Submitted:
05 June 2024
Posted:
05 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Arbuscular Mycorrhizal Fungi (AMF)
2.1. History and Taxonomy
2.2. Developmental Cycle
3. AMF as Biostimulant Agents
3.1. Plant Growth and Yield Improvements
3.2. Plant Tolerance against Abiotic Stress
4. AMF Inoculum as Biocontrol Agents?
4.1. AMF-Induced Plant Protection against Pathogens
4.2. Mycorrhiza-Induced Resistance
4.3. Limits to the AMF-Inoculum Application as Biocontrol Agents
5. AMF Inoculum Production
5. Conclusions and Future Perspectives
Acknowledgments
References
- De Jaeger, C.; Cherin, P.; Fraoucene, N.; Voronska, E. Place, Intérêt et Danger Des Produits Phytosanitaires. Medecine et Longevite 2012, 4, 59–67. [Google Scholar] [CrossRef]
- United Nations Population Division World Population Prospects. Available online: https://population.un.org/wpp/ (accessed on 8 May 2024).
- Boedeker, W.; Watts, M.; Clausing, P.; Marquez, E. The Global Distribution of Acute Unintentional Pesticide Poisoning: Estimations Based on a Systematic Review. BMC Public Health 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Biesmeijer, J.C.; Breeze T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; Vanbergen, A.J.; et al. Résumé à l’intention Des Décideurs Du Rapport d’évaluation de La Plateforme Intergouvernementale Scientifique et Politique Sur La Biodiversité et Les Services Écosystémiques Concernant Les Pollinisateurs, La Pollinisation et La Production Alimentaire.; Bonn, 2016;
- Karadimitriou, N.; Cheru, F.; Wondimu, A.; Yacobi, H.; Eyob, A.; Belay, F.; Temesgen, T.; Eyana, S.; Yoseph, S. Global Assessment of the Impact of Plant Protection Products on Soil Functions and Soil Ecosystems. United Nations Human Settlements Programme (UN-Habitat): Addis Ababa, Ethiopia(2021). 2017.
- Kaur, H.; Garg, H. Pesticides: Environmental Impacts and Management Strategies. Pesticides—Toxic Aspects 2014. [CrossRef]
- Assouline, G. L’évolution Technologique de l’industrie Des Phytosanitaires : Quelles Interactions Avec l’agriculture ? Économie rurale 1989, 192, 42–48. [Google Scholar] [CrossRef]
- European Parliament Proposal for a Regulation of the European Parliament and of the Council on the Sustainable Use of Plant Protection Products and Amending Regulation (EU) 2021/2115; 2022; pp. 1–71;
- Food and Agriculture Organization of the United Nations Integrated Pest Management (IPM) | Pest and Pesticide Management | IPM and Pesticide Risk Reduction. Available online: https://www.fao.org/pest-and-pesticide-management/ipm/integrated-pest-management/en/ (accessed on 8 May 2024).
- European Parliament Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; 2018;
- du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci Hortic 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial Services of Arbuscular Mycorrhizal Fungi – From Ecology to Application. Front Plant Sci 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- McNear Jr., D.H. Nature Education Knowledge. 2013, pp. 0–1.
- Attia, M.S.; Abdelaziz, A.M.; Al-Askar, A.A.; Arishi, A.A.; Abdelhakim, A.M.; Hashem, A.H. Plant Growth-Promoting Fungi as Biocontrol Tool against Fusarium Wilt Disease of Tomato Plant. Journal of Fungi 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Abbott, L.K.; Robson, A.D. Growth Stimulation of Subterranean Clover with Vesicular Arbuscular Mycorrhizas. Aust J Agric Res 1977, 28, 639–649. [Google Scholar] [CrossRef]
- Union Européenne Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2019:170:TOC (accessed on 28 June 2022).
- Israel, A.; Langrand, J.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods 2022, Vol. 11, Page 2591 2022, 11, 2591. [Google Scholar] [CrossRef]
- Pozo, M.J.; Verhage, A.; García-Andrade, J.; García, J.M.; Azcón-Aguilar, C.; Pozo, M.J.; Verhage, ) A; García-Andrade, J.; García, J.M.; Azcón-Aguilar, C. Priming Plant Defence Against Pathogens by Arbuscular Mycorrhizal Fungi. 2008.
- IBMA Home Page IBMA-GLOBAL International Biocontrol Manufacturers. Available online: https://ibma-global.org/ (accessed on 7 May 2024).
- Ministère de l’Agriculture et de la Souveraineté Alimentaire Liste Des Produits Phytopharmaceutiques de Biocontrôle, Au Titre Des Articles L.253-5 et L.253-7 Du Code Rural et de La Pêche Maritime; Paris, 2024;
- Frank, A.B. Ueber Die Auf Wurzelsymbiose Beruhende Ernährung Gewisser Baüme Durch Unterirdische Pilze. Ber Dtsch Bot Ges 1885, 3, 128–145. [Google Scholar]
- Von Nägeli, C.W. Pilze Im Innern von Zellen. In Linnaea; 1842; Vol. 16, pp. 278–285.
- Tisserant, E.; Malbreil, M.; Kuo, A.; Kohler, A.; Symeonidi, A.; Balestrini, R.; Charron, P.; Duensing, N.; Frei Dit Frey, N.; Gianinazzi-Pearson, V.; et al. Genome of an Arbuscular Mycorrhizal Fungus Provides Insight into the Oldest Plant Symbiosis. Proc Natl Acad Sci U S A 2013, 110, 20117–20122. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garrido, J.M.; Antonio Ocampo, J.; Garcia-Romera, I. Enzymes in the Arbuscular Mycorrhizal Symbiosis. 2002. [CrossRef]
- Smith, S.E.; Read, D. The Symbionts Forming Arbuscular Mycorrhizas. Mycorrhizal Symbiosis 2008, 13–41. [Google Scholar] [CrossRef]
- Redecker, D.; Kodner, R.; Graham, L.E. Glomalean Fungi from the Ordovician. Science 2000, 289, 1920–1921. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P.; Perotto, S. Tansley Review No. 82. Strategies of Arbuscular Mycorrhizal Fungi When Infecting Host Plants. New Phytologist 1995, 130, 3–21. [Google Scholar] [CrossRef]
- Krüger, M.; Krüger, C.; Walker, C.; Stockinger, H.; Schüßler, A. Phylogenetic Reference Data for Systematics and Phylotaxonomy of Arbuscular Mycorrhizal Fungi from Phylum to Species Level. New Phytologist 2012, 193, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Corradi, N.; Kuhn, G.; Sanders, I.R. Monophyly of β-Tubulin and H+-ATPase Gene Variants in Glomus Intraradices: Consequences for Molecular Evolutionary Studies of AM Fungal Genes. Fungal Genetics and Biology 2004, 41, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Gollotte, A.; Van Tuinen, D.; Atkinson, D. Diversity of Arbuscular Mycorrhizal Fungi Colonising Roots of the Grass Species Agrostis Capillaris and Lolium Perenne in a Field Experiment. Mycorrhiza 2004, 14, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Helgason, T.; Fitter, A.H.; Young, J.P.W. Molecular Diversity of Arbuscular Mycorrhizal Fungi Colonising Hyacinthoides Non-Scripta (Bluebell) in a Seminatural Woodland. Mol Ecol 1999, 8, 659–666. [Google Scholar] [CrossRef]
- Wubet, T.; Weiß, M.; Kottke, I.; Teketay, D.; Oberwinkler, F. Molecular Diversity of Arbuscular Mycorrhizal Fungi in Prunus Africana, an Endangered Medicinal Tree Species in Dry Afromontane Forests of Ethiopia. New Phytol 2004, 161, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Schüßler, A.; Schwarzott, D.; Walker, C. A New Fungal Phylum, the Glomeromycota: Phylogeny and Evolution. Mycol Res 2001, 105, 1413–1421. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Sánchez-García, M.; Niezgoda, P.; Zubek, S.; Fernández, F.; Vila, A.; Al-Yahya’ei, M.N.; Symanczik, S.; Milczarski, P.; Malinowski, R.; et al. A New Order, Entrophosporales, and Three New Entrophospora Species in Glomeromycota. Front Microbiol 2022, 13, 962856. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Palenzuela, J.; Ineichen, K.; da Silva, G.A. Advances in Glomeromycota Taxonomy and Classification. IMA Fungus 2011, 2, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.L.; Morton, J.B.; Walker, C. An Evidence-Based Consensus for the Classification of Arbuscular Mycorrhizal Fungi (Glomeromycota). Mycorrhiza 2013, 23, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Błaszkowski, J.; Niezgoda, P.; Meller, E.; Milczarski, P.; Zubek, S.; Malicka, M.; Uszok, S.; Casieri, L.; Goto, B.T.; Magurno, F. New Taxa in Glomeromycota: Polonosporaceae Fam. Nov., Polonospora Gen. Nov., and P. Polonica Comb. Nov. Mycol Prog 2021, 20, 941–951. [Google Scholar] [CrossRef]
- Goto, B.T.; Silva, G.A.; De Assis, D.M.A.; Silva, D.K.A.; Souza, R.G.; Ferreira, A.C.A.; Jobim, K.; Mello, C.M.A.; Vieira, H.E.E.; Maia, L.C.; et al. Intraornatosporaceae (Gigasporales), a New Family with Two New Genera and Two New Species. Mycotaxon 2012, 119, 117–132. [Google Scholar] [CrossRef]
- Symanczik, S.; Al-Yahya’ei, M.N.; Kozłowska, A.; Ryszka, P.; Błaszkowski, J. A New Genus, Desertispora, and a New Species, Diversispora Sabulosa, in the Family Diversisporaceae (Order Diversisporales, Subphylum Glomeromycotina). Mycol Prog 2018, 17, 437–449. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Niezgoda, P.; de Paiva, J.N.; da Silva, K.J.G.; Theodoro, R.C.; Jobim, K.; Orfanoudakis, M.; Goto, B.T. Sieverdingia Gen. Nov., S. Tortuosa Comb. Nov., and Diversispora Peloponnesiaca Sp. Nov. in the Diversisporaceae (Glomeromycota). Mycol Prog 2019, 18, 1363–1382. [Google Scholar] [CrossRef]
- Marinho, F.; Da Silva, G.A.; Ferreira, A.C.A.; Da Nóbrega Veras, J.S.; Da Sousa, N.M.F.; Goto, B.T.; Maia, L.C.; Oehl, F. Bulbospora Minima, a New Genus and a New Species in the Glomeromycetes from Semi-Arid Northeast Brazil. Sydowia 2014, 66, 313–323. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Sánchez-García, M.; Niezgoda, P.; Zubek, S.; Fernández, F.; Vila, A.; Al-Yahya’ei, M.N.; Symanczik, S.; Milczarski, P.; Malinowski, R.; et al. A New Order, Entrophosporales, and Three New Entrophospora Species in Glomeromycota. Front Microbiol 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Błaszkowski, J.; Yamato, M.; Niezgoda, P.; Zubek, S.; Milczarski, P.; Malinowski, R.; Meller, E.; Malicka, M.; Goto, B.T.; Uszok, S.; et al. A New Genus, Complexispora, with Two New Species, C. Multistratosa and C. Mediterranea, and Epigeocarpum Japonicum Sp. Nov. Mycol Prog 2023, 22, 1–15. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Chwat, G.; Góralska, A.; Ryszka, P.; Kovács, G.M. Two New Genera, Dominikia and Kamienskia, and D. Disticha Sp. Nov. in Glomeromycota. Nova Hedwigia 2015, 100, 225–238. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Mendoza, A.C.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; Da Silva, G.A.; Oehl, F. Funneliglomus, Gen. Nov., and Funneliglomus Sanmartinensis, a New Arbuscular Mycorrhizal Fungus from the Amazonia Region in Peru. Sydowia 2019, 71, 17–24. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Niezgoda, P.; Goto, B.T.; Kozłowska, A. Halonatospora Gen. Nov. with H. Pansihalos Comb. Nov. and Glomus Bareae Sp. Nov. (Glomeromycota; Glomeraceae). Botany 2018, 96, 737–748. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Ryszka, P.; Kozłowska, A. Dominikia Litorea, a New Species in the Glomeromycotina, and Biogeographic Distribution of Dominikia. Phytotaxa 2018, 338, 241–254. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; da Silva, G.A.; Oehl, F. Microkamienskia Gen. Nov. and Microkamienskia Peruviana, a New Arbuscular Mycorrhizal Fungus from Western Amazonia. Nova Hedwigia 2019, 109, 355–368. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; da Silva, G.A.; Oehl, F. Nanoglomus Plukenetiae, a New Fungus from Peru, and a Key to Small-Spored Glomeraceae Species, Including Three New Genera in the “Dominikia Complex/Clades. ” Mycol Prog 2019, 18, 1395–1409. [Google Scholar] [CrossRef]
- Sieverding, E.; Da Silva, G.A.; Berndt, R.; Oehl, F. Rhizoglomus, a New Genus of the Glomeraceae. Mycotaxon 2014, 129, 373–386. [Google Scholar] [CrossRef]
- Jobim, K.; Błaszkowski, J.; Niezgoda, P.; Kozłowska, A.; Zubek, S.; Mleczko, P.; Chachuła, P.; Kazue Ishikawa, N.; Goto, B.T.; Thines, M. New Sporocarpic Taxa in the Phylum Glomeromycota: Sclerocarpum Amazonicum Gen. et Sp. Nov. in the Family Glomeraceae (Glomerales) and Diversispora Sporocarpia Sp. Nov. in the Diversisporaceae (Diversisporales). 2019, 18, 369–384. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Kozłowska, A.; Crossay, T.; Symanczik, S.; Al-Yahya’ei, M.N. A New Family, Pervetustaceae with a New Genus, Pervetustus, and P. Simplex Sp. Nov. (Paraglomerales), and a New Genus, Innospora with I. Majewskii Comb. Nov. (Paraglomeraceae) in the Glomeromycotina. Nova Hedwigia 2017, 105, 397–410. [Google Scholar] [CrossRef]
- Steinkellner, S.; Lendzemo, V.; Langer, I.; Schweiger, P.; Khaosaad, T.; Toussaint, J.P.; Vierheilig, H. Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules 2007, Vol. 12, Pages 1290-1306 2007, 12, 1290–1306. [Google Scholar] [CrossRef] [PubMed]
- Mayzlish-Gati, E.; De-Cuyper, C.; Goormachtig, S.; Beeckman, T.; Vuylsteke, M.; Brewer, P.B.; Beveridge, C.A.; Yermiyahu, U.; Kaplan, Y.; Enzer, Y.; et al. Strigolactones Are Involved in Root Response to Low Phosphate Conditions in Arabidopsis. Plant Physiol 2012, 160, 1329–1341. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K.; Matsuzaki, K.I.; Hayashi, H. Plant Sesquiterpenes Induce Hyphal Branching in Arbuscular Mycorrhizal Fungi. Nature 2005 435:7043 2005, 435, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Besserer, A.; Puech-Pagès, V.; Kiefer, P.; Gomez-Roldan, V.; Jauneau, A.; Roy, S.; Portais, J.C.; Roux, C.; Bécard, G.; Séjalon-Delmas, N. Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLoS Biol 2006, 4, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Tamasloukht, B.; Séjalon-Delmas, N.; Kluever, A.; Jauneau, A.; Roux, C.; Bécard, G.; Franken, P. Root Factors Induce Mitochondrial-Related Gene Expression and Fungal Respiration during the Developmental Switch from Asymbiosis to Presymbiosis in the Arbuscular Mycorrhizal Fungus Gigaspora Rosea 1. 2003. [CrossRef]
- Vierheilig, H.; Bago, B.; Albrecht, C.; Poulin, M.J.; Piché, Y. Flavonoids and Arbuscular-Mycorrhizal Fungi. Adv Exp Med Biol 1998, 439, 9–33. [Google Scholar] [CrossRef] [PubMed]
- Koske, R.E. Multiple Germination by Spores of Gigaspora Gigantea. Transactions of the British Mycological Society 1981, 76, 328–330. [Google Scholar] [CrossRef]
- Mosse, B. The Regular Germination of Resting Spores and Some Observations on the Growth Requirements of an Endogone Sp. Causing Vesicular-Arbuscular Mycorrhiza. Transactions of the British Mycological Society 1959, 42, 273–IN4. [Google Scholar] [CrossRef]
- Paszkowski, U. A Journey through Signaling in Arbuscular Mycorrhizal Symbioses 2006. New Phytologist 2006, 172, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Maillet, F.; Poinsot, V.; André, O.; Puech-Pagés, V.; Haouy, A.; Gueunier, M.; Cromer, L.; Giraudet, D.; Formey, D.; Niebel, A.; et al. Fungal Lipochitooligosaccharide Symbiotic Signals in Arbuscular Mycorrhiza. Nature 2011, 469, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Genre, A.; Chabaud, M.; Timmers, T.; Bonfante, P.; Barker, D.G. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago Truncatula Root Epidermal Cells before Infection. Plant Cell 2005, 17, 3489–3499. [Google Scholar] [CrossRef] [PubMed]
- Genre, A.; Chabaud, M.; Faccio, A.; Barker, D.G.; Bonfante, P. Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago Truncatula and Daucus Carota. Plant Cell 2008, 20, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C. Coevolution of Roots and Mycorrhizas of Land Plants. New Phytologist 2002, 154, 275–304. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, I.; Rosendahl, L. Carbon Flow into Soil and External Hyphae from Roots of Mycorrhizal Cucumber Plants. New Phytologist 1990, 115, 77–83. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses. Nat Rev Microbiol 2008, 6, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Bago, B.; Pfeffer, P.E.; Shachar-Hill, Y. Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant Physiol 2000, 124, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Brands, M.; Wewer, V.; Dörmann, P.; Harrison, M.J. Arbuscular Mycorrhiza-Specific Enzymes FatM and RAM2 Fine-Tune Lipid Biosynthesis to Promote Development of Arbuscular Mycorrhiza. New Phytologist 2017, 214, 1631–1645. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Rillig, M.C. Arbuscular Mycorrhizal Contribution to Copper, Manganese and Iron Nutrient Concentrations in Crops – A Meta-Analysis. Soil Biol Biochem 2015, 81, 147–158. [Google Scholar] [CrossRef]
- Garcia, K.; Doidy, J.; Zimmermann, S.D.; Wipf, D.; Courty, P.E. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. Trends Plant Sci 2016, 21, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Wipf, D.; Krajinski, F.; van Tuinen, D.; Recorbet, G.; Courty, P.E. Trading on the Arbuscular Mycorrhiza Market: From Arbuscules to Common Mycorrhizal Networks. New Phytol 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [PubMed]
- Govindarajulu, M.; Pfeffer, P.E.; Jin, H.; Abubaker, J.; Douds, D.D.; Allen, J.W.; Bücking, H.; Lammers, P.J.; Shachar-Hill, Y. Nitrogen Transfer in the Arbuscular Mycorrhizal Symbiosis. Nature 2005, 435, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Zimmermann, S.D. The Role of Mycorrhizal Associations in Plant Potassium Nutrition. Front Plant Sci 2014, 5, 337. [Google Scholar] [CrossRef] [PubMed]
- Watts-Williams, S.J.; Gill, A.R.; Jewell, N.; Brien, C.J.; Berger, B.; Tran, B.T.T.; Mace, E.; Cruickshank, A.W.; Jordan, D.R.; Garnett, T.; et al. Enhancement of Sorghum Grain Yield and Nutrition: A Role for Arbuscular Mycorrhizal Fungi Regardless of Soil Phosphorus Availability. Plants, People, Planet 2022, 4, 143–156. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M.; et al. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Front Microbiol 2017, 8, 277334. [Google Scholar] [CrossRef]
- Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. How Does Arbuscular Mycorrhizal Symbiosis Regulate Root Hydraulic Properties and Plasma Membrane Aquaporins in Phaseolus Vulgaris under Drought, Cold or Salinity Stresses? New Phytol 2007, 173, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Kakouridis, A.; Hagen, J.A.; Kan, M.P.; Mambelli, S.; Feldman, L.J.; Herman, D.J.; Weber, P.K.; Pett-Ridge, J.; Firestone, M.K. Routes to Roots: Direct Evidence of Water Transport by Arbuscular Mycorrhizal Fungi to Host Plants. New Phytologist 2022, 236, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Kobae, Y.; Hata, S. Dynamics of Periarbuscular Membranes Visualized with a Fluorescent Phosphate Transporter in Arbuscular Mycorrhizal Roots of Rice. Plant Cell Physiol 2010, 51, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Javot, H.; Penmetsa, R.V.; Terzaghi, N.; Cook, D.R.; Harrison, M.J. A Medicago Truncatula Phosphate Transporter Indispensable for the Arbuscular Mycorrhizal Symbiosis. Proc Natl Acad Sci U S A 2007, 104, 1720–1725. [Google Scholar] [CrossRef]
- Bach, E.M.; Narvaez-Rivera, G.; Murray, K.; Bauer, J.T.; Hofmockel, K.S. The Dynamic Life of Arbuscular Mycorrhizal Fungal Symbionts. Ecology 2018, 99, 978–980. [Google Scholar] [CrossRef] [PubMed]
- Bucher, M.; Wegmüller, S.; Drissner, D. Chasing the Structures of Small Molecules in Arbuscular Mycorrhizal Signaling. Curr Opin Plant Biol 2009, 12, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.S.; Xia, R.X.; Zou, Y.N. Improved Soil Structure and Citrus Growth after Inoculation with Three Arbuscular Mycorrhizal Fungi under Drought Stress. Eur J Soil Biol 2008, 44, 122–128. [Google Scholar] [CrossRef]
- Rillig, M.C. Arbuscular Mycorrhizae, Glomalin, and Soil Aggregation. 2004, 84, 355–363. [CrossRef]
- Syamsiyah, J.; Herawati, A. ; Mujiyo The Potential of Arbuscular Mycorrhizal Fungi Application on Aggregrate Stability in Alfisol Soil. IOP Conf Ser Earth Environ Sci 2018, 142. [Google Scholar] [CrossRef]
- Bowles, T.M.; Barrios-Masias, F.H.; Carlisle, E.A.; Cavagnaro, T.R.; Jackson, L.E. Effects of Arbuscular Mycorrhizae on Tomato Yield, Nutrient Uptake, Water Relations, and Soil Carbon Dynamics under Deficit Irrigation in Field Conditions. Sci Total Environ 2016, 566–567, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Bender, S.F.; Conen, F.; Van der Heijden, M.G.A. Mycorrhizal Effects on Nutrient Cycling, Nutrient Leaching and N2O Production in Experimental Grassland. Soil Biol Biochem 2015, 80, 283–292. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Huang, Y.-M.; Li, Y.; He, X.-H. Contribution of Arbuscular Mycorrhizas to Glomalin-Related Soil Protein, Soil Organic Carbon and Aggregate Stability in Citrus Rhizosphere. INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY Int. J. Agric. Biol 2014, 16, 207–212. [Google Scholar]
- Agnihotri, R.; Sharma, M.P.; Prakash, A.; Ramesh, A.; Bhattacharjya, S.; Patra, A.K.; Manna, M.C.; Kurganova, I.; Kuzyakov, Y. Glycoproteins of Arbuscular Mycorrhiza for Soil Carbon Sequestration: Review of Mechanisms and Controls. Science of The Total Environment 2022, 806, 150571. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, I. Transport of Phosphorus and Carbon in VA Mycorrhizas. Mycorrhiza 1995, 297–324. [Google Scholar] [CrossRef] [PubMed]
- Gavito, M.E.; Jakobsen, I.; Mikkelsen, T.N.; Mora, F. Direct Evidence for Modulation of Photosynthesis by an Arbuscular Mycorrhiza-Induced Carbon Sink Strength. New Phytologist 2019, 223, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Kaschuk, G.; Kuyper, T.W.; Leffelaar, P.A.; Hungria, M.; Giller, K.E. Are the Rates of Photosynthesis Stimulated by the Carbon Sink Strength of Rhizobial and Arbuscular Mycorrhizal Symbioses? Soil Biol Biochem 2009, 41, 1233–1244. [Google Scholar] [CrossRef]
- Wright, D.P.; Read, D.J.; Scholes, J.D. Mycorrhizal Sink Strength Influences Whole Plant Carbon Balance of Trifolium Repens L. Plant Cell Environ 1998, 21, 881–891. [Google Scholar] [CrossRef]
- Hijri, M. Analysis of a Large Dataset of Mycorrhiza Inoculation Field Trials on Potato Shows Highly Significant Increases in Yield. Mycorrhiza 2016, 26, 209–214. [Google Scholar] [CrossRef]
- Sabia, E.; Claps, S.; Morone, G.; Bruno, A.; Sepe, L.; Aleandri, R. Field Inoculation of Arbuscular Mycorrhiza on Maize (Zea Mays L.) under Low Inputs: Preliminary Study on Quantitative and Qualitative Aspects. Italian Journal of Agronomy 2015, 10, 30–33. [Google Scholar] [CrossRef]
- Lu, F.C.; Lee, C.Y.; Wang, C.L. The Influence of Arbuscularmycorrhizal Fungi Inoculation on Yam (Dioscorea Spp.) Tuber Weights and Secondary Metabolite Content. PeerJ 2015, 2015, e1266. [Google Scholar] [CrossRef]
- Gao, X.; Guo, H.; Zhang, Q.; Guo, H.; Zhang, L.; Zhang, C.; Gou, Z.; Liu, Y.; Wei, J.; Chen, A.; et al. Arbuscular Mycorrhizal Fungi (AMF) Enhanced the Growth, Yield, Fiber Quality and Phosphorus Regulation in Upland Cotton (Gossypium Hirsutum L.). Scientific Reports 2020 10:1 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, L.; Ma, F.; Yang, J.; Su, M. Effects of Arbuscular Mycorrhizal Fungi Inoculation on Carbon and Nitrogen Distribution and Grain Yield and Nutritional Quality in Rice (Oryza Sativa L.). J Sci Food Agric 2017, 97, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; JianFu, L.; MingYuan, W. Southwest China J. Agric. Sci. 2014, pp. 2101–2105.
- Baslam, M.; Garmendia, I.; Goicoechea, N. Arbuscular Mycorrhizal Fungi (AMF) Improved Growth and Nutritional Quality of Greenhouse-Grown Lettuce. J Agric Food Chem 2011, 59, 5504–5515. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.L.; Zhang, M.H.; Shi, Z.Y.; Yang, S.; Zhang, M.G.; Wang, Z.; Wu, S.W.; Gao, J.K. Arbuscular Mycorrhizal Fungi Enhance Active Ingredients of Medicinal Plants: A Quantitative Analysis. Front Plant Sci 2023, 14, 1276918. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Karik, Ü. AMF and PGPR Enhance Yield and Secondary Metabolite Profile of Basil (Ocimum Basilicum L.). Ind Crops Prod 2022, 176, 114327. [Google Scholar] [CrossRef]
- Akachoud, O.; Bouamama, H.; Facon, N.; Laruelle, F.; Zoubi, B.; Benkebboura, A.; Ghoulam, C.; Qaddoury, A.; Lounès-Hadj Sahraoui, A. Mycorrhizal Inoculation Improves the Quality and Productivity of Essential Oil Distilled from Three Aromatic and Medicinal Plants: Thymus Satureioides, Thymus Pallidus, and Lavandula Dentata. Agronomy 2022, Vol. 12, Page 2223 2022, 12, 2223. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front Microbiol 2015, 6, 1559. [Google Scholar] [CrossRef] [PubMed]
- Thirkell, T.J.; Charters, M.D.; Elliott, A.J.; Sait, S.M.; Field, K.J. Are Mycorrhizal Fungi Our Sustainable Saviours? Considerations for Achieving Food Security. Journal of Ecology 2017, 105, 921–929. [Google Scholar] [CrossRef]
- Hernández-Acosta, E.; Trejo-Aguilar, D.; Rivera-Fernández, A.; Ferrera-Cerrato, R.; Hernández-Acosta, E.; Trejo-Aguilar, D.; Rivera-Fernández, A.; Ferrera-Cerrato, R. Arbuscular Mycorrhiza as a Biofertilizer in Production of Coffee. Terra Latinoamericana 2020, 38, 613–628. [Google Scholar] [CrossRef]
- Madawala, H.M.S.P. Arbuscular Mycorrhizal Fungi as Biofertilizers: Current Trends, Challenges, and Future Prospects. Biofertilizers: Volume 1: Advances in Bio-inoculants 2021, 83–93. [CrossRef]
- Wu, S.; Shi, Z.; Chen, X.; Gao, J.; Wang, X. Arbuscular Mycorrhizal Fungi Increase Crop Yields by Improving Biomass under Rainfed Condition: A Meta-Analysis. PeerJ 2022, 10. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Gill, S.S.; Fujita, M. Physiological Role of Nitric Oxide in Plants Grown Under Adverse Environmental Conditions. Plant Acclimation to Environmental Stress 2013, 269–322. [Google Scholar] [CrossRef] [PubMed]
- Ahanger, M.A.; Tittal, M.; Mir, R.A.; Agarwal, R. Alleviation of Water and Osmotic Stress-Induced Changes in Nitrogen Metabolizing Enzymes in Triticum Aestivum L. Cultivars by Potassium. Protoplasma 2017, 254, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Borde, M.; Dudhane, M.; Jite, P.K. AM Fungi Influences the Photosynthetic Activity, Growth and Antioxidant Enzymes in Allium Sativum L. under Salinity Condition. Not Sci Biol 2010, 2, 64–71. [Google Scholar] [CrossRef]
- Cheng, L.; Booker, F.L.; Tu, C.; Burkey, K.O.; Zhou, L.; Shew, H.D.; Rufty, T.W.; Hu, S. Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition under Elevated CO2. Science 2012, 337, 1084–1087. [Google Scholar] [CrossRef] [PubMed]
- Diagne, N.; Ndour, M.; Djighaly, P.I.; Ngom, D.; Ngom, M.C.N.; Ndong, G.; Svistoonoff, S.; Cherif-Silini, H. Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) on Salt Stress Tolerance of Casuarina Obesa (Miq.). Front Sustain Food Syst 2020, 4, 601004. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Li, Y.; Wu, A.; Huang, J. Effects of Arbuscular Mycorrhizal Fungi on Growth and Nitrogen Uptake of Chrysanthemum Morifolium under Salt Stress. PLoS One 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.J.; Zhang, X.H.; Wong, M.H.; Ye, Z.H.; Lou, L.Q.; Wang, Y.S.; Zhu, Y.G. Increase of Multi-Metal Tolerance of Three Leguminous Plants by Arbuscular Mycorrhizal Fungi Colonization. Environ Geochem Health 2007, 29, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Hodge, A.; Kuzyakov, Y. Plant and Mycorrhizal Regulation of Rhizodeposition. New Phytologist 2004, 163, 459–480. [Google Scholar] [CrossRef] [PubMed]
- Giasson, P.; Karam, A.; Jaouich, A. Arbuscular Mycorrhizae and Alleviation of Soil Stresses on Plant Growth. Mycorrhizae: Sustainable Agriculture and Forestry 2009, 99–134. [CrossRef]
- Yang, C.; Zhao, W.; Wang, Y.; Zhang, L.; Huang, S.; Lin, J. Metabolomics Analysis Reveals the Alkali Tolerance Mechanism in Puccinellia Tenuiflora Plants Inoculated with Arbuscular Mycorrhizal Fungi. Microorganisms 2020, Vol. 8, Page 327 2020, 8, 327. [Google Scholar] [CrossRef]
- Sheng, M.; Tang, M.; Zhang, F.; Huang, Y. Influence of Arbuscular Mycorrhiza on Organic Solutes in Maize Leaves under Salt Stress. Mycorrhiza 2011, 21, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Gholamhoseini, M.; Ghalavand, A.; Dolatabadian, A.; Jamshidi, E.; Khodaei-Joghan, A. Effects of Arbuscular Mycorrhizal Inoculation on Growth, Yield, Nutrient Uptake and Irrigation Water Productivity of Sunflowers Grown under Drought Stress. Agric Water Manag 2013, 117, 106–114. [Google Scholar] [CrossRef]
- Al-Karaki, G.; McMichael, B.; Zak, J. Field Response of Wheat to Arbuscular Mycorrhizal Fungi and Drought Stress. Mycorrhiza 2004, 14, 263–269. [Google Scholar] [CrossRef]
- Pavithra, D.; Yapa, N. Arbuscular Mycorrhizal Fungi Inoculation Enhances Drought Stress Tolerance of Plants. Groundw Sustain Dev 2018, 7, 490–494. [Google Scholar] [CrossRef]
- Birhane, E.; Sterck, F.J.; Fetene, M.; Bongers, F.; Kuyper, T.W. Arbuscular Mycorrhizal Fungi Enhance Photosynthesis, Water Use Efficiency, and Growth of Frankincense Seedlings under Pulsed Water Availability Conditions. Oecologia 2012, 169, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Marulanda, A.; Azcón, R.; Ruiz-Lozano, J.M. Contribution of Six Arbuscular Mycorrhizal Fungal Isolates to Water Uptake by Lactuca Sativa Plants under Drought Stress. Physiol Plant 2003, 119, 526–533. [Google Scholar] [CrossRef]
- Bowles, T.M.; Barrios-Masias, F.H.; Carlisle, E.A.; Cavagnaro, T.R.; Jackson, L.E. Effects of Arbuscular Mycorrhizae on Tomato Yield, Nutrient Uptake, Water Relations, and Soil Carbon Dynamics under Deficit Irrigation in Field Conditions. Science of The Total Environment 2016, 566–567, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.; Schmid, B.; Römheld, V.; George, E. Extraradical Development and Contribution to Plant Performance of an Arbuscular Mycorrhizal Symbiosis Exposed to Complete or Partial Rootzone Drying. Mycorrhiza 2009, 20, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Maure, C.; Verdoucq, L.; Luu, D.T.; Santoni, V. Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annu Rev Plant Biol 2008, 59, 595–624. [Google Scholar] [CrossRef]
- del Mar Alguacil, M.; Kohler, J.; Caravaca, F.; Roldán, A. Differential Effects of Pseudomonas Mendocina and Glomus Intraradices on Lettuce Plants Physiological Response and Aquaporin PIP2 Gene Expression under Elevated Atmospheric CO2 and Drought. Microb Ecol 2009, 58, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Z.; Hui, C.; Tang, M.; Zhang, H. Effect of Rhizophagus Irregularis on Osmotic Adjustment, Antioxidation and Aquaporin PIP Genes Expression of Populus × Canadensis ‘Neva’ under Drought Stress. Acta Physiol Plant 2016, 38. [Google Scholar] [CrossRef]
- Jia-Dong, H.; Tao, D.; Hui-Hui, W.; Zou, Y.N.; Wu, Q.S.; Kamil, K. Mycorrhizas Induce Diverse Responses of Root TIP Aquaporin Gene Expression to Drought Stress in Trifoliate Orange. Sci Hortic 2019, 243, 64–69. [Google Scholar] [CrossRef]
- Bárzana, G.; Aroca, R.; Bienert, G.P.; Chaumont, F.; Ruiz-Lozano, J.M. New Insights into the Regulation of Aquaporins by the Arbuscular Mycorrhizal Symbiosis in Maize Plants under Drought Stress and Possible Implications for Plant Performance. Mol Plant Microbe Interact 2014, 27, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, G.; Erice, G.; Aroca, R.; Chaumont, F.; Ruiz-Lozano, J.M. Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar. Front Plant Sci 2017, 8, 268043. [Google Scholar] [CrossRef]
- Wang, D.; Ni, Y.; Xie, K.; Li, Y.; Wu, W.; Shan, H.; Cheng, B.; Li, X. Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi. International Journal of Molecular Sciences 2024, Vol. 25, Page 4205 2024, 25, 4205. [Google Scholar] [CrossRef] [PubMed]
- Ouziad, F.; Wilde, P.; Schmelzer, E.; Hildebrandt, U.; Bothe, H. Analysis of Expression of Aquaporins and Na + /H + Transporters in Tomato Colonized by Arbuscular Mycorrhizal Fungi and Affected by Salt Stress. Environ Exp Bot 2006, 57, 177–186. [Google Scholar] [CrossRef]
- He, Z.Q.; He, C.X.; Yan, Y.; Zhang, Z.B.; Wang, H.S.; Li, H.X.; Tang, H.R. Regulative Effect of Arbuscular Mycorrhizal Fungi on Water Absorption and Expression of Aquaporin Genes in Tomato under Salt Stress. ACTA HORTICULTURAE SINICA 2011. [Google Scholar]
- Ding, Y.E.; Fan, Q.F.; He, J.D.; Wu, H.H.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Effects of Mycorrhizas on Physiological Performance and Root TIPs Expression in Trifoliate Orange under Salt Stress. Arch Agron Soil Sci 2020, 66, 182–192. [Google Scholar] [CrossRef]
- Aroca, R.; Bago, A.; Sutka, M.; Paz, J.A.; Cano, C.; Amodeo, G.; Ruiz-Lozano, J.M. Expression Analysis of the First Arbuscular Mycorrhizal Fungi Aquaporin Described Reveals Concerted Gene Expression between Salt-Stressed and Nonstressed Mycelium. Mol Plant Microbe Interact 2009, 22, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, L.; He, X.; Tian, C. Water Strategy of Mycorrhizal Rice at Low Temperature through the Regulation of PIP Aquaporins with the Involvement of Trehalose. Applied Soil Ecology 2014, 84, 185–191. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Cornic, G. Photosynthetic Carbon Assimilation and Associated Metabolism in Relation to Water Deficits in Higher Plants. Plant Cell Environ 2002, 25, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sánchez, M.; Aroca, R.; Muñoz, Y.; Polón, R.; Ruiz-Lozano, J.M. The Arbuscular Mycorrhizal Symbiosis Enhances the Photosynthetic Efficiency and the Antioxidative Response of Rice Plants Subjected to Drought Stress. J Plant Physiol 2010, 167, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.C.; Song, F.B.; Liu, S.Q.; Liu, T.D.; Zhou, X. Arbuscular Mycorrhizae Improves Photosynthesis and Water Status of Zea Mays L. under Drought Stress. https://pse.agriculturejournals.cz/doi/10.17221/23/2011-PSE.html 2012, 58, 186–191. [Google Scholar] [CrossRef]
- Boldt, K.; Pörs, Y.; Haupt, B.; Bitterlich, M.; Kühn, C.; Grimm, B.; Franken, P. Photochemical Processes, Carbon Assimilation and RNA Accumulation of Sucrose Transporter Genes in Tomato Arbuscular Mycorrhiza. J Plant Physiol 2011, 168, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Sheng, M.; Tang, M.; Zhang, F.; Huang, Y. Influence of Arbuscular Mycorrhiza on Organic Solutes in Maize Leaves under Salt Stress. Mycorrhiza 2011, 21, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Elhindi, K.M.; El-Din, A.S.; Elgorban, A.M. The Impact of Arbuscular Mycorrhizal Fungi in Mitigating Salt-Induced Adverse Effects in Sweet Basil (Ocimum Basilicum L.). Saudi J Biol Sci 2017, 24, 170–179. [Google Scholar] [CrossRef] [PubMed]
- El-Nashar, Y.I. Response of Snapdragon (Antirrhinum Majus L.) to Blended Water Irrigation and Arbuscular Mycorrhizal Fungi Inoculation: Uptake of Minerals and Leaf Water Relations. http://ps.ueb.cas.cz/doi/10.1007/s11099-016-0650-7.html 2017, 55, 201–209. [Google Scholar] [CrossRef]
- Ait-El-Mokhtar, M.; Laouane, R. Ben; Anli, M.; Boutasknit, A.; Wahbi, S.; Meddich, A. Use of Mycorrhizal Fungi in Improving Tolerance of the Date Palm (Phoenix Dactylifera L.) Seedlings to Salt Stress. Sci Hortic 2019, 253, 429–438. [Google Scholar] [CrossRef]
- Zhu, X.C.; Song, F. Bin; Liu, T.D.; Liu, S.Q. Arbuscular Mycorrhizae Reducing Water Loss in Maize Plants under Low Temperature Stress. Plant Signal Behav 2010, 5, 591–593. [Google Scholar] [CrossRef] [PubMed]
- Latef, A.A.H.A.; Chaoxing, H. Arbuscular Mycorrhizal Influence on Growth, Photosynthetic Pigments, Osmotic Adjustment and Oxidative Stress in Tomato Plants Subjected to Low Temperature Stress. Acta Physiol Plant 2011, 33, 1217–1225. [Google Scholar] [CrossRef]
- Schubert, A.; Allara, P.; Morte, A. Cleavage of Sucrose in Roots of Soybean (Glycine Max) Colonized by an Arbuscular Mycorrhizal Fungus. New Phytologist 2004, 161, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Balestrini, R.; Brunetti, C.; Chitarra, W.; Nerva, L. Photosynthetic Traits and Nitrogen Uptake in Crops: Which Is the Role of Arbuscular Mycorrhizal Fungi? Plants 2020, Vol. 9, Page 1105 2020, 9, 1105. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, K.S.; Charest, C.; Dwyer, L.M.; Hamilton, R.I. Effects of Arbuscular Mycorrhizae on Leaf Water Potential, Sugar Content, and P Content during Drought and Recovery of Maize. 1997, 75, 1582–1591,. [CrossRef]
- Andersen, C.P.; Sucoff, E.I.; Dixon, R.K. The Influence of Low Soil Temperature on the Growth of Vesicular–Arbuscular Mycorrhizal Fraxinuspennsylvanica. 1987, 17, 951–956. [CrossRef]
- Kiers, E.T.; Duhamel, M.; Beesetty, Y.; Mensah, J.A.; Franken, O.; Verbruggen, E.; Fellbaum, C.R.; Kowalchuk, G.A.; Hart, M.M.; Bago, A.; et al. Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science (1979) 2011, 333, 880–882. [Google Scholar] [CrossRef]
- Hildebrandt, U.; Regvar, M.; Bothe, H. Arbuscular Mycorrhiza and Heavy Metal Tolerance. Phytochemistry 2007, 68, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Krieger-Liszkay, A.; Fufezan, C.; Trebst, A. Singlet Oxygen Production in Photosystem II and Related Protection Mechanism. Photosynth Res 2008, 98, 551–564. [Google Scholar] [CrossRef]
- Wagner, D.; Przybyla, D.; Op Den Camp, R.; Kim, C.; Landgraf, F.; Keun, P.L.; Würsch, M.; Laloi, C.; Nater, M.; Hideg, E.; et al. The Genetic Basis of Singlet Oxygen-Induced Stress Response of Arabidopsis Thaliana. Science (1979) 2004, 306, 1183–1185. [Google Scholar] [CrossRef]
- Demidchik, V. Mechanisms of Oxidative Stress in Plants: From Classical Chemistry to Cell Biology. Environ Exp Bot 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Anjum, N.A.; Sofo, A.; Scopa, A.; Roychoudhury, A.; Gill, S.S.; Iqbal, M.; Lukatkin, A.S.; Pereira, E.; Duarte, A.C.; Ahmad, I. Lipids and Proteins--Major Targets of Oxidative Modifications in Abiotic Stressed Plants. Environ Sci Pollut Res Int 2015, 22, 4099–4121. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, D.M.; Umbach, A.L.; Subbaiah, C.C.; Siedow, J.N. Mitochondrial Reactive Oxygen Species. Contribution to Oxidative Stress and Interorganellar Signaling. Plant Physiol 2006, 141, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front Environ Sci 2014, 2, 121942. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu Rev Plant Biol 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Rani, B. Effect of Arbuscular Mycorrhiza Fungi on Biochemical Parameters in Wheat (Triticum Aestivum L.) under Drought Conditions. 2016.
- Abdelhameed, R.E.; Metwally, R.A. Alleviation of Cadmium Stress by Arbuscular Mycorrhizal Symbiosis. Int J Phytoremediation 2019, 21, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, B.; Chai, H.; Yang, X.; Song, W.; Li, S.; Lu, A.; Zhang, T.; Sun, W. Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in C3 (Leymus Chinensis) and C4 (Hemarthria Altissima) Grasses via Altering Antioxidant Enzyme Activities and Photosynthesis. Front Plant Sci 2019, 10, 450785. [Google Scholar] [CrossRef]
- Talaat, N.B.; Shawky, B.T. Protective Effects of Arbuscular Mycorrhizal Fungi on Wheat (Triticum Aestivum L.) Plants Exposed to Salinity. Environ Exp Bot 2014, 98, 20–31. [Google Scholar] [CrossRef]
- Jahromi, F.; Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. Influence of Salinity on the in Vitro Development of Glomus Intraradices and on the in Vivo Physiological and Molecular Responses of Mycorrhizal Lettuce Plants. Microb Ecol 2008, 55, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Kandowangko, N.Y.; Suryatmana, G.I.A.T.; Nurlaeny, N.; Simanungkalit, R.D.M. Proline and Abscisic Acid Content in Droughted Corn Plant Inoculated with Azospirillum Sp. and Arbuscular Mycorrhizae Fungi. Hayati 2009, 16, 15–20. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Bashir, T.; Hashem, A.; Abd Allah, E.F. Systems Biology Approach in Plant Abiotic Stresses. Plant Physiology and Biochemistry 2017, 121, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Neuman, D.S.; Reiber, J.M.; Green, C.D.; Saxton, A.M.; Augé, R.M. Mycorrhizal Influence on Hydraulic and Hormonal Factors Implicated in the Control of Stomatal Conductance during Drought. J Exp Bot 1996, 47, 1541–1550. [Google Scholar] [CrossRef]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd Allah, E.F. Arbuscular Mycorrhizal Fungi Regulate the Oxidative System, Hormones and Ionic Equilibrium to Trigger Salt Stress Tolerance in Cucumis Sativus L. Saudi J Biol Sci 2018, 25, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Singh, S. Arbuscular Mycorrhiza Rhizophagus Irregularis and Silicon Modulate Growth, Proline Biosynthesis and Yield in Cajanus Cajan L. Millsp. (Pigeonpea) Genotypes Under Cadmium and Zinc Stress. J Plant Growth Regul 2018, 37, 46–63. [Google Scholar] [CrossRef]
- Wasilewsk, A.; Vla _ D A, F.; Sirichandr, C.; Redko, Y.; Jammes, F.; Valon, C.; Frei Dit Frey, N.; Leung, J. An Update on Abscisic Acid Signaling in Plants and More. Molecular Plant • 1,. [CrossRef]
- Zivcak, M.; Brestic, M.; Sytar, O. Osmotic Adjustment and Plant Adaptation to Drought Stress. Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry. [CrossRef]
- Chun, S.C.; Paramasivan, M.; Chandrasekaran, M. Proline Accumulation Influenced by Osmotic Stress in Arbuscular Mycorrhizal Symbiotic Plants. Front Microbiol 2018, 9, 403412. [Google Scholar] [CrossRef]
- Kubikova, E.; Jennifer, L.M.; Bonnie, H.O.; Michael, D.M.; Augé, M.R. Mycorrhizal Impact on Osmotic Adjustment in Ocimum Basilicum during a Lethal Drying Episode. J Plant Physiol 2001, 158, 1227–1230. [Google Scholar] [CrossRef]
- Ouziad, F.; Hildebrandt, U.; Schmelzer, E.; Bothe, H. Differential Gene Expressions in Arbuscular Mycorrhizal-Colonized Tomato Grown under Heavy Metal Stress. J Plant Physiol 2005, 162, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, R.; Sun, X.; Liu, L.; Liu, P.; Tang, J.; Zhang, C.; Liu, H. Heavy Metal Stress in Plants: Ways to Alleviate with Exogenous Substances. Science of The Total Environment 2023, 897, 165397. [Google Scholar] [CrossRef] [PubMed]
- Gamalero, E.; Lingua, G.; Berta, G.; Glick, B.R. Beneficial Role of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi on Plant Responses to Heavy Metal Stress. 2009, 55, 501–514. [CrossRef]
- Comby, M.; Mustafa, G.; Magnin-Robert, M.; Randoux, B.; Fontaine, J.; Reignault, P.; Lounès-Hadj Sahraoui, A. Arbuscular Mycorrhizal Fungi as Potential Bioprotectants against Aerial Phytopathogens and Pests. Arbuscular Mycorrhizas and Stress Tolerance of Plants 2017, 195–223. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, M.G.A.; Streitwolf-Engel, R.; Riedl, R.; Siegrist, S.; Neudecker, A.; Ineichen, K.; Boller, T.; Wiemken, A.; Sanders, I.R. The Mycorrhizal Contribution to Plant Productivity, Plant Nutrition and Soil Structure in Experimental Grassland. New Phytol 2006, 172, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Schouteden, N.; Waele, D. De; Panis, B.; Vos, C.M. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front Microbiol 2015, 6, 1280. [Google Scholar] [CrossRef]
- Pérez-De-Luque, A.; Tille, S.; Johnson, I.; Pascual-Pardo, D.; Ton, J.; Cameron, D.D. The Interactive Effects of Arbuscular Mycorrhiza and Plant Growth-Promoting Rhizobacteria Synergistically Enhance Host Plant Defences against Pathogens. Scientific Reports 2017 7:1 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Lioussanne, L. The Role of the Arbuscular Mycorrhiza-Associated Rhizobacteria in the Biocontrol of Soilborne Phytopathogens: A Review. Spanish Journal of Agricultural Research 2010, 8, 51–61. [Google Scholar] [CrossRef]
- Nacoon, S.; Jogloy, S.; Riddech, N.; Mongkolthanaruk, W.; Kuyper, T.W.; Boonlue, S. Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus Tuberosus L. Scientific Reports 2020 10:1 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bücking, H.; Mensah, J.A.; Fellbaum, C.R. Common Mycorrhizal Networks and Their Effect on the Bargaining Power of the Fungal Partner in the Arbuscular Mycorrhizal Symbiosis. Commun Integr Biol 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Babikova, Z.; Gilbert, L.; Bruce, T.J.A.; Birkett, M.; Caulfield, J.C.; Woodcock, C.; Pickett, J.A.; Johnson, D. Underground Signals Carried through Common Mycelial Networks Warn Neighbouring Plants of Aphid Attack. Ecol Lett 2013, 16, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.; Gilbert, L. Interplant Signalling through Hyphal Networks. New Phytol 2015, 205, 1448–1453. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Zeng, R. Sen; Xu, J.F.; Li, J.; Shen, X.; Yihdego, W.G. Interplant Communication of Tomato Plants through Underground Common Mycorrhizal Networks. PLoS One 2010, 5, e13324. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chen, D.; Lu, K.; Sun, Z.; Zeng, R. Enhanced Tomato Disease Resistance Primed by Arbuscular Mycorrhizal Fungus. Front Plant Sci 2015, 6, 786. [Google Scholar] [CrossRef] [PubMed]
- Babikova, Z.; Johnson, D.; Bruce, T.; Pickett, J.; Gilbert, L. Underground Allies: How and Why Do Mycelial Networks Help Plants Defend Themselves?: What Are the Fitness, Regulatory, and Practical Implications of Defence-Related Signaling between Plants via Common Mycelial Networks? Bioessays 2014, 36, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Zamioudis, C.; Pieterse, C.M.J. Modulation of Host Immunity by Beneficial Microbes. Mol Plant Microbe Interact 2012, 25, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, J.M. Plant Immunity Triggered by Microbial Molecular Signatures. Mol Plant 2010, 3, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.D.; Neal, A.L.; van Wees, S.C.M.; Ton, J. Mycorrhiza-Induced Resistance: More than the Sum of Its Parts? Trends Plant Sci 2013, 18, 539. [Google Scholar] [CrossRef] [PubMed]
- De Román, M.; Fernández, I.; Wyatt, T.; Sahrawy, M.; Heil, M.; Pozo, M.J. Elicitation of Foliar Resistance Mechanisms Transiently Impairs Root Association with Arbuscular Mycorrhizal Fungi. Journal of Ecology 2011, 99, 36–45. [Google Scholar] [CrossRef]
- Ton, J.; Flors, V.; Mauch-Mani, B. The Multifaceted Role of ABA in Disease Resistance. Trends Plant Sci 2009, 14, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Trouvelot, S.; Bonneau, L.; Redecker, D.; van Tuinen, D.; Adrian, M.; Wipf, D. Arbuscular Mycorrhiza Symbiosis in Viticulture: A Review. Agronomy for Sustainable Development 2015 35:4 2015, 35, 1449–1467. [Google Scholar] [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology 2012 38:6 2012, 38, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.D.; Neal, A.L.; Van Wees, S.C.M.; Ton, J. Mycorrhiza-Induced Resistance: More than the Sum of Its Parts? 2013. [CrossRef]
- Cordier, C.; Gianinazzi, S.; Gianinazzi-Pearson, V. Colonisation Patterns of Root Tissues ByPhytophthora Nicotianae Var.Parasitica Related to Reduced Disease in Mycorrhizal Tomato. Plant and Soil 1996 185:2 1996, 185, 223–232. [Google Scholar] [CrossRef]
- Cordier, C.; Pozo, M.J.; Barea, J.M.; Gianinazzi, S.; Gianinazzi-Pearson, V. Cell Defense Responses Associated with Localized and Systemic Resistance to Phytophthora Parasitica Induced in Tomato by an Arbuscular Mycorrhizal Fungus. Molecular Plant-Microbe Interactions 1998, 11, 1017–1028. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annu Rev Plant Biol 2011, 62, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Maldonado-Mendoza, I.; Lopez-Meyer, M.; Cheung, F.; Town, C.D.; Harrison, M.J. Arbuscular Mycorrhizal Symbiosis Is Accompanied by Local and Systemic Alterations in Gene Expression and an Increase in Disease Resistance in the Shoots. The Plant Journal 2007, 50, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Leon-Reyes, A.; Van Der Ent, S.; Van Wees, S.C.M. Networking by Small-Molecule Hormones in Plant Immunity. Nature Chemical Biology 2009 5:5 2009, 5, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced Systemic Resistance by Beneficial Microbes. Annu Rev Phytopathol 2014, 52, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Van der Ent, S.; Van Wees, S.C.M.; Pieterse, C.M.J. Jasmonate Signaling in Plant Interactions with Resistance-Inducing Beneficial Microbes. Phytochemistry 2009, 70, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling Mycorrhiza-Induced Resistance. Curr Opin Plant Biol 2007, 10, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Heidel, A.J.; Baldwin, I.T. Microarray Analysis of Salicylic Acid- and Jasmonic Acid-Signalling in Responses of Nicotiana Attenuata to Attack by Insects from Multiple Feeding Guilds. Plant Cell Environ 2004, 27, 1362–1373. [Google Scholar] [CrossRef]
- Gallou, A.; Lucero Mosquera, H.P.; Cranenbrouck, S.; Suárez, J.P.; Declerck, S. Mycorrhiza Induced Resistance in Potato Plantlets Challenged by Phytophthora Infestans. Physiol Mol Plant Pathol 2011, 76, 20–26. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Z.; Zhang, X.; Xie, W.; Chen, B. Arbuscular Mycorrhizal Fungi Induced Plant Resistance against Fusarium Wilt in Jasmonate Biosynthesis Defective Mutant and Wild Type of Tomato. Journal of Fungi 2022, 8. [Google Scholar] [CrossRef]
- Pozo, M.J.; Azcó n-Aguilar, C.; Dumas-Gaudot, E.; Barea, J.M. B-1,3-Glucanase Activities in Tomato Roots Inoculated with Arbuscular Mycorrhizal Fungi and/or Phytophthora Parasitica and Their Possible Involvement in Bioprotection. Plant Science 1999, 141, 149–157. [Google Scholar] [CrossRef]
- Jaiti, F.; Meddich, A.; El Hadrami, I. Effectiveness of Arbuscular Mycorrhizal Fungi in the Protection of Date Palm (Phoenix Dactylifera L.) against Bayoud Disease. Physiol Mol Plant Pathol 2007, 71, 166–173. [Google Scholar] [CrossRef]
- Fester, T.; Hause, G. Accumulation of Reactive Oxygen Species in Arbuscular Mycorrhizal Roots. Mycorrhiza 2005, 15, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Lee, Y.J.; Jeun, Y.C. Observations of Infection Structures on the Leaves of Cucumber Plants Pre-Treated with Arbuscular Mycorrhiza Glomus Intraradices after Challenge Inoculation with Colletotrichum Orbiculare. undefined 2005, 21, 237–243. [Google Scholar] [CrossRef]
- Volpin, H.; Elkind, Y.; Okon, Y.; Kapulnik, Y. A Vesicular Arbuscular Mycorrhizal Fungus (Glomus Intraradix) Induces a Defense Response in Alfalfa Roots. Plant Physiol 1994, 104, 683–689. [Google Scholar] [CrossRef]
- Mustafa, G.; Randoux, B.; Tisserant, B.; Fontaine, J.; Magnin-Robert, M.; Lounès-Hadj Sahraoui, A.; Reignault, P. Phosphorus Supply, Arbuscular Mycorrhizal Fungal Species, and Plant Genotype Impact on the Protective Efficacy of Mycorrhizal Inoculation against Wheat Powdery Mildew. Mycorrhiza 2016, 26, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Mora-Romero, G.A.; Cervantes-Gámez, R.G.; Galindo-Flores, H.; González-Ortíz, M.A.; Félix-Gastélum, R.; Maldonado-Mendoza, I.E.; Salinas Pérez, R.; León-Félix, J.; Martínez-Valenzuela, M.C.; López-Meyer, M. Mycorrhiza-Induced Protection against Pathogens Is Both Genotype-Specific and Graft-Transmissible. Symbiosis 2015, 66, 55–64. [Google Scholar] [CrossRef]
- Campo, S.; Martín-Cardoso, H.; Olivé, M.; Pla, E.; Catala-Forner, M.; Martínez-Eixarch, M.; San Segundo, B. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice. Rice 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the Productivity and Product Quality of Vegetable Crops Using Arbuscular Mycorrhizal Fungi: A Review. Sci Hortic 2015, 187, 131–141. [Google Scholar] [CrossRef]
- Wehner, J.; Antunes, P.M.; Powell, J.R.; Mazukatow, J.; Rillig, M.C. Plant Pathogen Protection by Arbuscular Mycorrhizas: A Role for Fungal Diversity? Pedobiologia (Jena) 2010, 53, 197–201. [Google Scholar] [CrossRef]
- Whipps, J.M. Prospects and Limitations for Mycorrhizas in Biocontrol of Root Pathogens. 2011, 82, 1198–1227. [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J Chem Ecol 2012, 38, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Miransari, M. Interactions between Arbuscular Mycorrhizal Fungi and Soil Bacteria. Appl Microbiol Biotechnol 2011, 89, 917–930. [Google Scholar] [CrossRef]
- Kirk, A.P.; Entz, M.H.; Fox, S.L.; Tenuta, M. Mycorrhizal Colonization, P Uptake and Yield of Older and Modern Wheats under Organic Management. Canadian Journal of Plant Science 2011, 91, 663–667. [Google Scholar] [CrossRef]
- Hetrick, B.A.D.; Wilson, G.W.T.; Cox, T.S. Mycorrhizal Dependence of Modern Wheat Varieties, Landraces, and Ancestors. 2011, 70, 2032–2040. [CrossRef]
- Sawers, R.J.H.; Gutjahr, C.; Paszkowski, U. Cereal Mycorrhiza: An Ancient Symbiosis in Modern Agriculture. Trends Plant Sci 2008, 13, 93–97. [Google Scholar] [CrossRef]
- Parvin, S.; Van Geel, M.; Ali, M.M.; Yeasmin, T.; Lievens, B.; Honnay, O. A Comparison of the Arbuscular Mycorrhizal Fungal Communities among Bangladeshi Modern High Yielding and Traditional Rice Varieties. PlSoi 2021, 462, 109–124. [Google Scholar] [CrossRef]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A Proposed Unified Framework for Biological Invasions. Trends Ecol Evol 2011, 26, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, C.; Loverock, L.; Kokkoris, V.; Holland, T.; Bowen, P.A.; Hart, M. Commercial Arbuscular Mycorrhizal Fungal Inoculant Failed to Establish in a Vineyard despite Priority Advantage. PeerJ 2021, 9. [Google Scholar] [CrossRef]
- Elliott, A.J.; Daniell, T.J.; Cameron, D.D.; Field, K.J. A Commercial Arbuscular Mycorrhizal Inoculum Increases Root Colonization across Wheat Cultivars but Does Not Increase Assimilation of Mycorrhiza-Acquired Nutrients. Plants, People, Planet 2021, 3, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Jerbi, M.; Labidi, S.; Lounes-Hadj Sahraoui, A.; Dalpe, Y.; Ben Jeddi, F. Native Arbuscular Mycorrhizal Fungi Enhance Plant Growth and Productivity of Hulless Barley (Hordeum Vulgare Ssp Nudum L.). Journal of New Sciences 2020, 78. [Google Scholar]
- De Leon, D.G.; Vahter, T.; Zobel, M.; Koppel, M.; Edesi, L.; Davison, J.; Al-Quraishy, S.; Hozzein, W.N.; Moora, M.; Oja, J.; et al. Different Wheat Cultivars Exhibit Variable Responses to Inoculation with Arbuscular Mycorrhizal Fungi from Organic and Conventional Farms. PLoS One 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Séry, D.J.M.; Kouadjo, Z.G.C.; Voko, B.R.R.; Zézé, A. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions. Front Microbiol 2016, 7, 2063. [Google Scholar] [CrossRef]
- Frew, A. Contrasting Effects of Commercial and Native Arbuscular Mycorrhizal Fungal Inoculants on Plant Biomass Allocation, Nutrients, and Phenolics. Plants, People, Planet 2021, 3, 536–540. [Google Scholar] [CrossRef]
- Ijdo, M.; Schtickzelle, N.; Cranenbrouck, S.; Declerck, S. Do Arbuscular Mycorrhizal Fungi with Contrasting Life-History Strategies Differ in Their Responses to Repeated Defoliation? FEMS Microbiol Ecol 2010, 72, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Begon, Michael. ; Harper, J.L.; Townsend, C.R. Ecology : Individuals, Populations, and Communities. 1996, 1068. [Google Scholar]
- Hart, M.M.; Reader, R.J.; Klironomos, J.N. Life-History Strategies of Arbuscular Mycorrhizal Fungi in Relation to Their Successional Dynamics. Mycologia 2001, 93, 1186–1194. [Google Scholar] [CrossRef]
- Klironomos, J.N.; Hart, M.M. Colonization of Roots by Arbuscular Mycorrhizal Fungi Using Different Sources of Inoculum. Mycorrhiza 2002, 12, 181–184. [Google Scholar] [CrossRef] [PubMed]
- De Souza, F.A.; Dalpé, Y.; Declerck, S.; de la Providencia, I.E.; Séjalon-Delmas, N. Life History Strategies in Gigasporaceae: Insight from Monoxenic Culture. 2005, 73–91. [CrossRef]
- Kinnunen, M.; Dechesne, A.; Proctor, C.; Hammes, F.; Johnson, D.; Quintela-Baluja, M.; Graham, D.; Daffonchio, D.; Fodelianakis, S.; Hahn, N.; et al. A Conceptual Framework for Invasion in Microbial Communities. ISME J 2016, 10, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Declerck, S.; D’or, D.; Cranenbrouck, S.; Boulengé, L.E. Modelling the Sporulation Dynamics of Arbuscular Mycorrhizal Fungi in Monoxenic Culture. Mycorrhiza 2001, 11, 225–230. [Google Scholar] [CrossRef]
- Hart, M.M.; Reader, R.J. Taxonomic Basis for Variation in the Colonization Strategy of Arbuscular Mycorrhizal Fungi. New Phytologist 2002, 153, 335–344. [Google Scholar] [CrossRef]
- Maherali, H.; Klironomos, J.N. Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning. Science 2007, 316, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- van der Heyde, M.; Ohsowski, B.; Abbott, L.K.; Hart, M. Arbuscular Mycorrhizal Fungus Responses to Disturbance Are Context-Dependent. Mycorrhiza 2017, 27, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Basiru, S.; Hijri, M. Does Commercial Inoculation Promote Arbuscular Mycorrhizal Fungi Invasion? Microorganisms 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.L.; Richardson, S.; Koziol, L.; Palmer, C.E.; Yermakov, Z.; Henning, J.A.; Schultz, P.A.; Bever, J.D.; Middleton, E.L.; Richardson, S.; et al. Locally Adapted Arbuscular Mycorrhizal Fungi Improve Vigor and Resistance to Herbivory of Native Prairie Plant Species. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef]
- Lutz, S.; Bodenhausen, N.; Hess, J.; Valzano-Held, A.; Waelchli, J.; Deslandes-Hérold, G.; Schlaeppi, K.; van der Heijden, M.G.A. Soil Microbiome Indicators Can Predict Crop Growth Response to Large-Scale Inoculation with Arbuscular Mycorrhizal Fungi. Nature Microbiology 2023 8:12 2023, 8, 2277–2289. [Google Scholar] [CrossRef]
- Jalali, B.; Sharma, O. Biocides and Non-Target Microorganisms: An Environmental Asseasement. Indian J Microbiologie 1993, 33, 83–92. [Google Scholar]
- Campagnac, E.; Fontaine, J.; Sahraoui, A.L.H.; Laruelle, F.; Durand, R.; Grandmougin-Ferjani, A. Differential Effects of Fenpropimorph and Fenhexamid, Two Sterol Biosynthesis Inhibitor Fungicides, on Arbuscular Mycorrhizal Development and Sterol Metabolism in Carrot Roots. Phytochemistry 2008, 69, 2912–2919. [Google Scholar] [CrossRef] [PubMed]
- Calonne, M.; Fontaine, J.; Debiane, D.; Laruelle, F.; Grandmougin-Ferjani, A.; Sahraoui, A.L.-H.; Calonne, M.; Fontaine, J.; Debiane, D.; Laruelle, F.; et al. Propiconazole Toxicity on the Non-Target Organism, the Arbuscular Mycorrhizal Fungus, Glomus Irregulare. Fungicides 2010. [Google Scholar] [CrossRef]
- Calonne, M.; Sahraoui, A.L.H.; Campagnac, E.; Debiane, D.; Laruelle, F.; Grandmougin-Ferjani, A.; Fontaine, J. Propiconazole Inhibits the Sterol 14α-Demethylase in Glomus Irregulare like in Phytopathogenic Fungi. Chemosphere 2012, 87, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Olsson, P.A.; Bååth, E.; Jakobsen, I. Phosphorus Effects on the Mycelium and Storage Structures of an Arbuscular Mycorrhizal Fungus as Studied in the Soil and Roots by Analysis of Fatty Acid Signatures. Appl Environ Microbiol 1997, 63, 3531. [Google Scholar] [CrossRef] [PubMed]
- Le Tacon, F.; Le Tacon, T.; Mauron, V.; Rousseau, Y.; Backer, M.; Bouchard, D. Fertilisation Raisonnée et Mycorhize. In Proceedings of the 4ème rencontre de la fertilisation raisonnée; Blois; 1999; pp. 211–222. [Google Scholar]
- Lin, X.; Feng, Y.; Zhang, H.; Chen, R.; Wang, J.; Zhang, J.; Chu, H. Long-Term Balanced Fertilization Decreases Arbuscular Mycorrhizal Fungal Diversity in an Arable Soil in North China Revealed by 454 Pyrosequencing. Environ Sci Technol 2012, 46, 5764–5771. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, E.; van der Heijden, M.G.A.; Rillig, M.C.; Kiers, E.T. Mycorrhizal Fungal Establishment in Agricultural Soils: Factors Determining Inoculation Success. New Phytol 2013, 197, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Jakobsen, I.; Lyngkjær, M.F.; Thordal-Christensen, H.; Pons-Kühnemann, J. Arbuscular Mycorrhiza Reduces Susceptibility of Tomato to Alternaria Solani. Mycorrhiza 2006, 16, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Douds, D.D.; Galvez, L.; Janke, R.R.; Wagoner, P. Effect of Tillage and Farming System upon Populations and Distribution of Vesicular-Arbuscular Mycorrhizal Fungi. Agric Ecosyst Environ 1995, 52, 111–118. [Google Scholar] [CrossRef]
- Jansa, J.; Mozafar, A.; Anken, T.; Ruh, R.; Sanders, I.R.; Frossard, E. Diversity and Structure of AMF Communities as Affected by Tillage in a Temperate Soil. Mycorrhiza 2002 12:5 2002, 12, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Jansa, J.; Mozafar, A.; Kuhn, G.; Anken, T.; Ruh, R.; Sanders, I.R.; Frossard, E. SOIL TILLAGE AFFECTS THE COMMUNITY STRUCTURE OF MYCORRHIZAL FUNGI IN MAIZE ROOTS. Ecological Applications 2003, 13, 1164–1176. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Mäder, P.; Boller, T.; Wiemken, A. Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe. Appl Environ Microbiol 2003, 69, 2816–2824. [Google Scholar] [CrossRef] [PubMed]
- Torres-Arias, Y.; Fors, R.O.; Nobre, C.; Gómez, E.F.; Berbara, R.L.L. Production of Native Arbuscular Mycorrhizal Fungi Inoculum under Different Environmental Conditions. Braz J Microbiol 2017, 48, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Mycorrhiza-based Biofertilizer Market Growth Trends and Forecast (2020–2025) ReportLinker Organic Fertilizer Industry 2024. Available online: https://www.reportlinker.com/market-report/Fertilizer/87464/Organic-Fertilizer (accessed on 22 May 2024).
- Basiru, S.; Mwanza, H.P.; Hijri, M. Analysis of Arbuscular Mycorrhizal Fungal Inoculant Benchmarks. Microorganisms 2021, Vol. 9, Page 81 2020, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- INRAE Fiche Technique (2) : Multiplier Des Champignons Mycorhiziens Sur Son Exploitation; Petit-Bourg, 2017.
- Tawaraya, K.; Hirose, R.; Wagatsuma, T. Inoculation of Arbuscular Mycorrhizal Fungi Can Substantially Reduce Phosphate Fertilizer Application to Allium Fistulosum L. and Achieve Marketable Yield under Field Condition. Biol Fertil Soils 2012, 48, 839–843. [Google Scholar] [CrossRef]
- Maiti, D.; Singh, R.K.; Variar, M. Rice-Based Crop Rotation for Enhancing Native Arbuscular Mycorrhizal (AM) Activity to Improve Phosphorus Nutrition of Upland Rice (Oryza Sativa L.). Biol Fertil Soils 2012, 48, 67–73. [Google Scholar] [CrossRef]
- Jones, F.R. A Mycorrhizal Fungus in the Roots of Legumes and Some Other Plants. J Agric Res 1924, 29, 459–470. [Google Scholar]
- Rayner, M.C. Mycorrhiza. New Phytologist 1926, 25, 338–373. [Google Scholar] [CrossRef]
- Harley, J.L. The History of Research on Mycorrhiza and the Part Played by Professor Beniamino Peyronel. In Estratto da Funghi, Piante e Suolo, Quarat’anni di ricerche del centro di Studio sulla Micologia del Terreno nel centenario della nascita del suo fondatore Beniamino Peyronel.; Centro di Studio sulla Micologia del Terreno, CNR: Torino, 1991; pp. 31–73. [Google Scholar]
- Mosse, B.; Hepper, C. Vesicular-Arbuscular Mycorrhizal Infections in Root Organ Cultures. Physiol Plant Pathol 1975, 5, 215–223. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Aggarwal, A.; Sharma, V.; Singh, M.; Kaushik, S. Mass Multiplication of Arbuscular Mycorrhizal Fungi.
- Kučová, L.; Záhora, J.; Pokluda, R. Effect of Mycorrhizal Inoculation of Leek Allium Porrum L. on Mineral Nitrogen Leaching. [CrossRef]
- Selvakumar, G.; Kim, K.; Walitang, D.; Chanratana, M.; Kang, Y.; Chung, B.; Sa, T. Trap Culture Technique for Propagation of Arbuscular Mycorrhizal Fungi Using Different Host Plants. Korean Journal of Soil Science and Fertilizer 2016, 49, 608–613. [Google Scholar] [CrossRef]
- Sayeed Akhtar, M.; Nor, S.; Abdullah, A. Mass Production Techniques of Arbuscular Mycorrhizal Fungi: Major Advantages and Disadvantages: A Review. Biosci Biotechnol Res Asia 2014, 11, 1199–1204. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.; Adholeya, A. Biotechnological Advancements in Industrial Production of Arbuscular Mycorrhizal Fungi: Achievements, Challenges, and Future Prospects. Developments in Fungal Biology and Applied Mycology 2017, 413–431. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.; Walker, B.K. Production of Mycorrhizal Inoculum by Static Culture Hydroponics. 1990.
- Lee, Y.J.; George, E. Development of a Nutrient Film Technique Culture System for Arbuscular Mycorrhizal Plants. HortScience 2005, 40, 378–380. [Google Scholar] [CrossRef]
- Mosse, B.; Thompson, J.P. Production of Mycorrhizal Fungi. J Gen Microbiol 1980, 27, 235. [Google Scholar]
- Sylvia, D.M.; Hubbell, D.H. Growth and Sporulation of Vesicular-Arbuscular Mycorrhizal Fungi in Aeroponic and Membrane Systems. Symbiosis 1986, 1, 259. [Google Scholar]
- Jarstfer, A.G.; Sylvia, D.M. Aeroponic Culture of VAM Fungi. Mycorrhiza 1999, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Bécard, G.; Fortin, J.A. Early Events of Vesicular-Arbuscular Mycorrhiza Formation on Ri T-DNA Transformed Roots. New Phytol 1988, 108, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-K. Method of Facilitating Mass Production and Sporulation of Arbuscular Mycorrhizal Fungi Aseptic in Vitro. 2002.
- Jolicoeur, M.; Williams, R.D.; Chavarie, C.; Fortin, J.A.; Archambault, J. Production of Glomus Intraradices Propagules, an Arbuscular Mycorrhizal Fungus, in an Airlift Bioreactor. Biotechnol Bioeng 1999, 63, 224–232. [Google Scholar]
- Fortin, J.A.; Declerck, S.; Strullu, D.-G. In Vitro Culture of Mycorrhizas. 2005, 3–14. [CrossRef]
- Paré, L.; Banchini, C.; Hamel, C.; Bernier, L.; Stefani, F. A Simple and Low-Cost Technique to Initiate Single-Spore Cultures of Arbuscular Mycorrhizal Fungi Using a Superabsorbent Polymer. Symbiosis 2022, 88, 61–73. [Google Scholar] [CrossRef]
- Voets, L.; De Boulois, H.D.; Renard, L.; Strullu, D.G.; Declerck, S. Development of an Autotrophic Culture System for the in Vitro Mycorrhization of Potato Plantlets. FEMS Microbiol Lett 2005, 248, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, M.; Bates, P.D.; Declerck, S. Combinatorial Reprogramming of Lipid Metabolism in Plants: A Way towards Mass-production of Bio-fortified Arbuscular Mycorrhizal Fungi Inoculants. Microb Biotechnol 2021, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, M.; Bates, P.D.; Declerck, S. Combinatorial Reprogramming of Lipid Metabolism in Plants: A Way towards Mass-Production of Bio-Fortified Arbuscular Mycorrhizal Fungi Inoculants. Microb Biotechnol 2021, 14, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Hooker, J.E.; Jaizme-Vega, M.; Atkinson, D. Biocontrol of Plant Pathogens Using Arbuscular Mycorrhizal Fungi. Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems 1994, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Thirkell, T.J.; Charters, M.D.; Elliott, A.J.; Sait, S.M.; Field, K.J. Are Mycorrhizal Fungi Our Sustainable Saviours? Considerations for Achieving Food Security. Journal of Ecology 2017, 105, 921–929. [Google Scholar] [CrossRef]
- Oviatt, P.; Rillig, M.C. Mycorrhizal Technologies for an Agriculture of the Middle. Plants, People, Planet 2021, 3, 454–461. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol Evol 2016, 31, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Lekberg, Y.; Helgason, T. In Situ Mycorrhizal Function – Knowledge Gaps and Future Directions. New Phytologist 2018, 220, 957–962. [Google Scholar] [CrossRef] [PubMed]
| Class | Order | Family | Genera | Reference |
|---|---|---|---|---|
| Archaeosporomycetes | Archaeosporales |
Ambisporaceae Archaeosporaceae Geosiphonaceae Polonosporaceae |
Ambispora Archaeospora Geosiphon Polonospora |
Confirmed taxa (2013) [36] Formerly in Intraspora (2013) [36] Confirmed taxa (2013) [36] Recent taxa (2021) [37] |
| Glomeromycetes | Diversisporales Entrophosporales1 Glomerales |
Acaulosporaceae Diversisporaceae Gigasporaceae Pacisporaceae Sacculosporaceae Entrophosporaceae2 Glomeraceae |
Acaulospora Corymbiglomus Desertispora Diversispora Otospora Redeckera Sieverdingia Tricispora Bulbospora Cetraspora Dentiscutata Fuscutata Gigaspora Intraornatospora Paradentiscutata Racocetra Scutellospora Pacispora Sacculospora Entrophospora3 Complexispora Dominikia Epigeocarpum Funneliformis Funneliglomus Glomus Halonatospora Kamienskia Microdominikia Microkamienskia Nanoglomus Oehlia Orientoglomus Rhizoglomus Rhizophagus Sclerocarpum Sclerocystis Septoglomus Silvaspora |
Merged with Kuklospora (2013) [36] Reclassified taxa (2012) [38] Recent taxa (2018) [39] Confirmed taxa (2013) [36] Uncertain taxa (2013) [36] Confirmed taxa (2013) [36] Reclassified taxa (2019) [40] Uncertain taxa (2013) [36] Recent taxa (2014) [41] Uncertain taxonomy (2013) [36], formerly in Racocetraceae (2011) [35] Formerly in Quatunica (2013) [36] Formerly in Dentiscutata (2013) [36] Confirmed taxa (2013) [36] Uncertain taxonomy (2013) [36], formerly in Intraometosporaceae (2011) [35] Uncertain taxonomy (2013) [36], formerly in Intraometosporaceae (2011) [35] Confirmed taxa (2013) [36] Formerly in Orbispora (2013) [36] Confirmed taxa (2013) [36] Uncertain taxonomy (2013) [36] 1 Recent taxa [42], 2 uncertain taxonomy (2013) [36], 3 formerly in Claroideoglomus Recent taxa (2023) [43] Recent taxa (2015) [44] Recent taxa (2021) [37] Confirmed taxa in 2013 [36] Recent taxa (2019) [45] Formerly in Simiglomus (2013) [36] Recent taxa (2018) [46] Recent taxa (2015) [44] Recent taxa (2018) [47] Recent taxa (2019) [48] Recent taxa (2019) [49] Recent taxa (2019) [48] Recent taxa (2019) [49] Recent taxa (2014) [50] Reclassified taxa (2012) [38] Recent taxa (2019) [51] Reclassified taxa (2012) [38] Formerly in Viscospora (2013) [36] Recent taxa (2021) [37] |
| Paraglomomycetes | Paraglomerales |
Paraglomeraceae Pervetustaceae |
Innospora Paraglomus Pervetustus |
Recent taxa (2017) [52] Confirmed taxa (2013) [36] Recent taxa (2017) [52] |
| Countries | Examples of AMF-inoculum producers |
|---|---|
| Austria | Biofa; Gefafabritz |
| Belgium | Glomeromycota IN vitro COllection (GINCO); Plantura |
| Canada | Premier Tech Ltd.; Canadian Collection of Arbuscular Mycorrhizal Fungi (CCAMF); Glomeromycota IN vitro COllection (GINCO); Lallemand Inc.; Mikro-Tek Inc. |
| Chile | Biosim; Idemitsu Kosan Co.; Ecological Resources; Inc./Oikos |
| China | Guangdong Microbial Culture Collection Center (GDMCC); Weifang Yuedong International Trade Co., Ltd.; Weifang Yuexiang Chemical Co., Ltd.; Zhejiang Shijia Technology Co., Ltd. |
| Spain | Agrotechnologias Naturales (Atens); Biohorti SLU; Mycosym Trition S; Mycovitro; Odd Distributions |
| United States of America | Accelerator Horticultural Products; AgBio, Inc.; AgroScience Solutions LLC; Albright Seed Co./S & S Seeds; Becker Underwood (BASF); Bio-Organics; BioScientific, Inc.; EcoLife Corporation; First Fruits, LLC; Fungi Perfecti; Gro-Power; Helana Agri-Entreprises LLC; Hoodridge International; Horticultural Alliance, Inc; International Collection of Vesicular Arbuscular Mycorrhizal Fungi (INVAM); JH Biotech; MYCSA Ag, Inc. EUA; Mycorrhizal Applications; Pathway BioLogic LLC; Poulenger USA, Inc.; Purely Organic Products LLC; Reforestation Technologies International; ROOTS, Inc.; Shemin Garden LLC; Sustane Natural Fertilizer; Tainio Biologicals Inc.; The Tree Doctor ; Tree Pro; Valent BioSciences; Ecological Resources; Inc./Oikos |
| Estonia | Mikskaar |
| France | Agronutrition; IF tech; InoculumPlus; International Bank for the Glomeromycota (IBG); MycAgro; Terra fertilis; Mycoterroir; Semences de France |
| Germany | Agromyc-Merck GmbH; Biofa GmbH; BioMyc™; Inoq GmbH; Mykolife; Symplanta GmbH & Co. KG |
| India | AgriLife; Ambika Biotech; Anand Agro Care; Biotrack Technology Pvt. Ltd.; Centre for Mycorrhizal Culture Collection (CMCC); Cosme Biotech; Dr. Rajan Laboratories; GreenMax AgroTech; Kiran Chemicals; Katyayani; Majestic Agronomics Pvt. Ltd.; Neesa Agritech Private Limited; Neologie Bio Innovations | Private Limited; PHMS Technicare Private Limited; Privi Life Sciences; Sikko Industries; Sundaram Overseas Operation; T. Stanes & Company Limited; TARI Biotech; TERI; ManiDharma Biotech Pvt. Ltd. |
| Israel | Groundwork AG |
| Italy | Altea; Agribios; Italpollina; Sacom; Micosat F |
| Japan | Central Glass Co., Chemicals Section; Idemitsu Kosan Co. Ltd.; Kyowa Hakko Bio Co. Ltd. |
| Kenya | Dudutech |
| Malaysia | Agri Hi-Tech Sdn; N-Viron Sdn Bhd |
| Mexico | Instituto Nacional de Investigación Forestales Agrícolas y Pecuario (INIFAP); Biofabrica Siglo XXI; Biokrone; Biomic; OBA; Vergel de Occidente |
| Netherlands | BioTabs Organic Fertilizers; Global Horticare; Koppert |
| Poland | Mykofl or Wáodzimierz SzaáaĔski |
| Portugal | Asfertglobal |
| Czech Republic | Symbiom SRO |
| United Kingdom | Biological Crop Protection Ltd.; Crop Intellect Ltd.; PlantWorks Ltd.; Zander Corporation |
| Switzerland | Swiss culture collection of Arbuscular Mycorrhizal Fungi; Vegalab S.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
