Submitted:
18 June 2024
Posted:
19 June 2024
Read the latest preprint version here
Abstract

Keywords:
1. Introduction

2. Advances in DP Genomics
2.1. Genetic Linkage Maps and Marker-Assisted Selection
2.2. Exploitation of Genetic Diversity and Domestication History
2.3. Genome Editing Applications
| Techniques | Key Findings | Data Points | Applications | Limitations |
|---|---|---|---|---|
| RAPD & ISSR Studies.[36] | High throughput screening for genetic variations | Over 100 polymorphic bands identified in various genotypes | Population structure analysais (Soma clonal Variation détection -Germplasm management) | Low marker specificity -Dominant markers complicate heterozygosity analysis- |
| AFLP studies [37,38] | Multi locus fingerprinting for comprehensive diversity assessment | Up to 300 polymorphic markers detected per study. Shannon-Weaver diversity index ranging from 0.24 to 0.48 across population. | Evolutionary history reconstruction Identification of unique genetic signatures Marker assisted selection |
Technically demanding and expensive Requires specialized equipment and analysis software |
| Microsatellite Markers [39] |
Highly polymorphic loci for accurate cultivar identification and genotyping. | Able to distinguish >90% of cultivars with high accuracy Unique markers identified for specific cultivars like Medjool and Zahed. |
Breeding program development Cultivar traceability and certification Gene mapping and QTL Analysis |
Costly compared to other techniques Labor intensive for large scale genotyping. |
| SCoT Polymorphism [40] | Targeting functional regions for the insights into gene expression and adaptation | Potential for Marker-Assisted selection of stress tolerance traits | -Early-stage technology with limited data availability Development of specific primers needed for targeted loci |
N/A |
| Conserved DNA derived polymorphism (CDDP) [41,42] | Cost effective genotyping platform for large population studies. | Efficient analysis for pre designed primer set for conserved genomics regions. | Rapid diversity assessment in germplasm collection. Population genetic analysis and gene flow studies |
Limited marker resolution compared to highly polymorphic techniques May not capture rare or novel variations |
| Next -Generation Sequencing (NGS) [43] |
Unprecedented depth and details for SNP population genomics | Over 100,000 SNPs identified in single date palm genomes. | Fine grained evolutionary history reconstruction. GWAS for complex traits. Identification of candidate genes for breeding programs |
High Cost and computational requirements-Complex data analysis pipelines |
3. Pest Management
4. Salinity Stress Management
| Technique Used | Environmental Stress | Experiment Details | Plant Material |
|---|---|---|---|
| RNA Sequencing (RNA-seq)[60] | High Salt Levels (Salinity) | Studied gene activity in Deglet Beida seedling roots after exposure to salt stress. | Seedling Roots |
| RNA-seq [61] | High Salt Levels (Salinity) | Analyzed gene activity in both leaves and roots of Khalas seedlings after salt stress. | Seedling Leaves & Roots |
| Small RNA Sequencing (Small RNA-seq) [62] | High Salt Levels (Salinity) | Identified genes targeted by microRNAs (miRNAs) and studied gene activity in Khalas seedling leaves and roots after salt stress. | Seedling Leaves & Roots |
| RNA-seq [63] | Abscisic Acid (ABA) Treatment | Compared gene activity in leaves of seedlings treated with ABA, a stress hormone, to untreated controls. | Seedling Leaves |
| RNA-seq & Methylomics [64] | High Salt Levels (Salinity) | Investigated changes in DNA methylation and gene activity in Khalas seedling roots due to salt stress. | Seedling Roots |
| Proteomics Analysis [65] | Water Depletion (Drought) & High Salt Levels (Salinity) | Analyzed protein profiles in 18-month-old palms grown in tissue culture and subjected to drought and salt stress. | Tissue Culture |
| Metabolomics Analysis [66] | High Salt Levels (Salinity) & Silicon | Analyzed metabolite levels in leaves and roots of seedlings after treatment with salt and silicon. | Seedling Leaves & Roots |
| RNA-seq & Metabolomics Analysis [67] | Mild Heat, Water Depletion (Drought), & Combined Stress | Analyzed genes and metabolites in seedlings subjected to mild heat, drought, and combined stress conditions. | Seedlings |
4. Genome Editing for Trait Improvement
5. Advancements in In Vitro Propagation and Micropropagation

6. Bioreactor-Based Systems
7. Challenges and AI-Powered Solutions
8. Revolutionizing Agriculture with IoT: Enhanced Efficiency, Yield, and Sustainability
9. Computer Vision and Image Analysis
10. Integration with Precision Agriculture
Conclusion:
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soomro, Aijaz Hussain, Asadullah Marri, and Nida Shaikh. "Date Palm (Phoenix Dactylifera): A Review of Economic Potential, Industrial Valorization, Nutritional and Health Significance." Neglected Plant Foods of South Asia: Exploring and valorizing nature to feed hunger (2023): 319-350.
- Singh, R. S. , and Ramkesh Meena. "Date Palm Cultivation in Arid Ecosystem." In Dryland Horticulture, pp. 255–276. CRC Press, 2021.
- Al-Kutti, Walid, ABM Saiful Islam, and Muhammad Nasir. "Potential use of date palm ash in cement-based materials." Journal of King Saud University-Engineering Sciences 31, no. 1 (2019): 26-31. [CrossRef]
- Jonoobi, M.; Shafie, M.; Shirmohammadli, Y.; Ashori, A.; Hosseinabadi, H.Z.; Mekonnen, T. A review on date palm tree: Properties, characterization and its potential applications. Journal of Renewable Materials 2019, 7, 1055–1075. [Google Scholar] [CrossRef]
- El Hadrami, A.; Al-Khayri, J.M. Socioeconomic and traditional importance of date palm. Emirates Journal of food and Agriculture 2012, 24, 371. [Google Scholar]
- Sporchia, F.; Patrizi, N.; Pulselli, F.M. Date Fruit Production and Consumption: A Perspective on Global Trends and Drivers from a Multidimensional Footprint Assessment. Sustainability 2023, 15, 4358. [Google Scholar] [CrossRef]
- Wakil, Waqas, Jose Romeno Faleiro, Thomas A. Miller, Geoffrey O. Bedford, and Robert R. Krueger. "Date palm production and pest management challenges." Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges (2015): 1-11.
- El-Juhany, Loutfy I. "Degradation of date palm trees and date production in Arab countries: causes and potential rehabilitation." Australian Journal of Basic and Applied Sciences 4, no. 8 (2010): 3998-4010.
- Abul-Soad, Adel A., S. Mohan Jain, and Mushtaque A. Jatoi. "Biodiversity and conservation of date palm." Biodiversity and conservation of woody plants (2017): 313-353. [CrossRef]
- Abdul Aziz, Mughair, Faical Brini, Hatem Rouached, and Khaled Masmoudi. "Genetically engineered crops for sustainably enhanced food production systems." Frontiers in plant science 13 (2022): 1027828. [CrossRef]
- Kordrostami, Mojtaba, Mohammad Mafakheri, and Jameel M. Al-Khayri. "Date palm (Phoenix dactylifera L.) genetic improvement via biotechnological approaches." Tree Genetics & Genomes 18, no. 3 (2022): 26. [CrossRef]
- Hazzouri, Khaled Michel, Jonathan M. Flowers, David Nelson, Alain Lemansour, Khaled Masmoudi, and Khaled MA Amiri. "Prospects for the study and improvement of abiotic stress tolerance in date palms in the post-genomics era." Frontiers in plant science 11 (2020): 293. [CrossRef]
- Kordrostami, Mojtaba, Mohammad Mafakheri, and Jameel M. Al-Khayri. "Date palm (Phoenix dactylifera L.) genetic improvement via biotechnological approaches." Tree Genetics & Genomes 18, no. 3 (2022): 26. [CrossRef]
- Al-Dous, Eman K., Binu George, Maryam E. Al-Mahmoud, Moneera Y. Al-Jaber, Hao Wang, Yasmeen M. Salameh, Eman K. Al-Azwani et al. "De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)." Nature biotechnology 29, no. 6 (2011): 521-527. [CrossRef]
- El, F. Daayf, and I. El Hadrami. "Date palm genetics and breeding." Date palm biotechnology (2011): 479-512. [CrossRef]
- Mathew, L.S., Spannagl, M., Al-Malki, A., George, B., Torres, M.F., Al-Dous, E.K., Al-Azwani, E.K., Hussein, E., Mathew, S., Mayer, K.F. and Mohamoud, Y.A., 2014. A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC genomics, 1–10. [CrossRef]
- Zhao, Yongli, Roxanne Williams, C. S. Prakash, and Guohao He. "Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.)." BMC plant biology 12 (2012): 1-8. [CrossRef]
- Mokhtar, Morad M., Sami S. Adawy, Salah El-Din S. El-Assal, and Ebtissam HA Hussein. "Genic and intergenic SSR database generation, SNPs determination and pathway annotations, in date palm (Phoenix dactylifera L.)." PLOS one 11, no. 7 (2016): e0159268. [CrossRef]
- Ahmed, Talaat A., and Asmaa Y. Al-Qaradawi. "Molecular phylogeny of Qatari date palm genotypes using simple sequence repeats markers." Biotechnology 8, no. 1 (2009): 126-131. [CrossRef]
- Mathew, Lisa S., Michael A. Seidel, Binu George, Sweety Mathew, Manuel Spannagl, Georg Haberer, Maria F. Torres et al. "A genome-wide survey of date palm cultivars supports two major subpopulations in Phoenix dactylifera." G3: Genes, Genomes, Genetics 5, no. 7 (2015): 1429-1438. [CrossRef]
- Al-Mssallem, Ibrahim S., Songnian Hu, Xiaowei Zhang, Qiang Lin, Wanfei Liu, Jun Tan, Xiaoguang Yu et al. "Genome sequence of the date palm Phoenix dactylifera L." Nature communications 4, no. 1 (2013): 2274. [CrossRef]
- Mahdy, Ehab MB, and Sherif F. El-Sharabasy. "Date palm genetic identification and improvement utilizing molecular markers and DNA barcoding." In The Date Palm Genome, Vol. 1: Phylogeny, Biodiversity and Mapping, pp. 101–134. Cham: Springer International Publishing, 2021.
- Ahmad, Riaz, Muhammad Akbar Anjum, Safina Naz, and Rashad Mukhtar Balal. "Applications of molecular markers in fruit crops for breeding programs-a review." Phyton 90, no. 1 (2021): 17-34. [CrossRef]
- Al-Khayri, Jameel M., Poornananda M. Naik, Shri Mohan Jain, and Dennis V. Johnson. "Advances in date palm (Phoenix dactylifera L.) breeding." Advances in Plant Breeding Strategies: Fruits: Volume 3 (2018): 727-771. [CrossRef]
- Mahdy, Ehab MB, and Sherif F. El-Sharabasy. "Date palm genetic identification and improvement utilizing molecular markers and DNA barcoding." In The Date Palm Genome, Vol. 1: Phylogeny, Biodiversity and Mapping, pp. 101–134. Cham: Springer International Publishing, 2021.
- Ibrahimi, Maha, Najiba Brhadda, Rabea Ziri, Mohamed Fokar, Driss Iraqi, Fatima Gaboun, Mustapha Labhilili et al. "Analysis of genetic diversity and population structure of Moroccan date palm (Phoenix dactylifera L.) using SSR and DAMD molecular markers." Journal of Genetic Engineering and Biotechnology 21, no. 1 (2023): 66. [CrossRef]
- Hazzouri, Khaled M., Jonathan M. Flowers, Hendrik J. Visser, Hussam SM Khierallah, Ulises Rosas, Gina M. Pham, Rachel S. Meyer et al. "Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop." Nature communications 6, no. 1 (2015): 8824. [CrossRef]
- Hadrami, A. El, F. Daayf, and I. El Hadrami. "Date palm genetics and breeding." Date palm biotechnology (2011): 479-512. [CrossRef]
- Lalrinmawii, Hidayatullah Mir, and Nusrat Perveen. "Recent Advances in the Use of Molecular Markers for Fruit Crop Improvement." Molecular Marker Techniques: A Potential Approach of Crop Improvement (2023): 339-355. [CrossRef]
- Mahdy, Ehab MB, and Sherif F. El-Sharabasy. "Date palm genetic identification and improvement utilizing molecular markers and DNA barcoding." In The Date Palm Genome, Vol. 1: Phylogeny, Biodiversity and Mapping, pp. 101–134. Cham: Springer International Publishing, 2021.
- Flowers, Jonathan M., Khaled M. Hazzouri, Muriel Gros-Balthazard, Ziyi Mo, Konstantina Koutroumpa, Andreas Perrakis, Sylvie Ferrand et al. "Cross-species hybridization and the origin of North African date palms." Proceedings of the National Academy of Sciences 116, no. 5 (2019): 1651-1658. [CrossRef]
- Gros-Balthazard, Muriel, Marco Galimberti, Athanasios Kousathanas, Claire Newton, Sarah Ivorra, Laure Paradis, Yves Vigouroux et al. "The discovery of wild date palms in Oman reveals a complex domestication history involving centers in the Middle East and Africa." Current Biology 27, no. 14 (2017): 2211-2218. [CrossRef]
- Mathew, Lisa S., Michael A. Seidel, Binu George, Sweety Mathew, Manuel Spannagl, Georg Haberer, Maria F. Torres et al. "A genome-wide survey of date palm cultivars supports two major subpopulations in Phoenix dactylifera." G3: Genes, Genomes, Genetics 5, no. 7 (2015): 1429-1438. [CrossRef]
- Sattar, Muhammad N., Zafar Iqbal, Muhammad N. Tahir, Muhammad S. Shahid, Muhammad Khurshid, Abdullatif A. Al-Khateeb, and Suliman A. Al-Khateeb. "CRISPR/Cas9: a practical approach in date palm genome editing." Frontiers in Plant Science 8 (2017): 287551. [CrossRef]
- Sebastian, Joseph Kadanthottu, Praveen Nagella, Epsita Mukherjee, Vijayalaxmi S. Dandin, Poornananda M. Naik, S. Mohan Jain, Jameel M. Al-Khayri, and Dennis V. Johnson. "Date Palm: Genomic Designing for Improved Nutritional Quality." In Compendium of Crop Genome Designing for Nutraceuticals, pp. 1–64. Singapore: Springer Nature Singapore, 2023. [CrossRef]
- Hassanzadeh Khankahdani, Hamed, and Abdoolnabi Bagheri. "Identification of genetic variation of male and female date palm (Phoenix dactylifera L.) cultivars using morphological and molecular markers." International Journal of Horticultural Science and Technology 6, no. 1 (2019): 63-76. [CrossRef]
- El-Assar, Ashraf M., Robert R. Krueger, Pachanoor S. Devanand, and Chih-Cheng T. Chao. "Genetic analysis of Egyptian date (Phoenix dactylifera L.) accessions using AFLP markers." Genetic Resources and Crop Evolution 52 (2005): 601-607. [CrossRef]
- Saboori, Somayeh, Zahra Noormohammadi, Masoud Sheidai, and SeyyedSamih Marashi. "Insight into date palm diversity: genetic and morphological investigations." Plant Molecular Biology Reporter 39, no. 1 (2021): 137-145. [CrossRef]
- Zahid, Ghassan, Sara Iftikhar, Muhammad Umer Farooq, and Shakeel Ahmed Soomro. "Advances in DNA based Molecular Markers for the Improvement of Fruit Cultivars in Pakistan-A Review." Sarhad Journal of Agriculture 38, no. 3 (2022). [CrossRef]
- Saboori, Somayeh, Zahra Noormohammadi, Masoud Sheidai, and SeyyedSamih Marashi. "SCoT molecular markers and genetic fingerprinting of date palm (Phoenix dactylifera L.) cultivars." Genetic Resources and Crop Evolution 67, no. 1 (2020): 73-82. [CrossRef]
- Hasan, Mehfuz, Hasan M. Abdullah, Abu Sayeed Md Hasibuzzaman, and Mir Aszad Ali. "Date palm genetic resources for breeding." Cash Crops: Genetic Diversity, Erosion, Conservation and Utilization (2022): 479-503. [CrossRef]
- Ghazzawy, Hesham Sayed, Ehab Mohamed Mahdy, Hassan Muzzamil Ali-Dinar, and Hossam S. El-Beltagi. "Impact of geographical distribution on genetic variation of two date palm cultivars in arid regions." (2021): 11513-11523.
- Ibrahimi, Maha, Najiba Brhadda, Rabea Ziri, Mohamed Fokar, Ilham Amghar, Fatima Gaboun, Aicha Habach et al. "Molecular Identification of Genetic Diversity and Population Structure in Moroccan Male Date Palm (Phoenix dactylifera L.) Using Inter-Simple Sequence Repeat, Direct Amplification of Minisatellite DNA, and Simple Sequence Repeat Markers." Horticulturae 10, no. 5 (2024): 508. [CrossRef]
- Abdel-Banat, Babiker MA, and Hamadttu AF El-Shafie. "Genomics approaches for insect control and insecticide resistance development in date palm." In The Date Palm Genome, Vol. 2: Omics and Molecular Breeding, pp. 215–248. Cham: Springer International Publishing, 2021.
- Kassem, Hazem S., Bader Alhafi Alotaibi, Ali Ahmed, and Fahd O. Aldosri. "Sustainable management of the red palm weevil: The nexus between farmers’ adoption of integrated pest management and their knowledge of symptoms." Sustainability 12, no. 22 (2020): 9647. [CrossRef]
- Naveed, Hassan, Vivian Andoh, Waqar Islam, Liang Chen, and Keping Chen. "Sustainable Pest Management in Date Palm Ecosystems: Unveiling the Ecological Dynamics of Red Palm Weevil (Coleoptera: Curculionidae) Infestations." Insects 14, no. 11 (2023): 859. [CrossRef]
- El Bouhssini, Mustapha. "Date palm pests and diseases: Integrated management guide." (2018).
- Shabani, Farzin, Lalit Kumar, and Subhashni Taylor. "Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX." PloS one 7, no. 10 (2012): e48021. [CrossRef]
- Bouri, Meriam, Kadir Sinan Arslan, and Fikrettin Şahin. "Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges." Sustainability 15, no. 5 (2023): 4592. [CrossRef]
- Nasraoui, Bouzid, Marwan Jaddou, Zakaria Musallam, Abdulaziz Al-Shareedi, Yousef Al-Fahid, Hamda Chebbi, Mousa Asiri, and Ayman Al-Ghamdi. "Research Paper (Control: Insects) Control of the Apical and Trunk Infestations of Date Palm by Red Palm Weevil, Rhynchophorus ferrugineus, Using a Simple and Inexpensive Injection Technique." (2024).
- Mendel, Zvi, Hillary Voet, Ilan Nazarian, Svetlana Dobrinin, and Dana Ment. "Comprehensive Analysis of Management Strategies for Red Palm Weevil in Date Palm Settings, Emphasizing Sensor-Based Infestation Detection." Agriculture 14, no. 2 (2024): 260. [CrossRef]
- Mendel, Zvi, Hillary Voet, Nimrod Modan, Ravid Naor, and Dana Ment. "Seismic sensor-based management of the red palm weevil Rhynchophorus ferrugineus in date palm plantations." Pest Management Science 80, no. 3 (2024): 1053-1064. [CrossRef]
- Gindin, G. L. E. V. S. K. I., S. Levski, I. Glazer, and V. Soroker. "Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the red palm weevil Rhynchophorus ferrugineus." Phytoparasitica 34 (2006): 370-379. [CrossRef]
- Dembilio, Óscar, Enrique Quesada-Moraga, Cándido Santiago-Álvarez, and Josep A. Jacas. "Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus." Journal of invertebrate pathology 104, no. 3 (2010): 214-221. [CrossRef]
- Khudhair, Mohammad Waleed, Hussain Fadhel Alrubeai, and Mohammed Zaidan Khalaf. "Innovative method to control Dubas bug, Ommatissus lybicus (Deberg)(Homoptera: Tropiduchidae) in date palm orchards using endophytic beauveria bassiana isolates." Journal of Agricultural Science and Technology 6 (2016): 394-402. [CrossRef]
- Elsharkawy, Mohsen Mohamed, Mustafa Almasoud, Yasser Mohamed Alsulaiman, Rowida S. Baeshen, Hayam Elshazly, Roqayah H. Kadi, Mohamed M. Hassan, and Rady Shawer. "Efficiency of Bacillus thuringiensis and Bacillus cereus against Rhynchophorus ferrugineus." Insects 13, no. 10 (2022): 905. [CrossRef]
- El-Shafie, H. A. F., B. M. A. Abdel-Banat, and M. R. Al-Hajhoj. "Arthropod pests of date palm and their management." CABI Reviews 2017 (2018): 1-18. [CrossRef]
- Abdel-Galil, Farouk A., Sara E. Mousa, Moustafa MA Rizk, Gaber H. Abo El-Hagag, and Abd El-Latif Hesham. "Morphogenetic traits of the egg parasitoid Trichogramma for controlling certain date palms lepidopteran insect pests in the New Valley Governorate." Egyptian Journal of Biological Pest Control 28 (2018): 1-10. [CrossRef]
- Altemimy, H. M. A., I. H. H. Altemimy, and A. M. Abed. "Evaluation the efficacy of nano-fertilization and Disper osmotic in treating salinity of irrigation water in quality and productivity properties of date palm Phoenix dactylifera L." In IOP Conference Series: Earth and Environmental Science, vol. 388, no. 1, p. 012072. IOP Publishing, 2019.
- Radwan, Osman, Jie Arro, Caroline Keller, and Schuyler S. Korban. "RNA-Seq transcriptome analysis in date palm suggests multi-dimensional responses to salinity stress." Tropical plant biology 8 (2015): 74-86. [CrossRef]
- Yaish, Mahmoud W., Himanshu V. Patankar, Dekoum VM Assaha, Yun Zheng, Rashid Al-Yahyai, and Ramanjulu Sunkar. "Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity." BMC genomics 18 (2017): 1-17. [CrossRef]
- Yaish, Mahmoud W., Ramanjulu Sunkar, Yun Zheng, Bo Ji, Rashid Al-Yahyai, and Sardar A. Farooq. "A genome-wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.)." Frontiers in plant science 6 (2015): 151180. [CrossRef]
- Mueller, Heike M., Bastian L. Franzisky, Maxim Messerer, Baoguo Du, Thomas Lux, Philip J. White, Sebastien Christian Carpentier et al. "Integrative multi-omics analyses of date palm (Phoenix dactylifera) roots and leaves reveal how the halophyte land plant copes with sea water." The plant genome 17, no. 1 (2024): e20372. [CrossRef]
- Al-Harrasi, Ibtisam, Rashid Al-Yahyai, and Mahmoud W. Yaish. "Differential DNA methylation and transcription profiles in date palm roots exposed to salinity." PloS one 13, no. 1 (2018): e0191492. [CrossRef]
- El Rabey, Haddad A., Abdulrahman L. Al-Malki, Khalid O. Abulnaja, and Wolfgang Rohde. "Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in date palm (Phoenix dactylifera L.)." International journal of genomics 2015, no. 1 (2015): 407165. [CrossRef]
- Jana, Gerry Aplang, Latifa Al Kharusi, Ramanjulu Sunkar, Rashid Al-Yahyai, and Mahmoud W. Yaish. "Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments." Plant signaling & behavior 14, no. 11 (2019): 1663112. [CrossRef]
- Safronov, Omid, Jürgen Kreuzwieser, Georg Haberer, Mohamed S. Alyousif, Waltraud Schulze, Naif Al-Harbi, Leila Arab et al. "Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm)." PloS one 12, no. 6 (2017): e0177883. [CrossRef]
- Sattar, Muhammad N., Zafar Iqbal, Muhammad N. Tahir, Muhammad S. Shahid, Muhammad Khurshid, Abdullatif A. Al-Khateeb, and Suliman A. Al-Khateeb. "CRISPR/Cas9: a practical approach in date palm genome editing." Frontiers in Plant Science 8 (2017): 287551. [CrossRef]
- Razzaq, Ali, Fozia Saleem, Mehak Kanwal, Ghulam Mustafa, Sumaira Yousaf, Hafiz Muhammad Imran Arshad, Muhammad Khalid Hameed, Muhammad Sarwar Khan, and Faiz Ahmad Joyia. "Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox." International journal of molecular sciences 20, no. 16 (2019): 4045. [CrossRef]
- Khan, Saifullah, and Tabassum Bi Bi. "Direct shoot regeneration system for date palm (Phoenix dactylifera L.) cv. Dhakki as a means of micropropagation." Pak. J. Bot 44, no. 6 (2012): 1965-1971.
- Al-Mayahi, Ahmed Madi Waheed. "Thidiazuron-induced in vitro bud organogenesis of the date palm (Phoenix dactylifera L.) cv. Hillawi." African Journal of Biotechnology 13, no. 35 (2014). [CrossRef]
- Zayed, Zeinab E. "Enhanced indirect somatic embryogenesis from shoot-tip explants of date palm by gradual reductions of 2, 4-D concentration." Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications (2017): 77-88. [CrossRef]
- Hussain, Altaf, Iqbal Ahmed Qarshi, Hummera Nazir, and Ikram Ullah. "Plant tissue culture: current status and opportunities." Recent advances in plant in vitro culture 6, no. 10 (2012): 1-28. [CrossRef]
- Murthy, Hosakatte Niranjana, Kadanthottu Sebastian Joseph, Kee Yoeup Paek, and So Young Park. "Bioreactor systems for micropropagation of plants: present scenario and future prospects." Frontiers in plant science 14 (2023): 1159588. [CrossRef]
- Lee, Juho, Seon-Kyeong Lee, Jong-Sug Park, and Kyeong-Ryeol Lee. "Plant-made pharmaceuticals: exploring studies for the production of recombinant protein in plants and assessing challenges ahead." Plant Biotechnology Reports 17, no. 1 (2023): 53-65. [CrossRef]
- Niego, Allen Grace, Sylvie Rapior, Naritsada Thongklang, Olivier Raspé, Wuttichai Jaidee, Saisamorn Lumyong, and Kevin D. Hyde. "Macrofungi as a nutraceutical source: Promising bioactive compounds and market value." Journal of fungi 7, no. 5 (2021): 397. [CrossRef]
- Mohammed, Maged, Nashi K. Alqahtani, Muhammad Munir, and Mohamed A. Eltawil. "Applications of AI and IoT for Advancing Date Palm Cultivation in Saudi Arabia." (2023). [CrossRef]
- Lakshmi, GS Prasanna, P. N. Asha, G. Sandhya, S. Vivek Sharma, S. Shilpashree, and S. G. Subramanya. "An intelligent IOT sensor coupled precision irrigation model for agriculture." Measurement: Sensors 25 (2023): 100608. [CrossRef]
- Dhanaraju, Muthumanickam, Poongodi Chenniappan, Kumaraperumal Ramalingam, Sellaperumal Pazhanivelan, and Ragunath Kaliaperumal. "Smart farming: Internet of Things (IoT)-based sustainable agriculture." Agriculture 12, no. 10 (2022): 1745. [CrossRef]
- Mohammed, Maged, Nashi K. Alqahtani, Muhammad Munir, and Mohamed A. Eltawil. "Applications of AI and IoT for Advancing Date Palm Cultivation in Saudi Arabia." (2023). [CrossRef]
- Benhmad, Taoufik, Chibani Belgacem Rhaimi, Saleh Alomari, and Leenah Aljuhani. "Design and Implementation of an Integrated IoT and Artificial Intelligence System for Smart Irrigation Management." International Journal of Advances in Soft Computing & Its Applications 16, no. 1 (2024). [CrossRef]
- Mohammed, Maged, Khaled Riad, and Nashi Alqahtani. "Efficient iot-based control for a smart subsurface irrigation system to enhance irrigation management of date palm." Sensors 21, no. 12 (2021): 3942. [CrossRef]
- Mohammed, Maged, Abdelkader Sallam, Muhammad Munir, and Hassan Ali-Dinar. "Effects of deficit irrigation scheduling on water use, gas exchange, yield, and fruit quality of date palm." Agronomy 11, no. 11 (2021): 2256. [CrossRef]
- Gibril, Mohamed Barakat A., Helmi Zulhaidi Mohd Shafri, Rami Al-Ruzouq, Abdallah Shanableh, Faten Nahas, and Saeed Al Mansoori. "Large-scale date palm tree segmentation from multiscale uav-based and aerial images using deep vision transformers." Drones 7, no. 2 (2023): 93. [CrossRef]
- Ahmed, Mostafa, and Ali Ahmed. "Palm tree disease detection and classification using residual network and transfer learning of inception ResNet." Plos one 18, no. 3 (2023): e0282250. [CrossRef]
- Culman, María, Stephanie Delalieux, and Kristof Van Tricht. "Individual palm tree detection using deep learning on RGB imagery to support tree inventory." Remote Sensing 12, no. 21 (2020): 3476. [CrossRef]
- Alrteimei, Hanan Ali, Zulfa Hanan Ash’aari, and Farrah Melissa Muharram. "Last decade assessment of the impacts of regional climate change on crop yield variations in the Mediterranean region." Agriculture 12, no. 11 (2022): 1787. [CrossRef]
- Khan, M. Mumtaz, and S. A. Prathapar. "Water management in date palm groves." Dates: Production, Processing, Food, and Medicinal Values (Manickavasagan A, Essa MM and Sukumar E, ed.) (2012): 45-66.
- Jaradat, Abdullah A. "Genetic erosion of Phoenix dactylifera L.: perceptible, probable, or possible." Genetic Diversity and Erosion in Plants: Case Histories (2016): 131-213. [CrossRef]
- Díaz-Rodríguez, Natalia, Javier Del Ser, Mark Coeckelbergh, Marcos López de Prado, Enrique Herrera-Viedma, and Francisco Herrera. "Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation." Information Fusion 99 (2023): 101896. [CrossRef]




| Resource | Findings |
|---|---|
| Draft genome sequence | First draft genome assembly of the khalas DP variety [21]. |
| High density genetic map | Genetic map with 1,892 SNP & 173 SSR markers across 18 linkage groups [26]. |
| Genome-wide SNP array | Identification of the sex chromosome (Ref). Localized the gender segregating region in DP to LG12, estimated size of the region approx. 5-13Mb [16]. |
| Pan-genome analysis | Identified 158278 gene families across 62 DP accessions. Explored the polymorphism for DP genetic diversity. Possible selective sweeps within the species and gene network associated with the fruit traits [27]. |
| Agent | Target Pest | Mechanism of Action |
|---|---|---|
| Beauveria bassiana [53,54] | Red palm weevil | Entomopathogenic fungus |
| Metarhizium anisopliae [55] | Dubas bug | Entomopathogenic fungus |
| Bacillus thuringiensis [56] | Various pests | Bacterial toxins |
| Trichogramma spp. [57,58] | Date moth | Egg parasitoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).