-Yahyai, and Ramanjulu Sunkar. “Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity.” BMC genomics 18 (2017): 1-17.
- Yaish, M.W.; Sunkar, R.; Zheng, Y.; Ji, B.; Al-Yahyai, R.; Farooq, S.A. A genome-wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.). Front. Plant Sci. 2015, 6, 946. [Google Scholar] [CrossRef] [PubMed]
- Mueller, H.M.; Franzisky, B.L.; Messerer, M.; Du, B.; Lux, T.; White, P.J.; Carpentier, S.C.; Winkler, J.B.; Schnitzler, J.; El-Serehy, H.A.; et al. Integrative multi-omics analyses of date palm (Phoenix dactylifera) roots and leaves reveal how the halophyte land plant copes with sea water. Plant Genome 2023, e20372. [Google Scholar] [CrossRef]
- Al-Harrasi, I.; Al-Yahyai, R.; Yaish, M.W. Differential DNA methylation and transcription profiles in date palm roots exposed to salinity. PLOS ONE 2018, 13, e0191492. [Google Scholar] [CrossRef] [PubMed]
- El Rabey, H.A.; Al-Malki, A.L.; Abulnaja, K.O.; Rohde, W. Proteome Analysis for Understanding Abiotic Stress (Salinity and Drought) Tolerance in Date Palm (Phoenix dactyliferaL.). Int. J. Genom. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jana, G.A.; Al Kharusi, L.; Sunkar, R.; Al-Yahyai, R.; Yaish, M.W. Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments. Plant Signal. Behav. 2019, 14, 1663112. [Google Scholar] [CrossRef] [PubMed]
- Safronov, O.; Kreuzwieser, J.; Haberer, G.; Alyousif, M.S.; Schulze, W.; Al-Harbi, N.; Arab, L.; Ache, P.; Stempfl, T.; Kruse, J.; et al. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm). PLOS ONE 2017, 12, e0177883. [Google Scholar] [CrossRef] [PubMed]
- Sattar, M.N.; Iqbal, Z.; Tahir, M.N.; Shahid, M.S.; Khurshid, M.; Al-Khateeb, A.A.; Al-Khateeb, S.A. CRISPR/Cas9: A Practical Approach in Date Palm Genome Editing. Front. Plant Sci. 2017, 8, 1469. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Saleem, F.; Kanwal, M.; Mustafa, G.; Yousaf, S.; Arshad, H.M.I.; Hameed, M.K.; Khan, M.S.; Joyia, F.A. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Int. J. Mol. Sci. 2019, 20, 4045. [Google Scholar] [CrossRef]
- Khan, Saifullah, and Tabassum Bi Bi. “Direct shoot regeneration system for date palm (Phoenix dactylifera L.) cv. Dhakki as a means of micropropagation.” Pak. J. Bot 44, no. 6 (2012): 1965-1971.
- Al-Mayahi, Ahmed Madi Waheed. “Thidiazuron-induced in vitro bud organogenesis of the date palm (Phoenix dactylifera L.) cv. Hillawi.” African Journal of Biotechnology 13, no. 35 (2014).
- Zayed, Zeinab E. “Enhanced indirect somatic embryogenesis from shoot-tip explants of date palm by gradual reductions of 2, 4-D concentration.” Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications (2017): 77-88.
- Hussain, Altaf, Iqbal Ahmed Qarshi, Hummera Nazir, and Ikram Ullah. “Plant tissue culture: current status and opportunities.” Recent advances in plant in vitro culture 6, no. 10 (2012): 1-28.
- Murthy, H.N.; Joseph, K.S.; Paek, K.Y.; Park, S.Y. Bioreactor systems for micropropagation of plants: present scenario and future prospects. Front. Plant Sci. 2023, 14. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.-K.; Park, J.-S.; Lee, K.-R. Plant-made pharmaceuticals: exploring studies for the production of recombinant protein in plants and assessing challenges ahead. Plant Biotechnol. Rep. 2023, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Niego, A.G.; Rapior, S.; Thongklang, N.; Raspé, O.; Jaidee, W.; Lumyong, S.; Hyde, K.D. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J. Fungi 2021, 7, 397. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, Maged, Nashi K. Alqahtani, Muhammad Munir, and Mohamed A. Eltawil. “Applications of AI and IoT for Advancing Date Palm Cultivation in Saudi Arabia.” (2023).
- Lakshmi, G.P.; Asha, P.; Sandhya, G.; Sharma, S.V.; Shilpashree, S.; Subramanya, S. An intelligent IOT sensor coupled precision irrigation model for agriculture. Meas. Sensors 2023, 25. [Google Scholar] [CrossRef]
- Dhanaraju, Muthumanickam, Poongodi Chenniappan, Kumaraperumal Ramalingam, Sellaperumal Pazhanivelan, and Ragunath Kaliaperumal. “Smart farming: Internet of Things (IoT)-based sustainable agriculture.” Agriculture 12, no. 10 (2022): 1745.
- Mohammed, Maged, Nashi K. Alqahtani, Muhammad Munir, and Mohamed A. Eltawil. “Applications of AI and IoT for Advancing Date Palm Cultivation in Saudi Arabia.” (2023).
- Benhmad, Taoufik, Chibani Belgacem Rhaimi, Saleh Alomari, and Leenah Aljuhani. “Design and Implementation of an Integrated IoT and Artificial Intelligence System for Smart Irrigation Management.” International Journal of Advances in Soft Computing & Its Applications 16, no. 1 (2024).
- Mohammed, Maged, Khaled Riad, and Nashi Alqahtani. “Efficient iot-based control for a smart subsurface irrigation system to enhance irrigation management of date palm.” Sensors 21, no. 12 (2021): 3942.
- Mohammed, Maged, Abdelkader Sallam, Muhammad Munir, and Hassan Ali-Dinar. “Effects of deficit irrigation scheduling on water use, gas exchange, yield, and fruit quality of date palm.” Agronomy 11, no. 11 (2021): 2256.
- Gibril, M.B.A.; Shafri, H.Z.M.; Al-Ruzouq, R.; Shanableh, A.; Nahas, F.; Al Mansoori, S. Large-Scale Date Palm Tree Segmentation from Multiscale UAV-Based and Aerial Images Using Deep Vision Transformers. Drones 2023, 7, 93. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmed, A. Palm tree disease detection and classification using residual network and transfer learning of inception ResNet. PLOS ONE 2023, 18, e0282250. [Google Scholar] [CrossRef] [PubMed]
- Culman, M.; Delalieux, S.; Van Tricht, K. Individual Palm Tree Detection Using Deep Learning on RGB Imagery to Support Tree Inventory. Remote. Sens. 2020, 12, 3476. [Google Scholar] [CrossRef]
- Alrteimei, H.A.; Ash’aari, Z.H.; Muharram, F.M. Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region. Agriculture 2022, 12, 1787. [Google Scholar] [CrossRef]
- Khan, M. Mumtaz, and S. A. Prathapar. “Water management in date palm groves.” Dates: Production, Processing, Food, and Medicinal Values (Manickavasagan A, Essa MM and Sukumar E, ed.) (2012): 45-66.
- Jaradat, Abdullah A. “Genetic erosion of Phoenix dactylifera L.: perceptible, probable, or possible.” Genetic Diversity and Erosion in Plants: Case Histories (2016): 131-213.
- Díaz-Rodríguez, Natalia, Javier Del Ser, Mark Coeckelbergh, Marcos López de Prado, Enrique Herrera-Viedma, and Francisco Herrera. “Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation.” Information Fusion 99 (2023): 101896.


| Resource | Findings |
|---|---|
| Draft genome sequence | First draft genome assembly of the khalas DP variety. [21] |
| High density genetic map | Genetic map with 1,892 SNP & 173 SSR markers across 18 linkage groups [26]. |
| Genome-wide SNP array | Identification of the sex chromosome (Ref). Localized the gender segregating region in DP to LG12, estimated size of the region approx. 5-13Mb. [16] |
| Pan-genome analysis | Identified 158278 gene families across 62 DP accessions. Explored the polymorphism for DP genetic diversity. Possible selective sweeps within the species and gene network associated with the fruit traits. [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).