Submitted:
30 May 2024
Posted:
30 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
“the development that meets the needs of the present without compromising the ability of future generations to meet their own needs”.
2. Inequality and Poverty
2.1. Poverty in Italy in the Context of the Agenda 2030
3. A Look at Data
4. Methodology: Tandem Clustering
4.1. Multiple Correspondence Analysis
4.2. Hierarchical Agglomerative Clustering
5. Results
5.1. Clusters Description
6. Conclusion
Funding
Conflicts of Interest
References
- Aaberge, R.; Brandolini, A. Multidimensional poverty and inequality. Handbook of Income Distribution 2015, 2, 141–216. [Google Scholar]
- Benzécri, J.P. L’Analyse des Données; Dunad: Paris, 1973. [Google Scholar]
- Benzécri, J.P. Sur le calcul des taux d’inertie dans l’analyse d’un questionnaire (abbendum et erratum). Cahiers de l’Analyse des Données 1979, 4, 377–378. [Google Scholar]
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Communications in Statistics 1974, 3, 1–27. [Google Scholar]
- Caritas Presentation. Available online: https://www.caritas.it/presentazione/.
- Cho, C.; Kim, S.; Lee, J.; Lee, D.-W. A tandem clustering process for multimodal datasets. European Journal of Operational Research 2006, 168, 998–1008. [Google Scholar] [CrossRef]
- Camminatiello, I.; et al. A model for evaluating inequalities in sustainability. Social Indicators Research 2023, 1–20. [Google Scholar] [CrossRef]
- Caritas Italiana. TUTTO DA PERDERE: Rapporto su povertà ed esclusione sociale in Italia 2023; Edizioni Palumbi: Roma, Italia, 2023. [Google Scholar]
- Eurostat Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Living_conditions_in_Europe_-_poverty_and_social_exclusion.
- Gherghi, M.; Lauro, C. Appunti di analisi dei dati multidimensionali; In RCE edizioni: Napoli, 2008. [Google Scholar]
- Gifi, A. Nonlinear multivariate analysis; Wiley: Chichester, 1990. [Google Scholar]
- Greenacre, M. Theory and Application of Correspondence Analysis; Academic Press’: London, 1984. [Google Scholar]
- Husson, F.; Le, S.; Pagés, J. Exploratory Multivariate Analysis by Example Using R; Chapman and Hall: New York, 2010. [Google Scholar]
- ISTAT, Annual Report on Poverty. Available online: https://www.istat.it/it/files/2023/06/REPORT-REDDITO-CONDIZIONI-DI-121VITA2022.pdf.
- Iodice D’Enza, A.; Palumbo, F. Iterative factor clustering of binary data. Computational Statistics 2013, 28, 789–807. [Google Scholar] [CrossRef]
- Izzo, F.; et al. Creating customer, museum and social value through digital technologies: Evidence from the MANN Assiri project. Socio-Economic Planning Sciences 2023, 85, 101502. [Google Scholar] [CrossRef]
- Hwang, H.; Dillon, W.R.; Takane, Y. An extension of multiple correspondence analysis for identifying heterogeneous subgroups of respondents. Psychometrika 2006, 71, 161–171. [Google Scholar] [CrossRef]
- Lebart, L.; Morineau, A.; Piron, M. Statistique Exploratoire Multidimensionnelle; Dunod: Paris, 1997. [Google Scholar]
- Lebart, L.; Morineau, A.; Warwick, K.M. Multivariate Descriptive Statistical Analysis; Wiley: New York, 1984. [Google Scholar]
- Little, R.J.A.; Rubin, D.B. Statistical analysis with missing data; John Wiley & Sons, 2019; p. 793. [Google Scholar]
- OECD. Opportunities for all: A Framework for policy action on inclusive growth, Organisation for Economic Cooperation and Development, 2018.
- Pages, J. Analyse factorielle de donnees mixtes. Revue Statistique Appliquee 2004, 52, 93–111. [Google Scholar]
- Rossi, L.; Camminatiello, I.; Zanetti, M. The learning style of teenagers with callous-unemotional traits. Statistica Applicata-Italian Journal of Applied Statistics 2022, 2. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics 1987, 20, 53–56. [Google Scholar] [CrossRef]
- Smith, A. The wealth of nations; The Modern Library, Random House Inc. 1937.
- United Nations General Assembly. Transforming our world: the 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. The Sustainable Development Goals Report, 2023.
- van de Valden, M.; Iodice D’Enza, A.; Palumbo, F. Cluster Correspondence Analysis. Psychometrika 2017, 82, 158–185. [Google Scholar] [CrossRef]




| Variables Label | Variables | Categories Label | Categories |
|---|---|---|---|
| ACM | Services offered to the beneficiary: housing | YES; NO | |
| AGE | Age Brackets | 11-17; 18-34; 35-44; 45-54; 55-64; 65-99 | |
| CHD | Indicate the presence of chlidren | 0; 1; 2; 3 or more | |
| CI | Indicate whether you receive citizenship income | YES | |
| COU | Indicate the country of origin if users are not Italian | AL; DZ; AR; BR; BG; BF; CU; EG; PH; GE; DE; GR; IN; IR; IT; KZ; KG; LT; MA; MD; NG; PK; PL; UK; DO; RO; RU; SD; SN; ES; LK; TJ; TN; UA; UZ |
|
| DRES | Indicate years of Residence. If born in the municipality of residence, indicate N |
N; 1-10; 11-20; 21-30; 31-40; 41-50; 51-60; 60+ | |
| EM | Employed (including irregular) in the family unit | 0; 1; 2; 3; 4+ | |
| EQ | Specify the educational qualification | MS ; HS ; BD ; Ill | Middle School Diploma; High School Diploma; Bachelor’s Degree; Illiterate |
| ES | Indicate the employment status | UNW; UW; IE; PT; TC; PC; HM; RE; UN; OT | Unemployed Not Seeking Work; Unemployed Seeking Work; Irregularly Employed; Part-Time Employed; Temporary Contract; Permanent Contract; Homemaker; Retired; Unable To Work; Other |
| FC | Year of the first contact with the center (specify the year) | Quantitative variable | |
| FRQ | Specify the frequency of contact | W; B; M ; T ; Y | Weekly; Biweekly; About once a month; At least once every three months; At least once a year |
| GEN | Indicate Gender | M;F | Male; Female |
| HS | Indicate type of housing | RR; UR; SR; OP; GS; HL | Regular Rent; Unregistred Rent; Single Room; Owned Property; Guests; Homeless |
| LIS | Services offered to the beneficiary: listening | YES; NO | |
| MD | Indicate the presence of declared pathologies within the family unit | YES; NO | |
| MGS | Services provided to the beneficiary: material goods and services | YES; NO; FP; F/C; GV; GV/UB; IND; SUP; UB; | Food Parcel; Food/Clothes parcel; Grocery Vouchers; Grocery Vouchers/Utility Bills; Induments; Support; Utility Bills |
| MIG | If migrant, indicate the year of arrival in Italy | 70’; 80’; 90’; 2000’; 2010’; 2020’ | |
| MS | Indicate Marital Status | M ; D ; S ; W ; NS | Married; Divorced; Single; Widower; Not Specified |
| NC | Indicate the number of family members | 0-3; 4-6; 7-9 | |
| NM | Indicate the presence of minors | 0; 1; 2; 3 or more | |
| OIND | Declared situation of over-indebtedness | YES; NO | |
| OS | Indicate if supported by other public services | YES | |
| PN | Main need for which Caritas support is requested | HI; DJ; ADD; FAM; HAN; EDI ; IMM; EI; POV; HP; PRO |
Housing Issues; Detention and Justice; Addiction; Family Issues; Handicap and Disabilities; Educational Issues; Migration/Immigration Issues; Employment Issues; Poverty/Economic Issues; Health Problems; Other Problems |
| RES | Indicate the usual municipality of residence | AFR; CA; CR; CV; CE; CC; CI; MA; MAR; MT; RE; SA; SF; SME; SNS; SMV; SMCV |
|
| RP | For foreign users, please indicate the residence permit | YES; NO | |
| SAF | In case of minors, indicate whether they attend school regularly | 0; 1; 2; 3 or more; NO | |
| SN | Indicate if you have received additional support |
HI; DJ; ADD; FAM; HAN; EDI ; IMM; EI; POV; HP; PRO |
Housing Issues; Detention and Justice; Addiction; Family Issues; Handicap and Disabilities; Educational Issues; Migration/Immigration Issues; Employment Issues; Poverty/Economic Issues; Health Problems; Other Problems |
| TN | Indicate if you have received additional support | HI; DJ; ADD; FAM; HAN; EDI ; IMM; EI; POV; HP; PRO |
Housing Issues; Detention and Justice; Addiction; Family Issues; Handicap and Disabilities; Educational Issues; Migration/Immigration Issues; Employment Issues; Poverty/Economic Issues; Health Problems; Other Problems |
| UEM | If long-term unemployed, indicate the last year of employment | Quantitative variable |
| Categorie | Contributions | Coordinates | ||
| Dim 1 | Dim 2 | Dim 1 | Dim 2 | |
| Albania | 0.2494 | 0.6348 | -0.6663 | 0.9157 |
| Algeria | 0,0000 | 0,0133 | -0.0010 | 0.6484 |
| Argentina | 0,0030 | 0,0038 | -0.5025 | 0.4893 |
| Brazil | 0.0122 | 0.0529 | 0.4562 | 0.8189 |
| Bulgaria | 0,0003 | 0.0001 | -0.1686 | 0.0712 |
| Burkina Faso | 0.0000 | 0.0011 | -0.0135 | -0.2668 |
| Cuba | 0.0318 | 0.0001 | 1.6483 | 0.0753 |
| Egypt | 0.0052 | 0.0002 | -0.6697 | 0.0979 |
| Philippines | 0.0071 | 0.2513 | -0.1218 | 0.6234 |
| Georgia | 0.6414 | 0.0069 | 4.2738 | 0.3810 |
| Germany | 0.0175 | 0.0055 | 0.7067 | 0.3412 |
| Greece | 0.0551 | 0.0020 | 2.1693 | -0.3571 |
| India | 0.0156 | 0.0125 | -0.6667 | 0.5140 |
| Iran | 1.0352 | 0.0210 | 4.7022 | 0.5767 |
| Italy | 0.8350 | 0.6538 | -0.2312 | -0.1762 |
| Kazakhstan | 0.0007 | 0.0013 | -0.2381 | 0.2839 |
| Kyrgyzstan | 0.3394 | 0.0388 | 1.3060 | 0.3806 |
| Lithuania | 0.0005 | 0.0303 | -0.1527 | 0.9804 |
| Morocco | 0.0627 | 0.1306 | -0.5788 | 0.7195 |
| Moldova | 0.0004 | 0.0036 | -0.1233 | 0.3379 |
| Nigeria | 0.1192 | 0.8363 | 0.7371 | 0.2985 |
| Pakistan | 0.0040 | 0.0008 | 0.4109 | 0.1636 |
| United Kingdom | 0.0017 | 0.0002 | 0.3582 | 0.4327 |
| Polonia | 0.0271 | 0.0013 | 0.3840 | -0.1250 |
| Dominican Republic | 0.0006 | 0.0000 | 0.2214 | 0.0328 |
| Romania | 0.0223 | 0.0013 | 0.6899 | 0.1415 |
| Russia | 0.0113 | 0.0229 | 0.4395 | 0.5397 |
| Senegal | 0.0198 | 0.1088 | 3.3073 | 0.1710 |
| Spain | 0.0002 | 0.0078 | 0.2228 | 0.4505 |
| Sri Lanka | 0.0123 | 0.0009 | 0.1439 | 0.7013 |
| Kyrgyzstan | 0.0004 | 0.0051 | 0.7242 | 0.1675 |
| Tunisia | 0.0001 | 0.0421 | -0.4910 | 1.2169 |
| Tajikistan | 0.0264 | 0.0435 | -0.1374 | 0.4023 |
| Tunisia | 0.0020 | 1.4628 | -0.0350 | 0.7307 |
| Ukraine | 3.2956 | 0.4785 | 1.0634 | 0.3491 |
| Uzbekistan | 0.0016 | 0.0001 | 0.3668 | -0.0917 |
| 13-17 | 0.5920 | 0.0211 | 5.0301 | 0.8149 |
| 18-34 | 0.6406 | 0.1881 | 0.5992 | -0.2783 |
| 35-44 | 0.0066 | 0.0325 | -0.0394 | 0.0771 |
| 45-54 | 0.0127 | 0.0628 | -0.0492 | -0.0979 |
| 55-64 | 0.0058 | 0.0105 | 0.0318 | -0.0368 |
| 65-99 | 0.0109 | 0.1155 | -0.0522 | 0.1464 |
| GEN.F | 0.0040 | 0.1405 | 0.0168 | 0.0863 |
| GEN.M | 0.0077 | 0.2722 | -0.0325 | -0.1671 |
| Afragola | 0.0011 | 0.0105 | 0.2218 | 0.5729 |
| Caivano | 0.0009 | 0.0879 | -0.2815 | 2.3796 |
| Capodrise | 0.0001 | 0.0049 | -0.0905 | 0.5550 |
| Casagiove | 0.0079 | 0.0101 | 0.3097 | 0.3007 |
| Caserta | 2.6139 | 0.729 | 0.5024 | 0.2220 |
| Castel Campagnano | 0.0076 | 0 | -0.8026 | -0.0099 |
| Cervino | 0.0376 | 0.0007 | -0.8952 | -0.1178 |
| Maddaloni | 2.7782 | 2.2105 | -0.7406 | 0.5758 |
| Marcianise | 0.601 | 12.3915 | -0.4574 | -1.7767 |
| Montedecoro | 0.0072 | 0.0522 | -0.7864 | 1.8315 |
| Recale | 0.0018 | 0.2526 | 0.0887 | -0.9119 |
| Salerno | 0.0051 | 0.0954 | 0.6606 | 2.4625 |
| San Felice a Cancello | 0.0227 | 0.0082 | 1.3954 | 0.7035 |
| San Marco Evangelista | 0.0018 | 0.0006 | -0.0396 | 0.0261 |
| San Nicola La Strada | 0.0207 | 0.013 | -0.1355 | -0.0879 |
| Santa Maria a Vico | 0.0484 | 0.1461 | -1.4390 | 2.1716 |
| Santa Maria Capua Vetere | 0.0148 | 0.0007 | 0.7951 | 0.1394 |
| 11to20 | 0.2694 | 0.006 | 0.3600 | 0.0434 |
| 1to10 | 1.6208 | 0.0819 | 0.5461 | 0.10327 |
| 21to30 | 0.0698 | 0.536 | -0.3683 | -0.8828 |
| 31to40 | 0.0533 | 2.1049 | -0.3914 | -2.1091 |
| 41to50 | 0.0983 | 1.1696 | 0.4978 | -1.4800 |
| 51to60 | 0.0212 | 0.0396 | -0.6021 | -0.7105 |
| 60+ | 0.0007 | 0.0133 | -0.1712 | -0.6596 |
| DRES.N | 0.0520 | 1.0030 | -0.0767 | -0.2901 |
| N | 0.0026 | 0.0057 | -0.4685 | 0.6003 |
| MS.M | 0.6169 | 0.1261 | -0.2334 | -0.0909 |
| MS.D | 0.0016 | 0.0447 | 0.0241 | -0.1088 |
| MS.S | 2.9642 | 0.1032 | 0.8099 | 0.1302 |
| MS.W | 0.4344 | 0.2471 | -0.4145 | 0.2692 |
| 0 to 3 | 0.3442 | 0.1254 | 0.1526 | 0.0793 |
| 4 to 6 | 0.6839 | 0.4336 | -0.3446 | -0.2363 |
| 7 to 9 | 0.0977 | 0.0019 | -0.4815 | -0.0580 |
| 0 | 12.0556 | 0.1097 | 2.3722 | 0.1949 |
| 1 | 0.1046 | 0.0292 | -0.1525 | -0.0694 |
| 2 | 0.3598 | 0.1569 | -0.2803 | -0.1595 |
| 3 or more | 0.4530 | 0.2247 | -0.4213 | -0.2555 |
| UR | 0.0002 | 0.2983 | 0.0162 | 0.5916 |
| RR | 0.0357 | 0.4530 | 0.0475 | -0.1456 |
| GS | 0.0001 | 0.0023 | -0.0182 | 0.0689 |
| SR | 6.7695 | 0.1685 | 3.1575 | 0.4290 |
| OP | 0.5757 | 0.9386 | -0.5526 | -0.6078 |
| HL | 0.0014 | 0.0991 | 0.2452 | 1.7718 |
| HS | 0.0954 | 0.0011 | 0.2019 | -0.0186 |
| MS | 0.2358 | 1.2473 | 0.1266 | -0.2507 |
| BD | 0.0254 | 0.2202 | 0.2126 | 0.5392 |
| Illiterate | 0.0516 | 0.0001 | -0.7421 | 0.0230 |
| HM | 0.6740 | 0.0078 | -0.3725 | 0.0346 |
| UW | 0.3794 | 0.2950 | -0.2959 | -0.2248 |
| UNW | 0.0087 | 0.3586 | 0.1059 | 0.5868 |
| UN | 0.0151 | 0.0067 | -0.2271 | 0.1300 |
| IE | 1.6168 | 0.4105 | 0.5920 | -0.2569 |
| RE | 0.0156 | 0.1285 | -0.0692 | 0.1708 |
| PT | 0.0632 | 0.0048 | 0.2582 | 0.0611 |
| TC | 0.0426 | 0.1078 | -0.2844 | 0.3895 |
| PC | 0.0004 | 0.2811 | -0.0204 | 0.4973 |
| OT | 1.7880 | 0.0000 | 2.1846 | 0.0060 |
| PN.HI | 0.0000 | 0.0249 | -0.0012 | -0.2463 |
| PN.HP | 0.5246 | 17.4752 | -0.4453 | -2.2134 |
| PN.IMM | 7.6240 | 0.0067 | 1.9807 | 0.0507 |
| PN.PAC | 0.0013 | 0.0000 | -0.3271 | -0.0083 |
| PN.DJ | 0.0099 | 0.0012 | 0.5301 | 0.1593 |
| PN.FAM | 0.0119 | 0.0121 | -0.2691 | 0.2339 |
| PN.ADD | 0.0001 | 0.0027 | -0.0613 | 0.2934 |
| PN.HAN | 0.0640 | 0.0381 | 0.8270 | 0.5490 |
| PN.EDI | 0.0013 | 0.0021 | 0.2334 | -0.2560 |
| PN.EI | 1.6004 | 0.0048 | 0.7847 | 0.0372 |
| PN.POV | 1.8813 | 3.1435 | -0.4083 | 0.4545 |
| PN.PRO | 0.0294 | 0.0388 | 0.1429 | -0.1415 |
| SN.ADD | 0.0074 | 0.0061 | -0.3256 | 0.2548 |
| SN.HI | 0.0001 | 0.0027 | 0.0483 | 0.2062 |
| SN.DJ | 0.1294 | 0.2208 | -1.2566 | 1.4138 |
| SN.FAM | 0.0231 | 0.0052 | -0.2932 | 0.1201 |
| SN.HAN | 0.0132 | 0.0006 | -0.4335 | 0.0772 |
| SN.EDI | 0.0029 | 0.0036 | -0.5012 | 0.4768 |
| SN.EI | 0.3485 | 0.1577 | -0.4920 | 0.2851 |
| SN.POV | 0.4039 | 15.1835 | -0.3504 | -1.8503 |
| SN.PRO | 0.0102 | 0.2828 | -0.0748 | 0.3389 |
| SN.IMM | 5.9819 | 0.0034 | 2.8037 | 0.0572 |
| SN.HP | 0.0086 | 0.2007 | -0.1015 | 0.4232 |
| 2000 | 0.0010 | 0.0237 | -0.2111 | -0.8670 |
| 2001 | 0.0000 | 0.0014 | -0.0474 | -0.2931 |
| 2003 | 0.0001 | 0.0007 | -0.0693 | -0.1447 |
| 2004 | 0.0002 | 0.0024 | -0.1006 | -0.2750 |
| 2005 | 0.0015 | 0.0008 | 0.3602 | -0.2187 |
| 2008 | 0.0006 | 0.0004 | -0.1332 | -0.0947 |
| 2009 | 0.0002 | 0.0036 | -0.0836 | -0.3365 |
| 2010 | 0.0058 | 0.0129 | 0.1958 | -0.2508 |
| 2011 | 0.0055 | 0.0068 | 0.4829 | -0.4647 |
| 2013 | 0.0000 | 0.0015 | 0.0188 | 0.0944 |
| 2014 | 0.1083 | 1.3733 | -0.3993 | -1.2249 |
| 2015 | 0.0450 | 1.1157 | -0.2033 | -0.8719 |
| 2016 | 0.1599 | 0.0426 | -0.3080 | 0.1368 |
| 2017 | 0.2065 | 0.4358 | -0.2716 | 0.3399 |
| 2018 | 0.1261 | 0.0553 | -0.3422 | 0.1952 |
| 2019 | 0.0532 | 0.0411 | -0.2187 | -0.1655 |
| 2020 | 0.2010 | 0.0428 | -0.2769 | -0.1100 |
| 2021 | 0.4102 | 0.0672 | -0.3837 | 0.1337 |
| 2022 | 0.3117 | 0.3069 | -0.3290 | -0.2811 |
| 2023 | 0.1387 | 0.3374 | -0.4001 | 0.5375 |
| FRQ.Y | 0.0903 | 0.0088 | 1.3888 | 0.3724 |
| FRQ.M | 0.0079 | 0.0017 | -0.0204 | 0.0082 |
| FRQ.T | 0.0194 | 0.0282 | -0.4286 | -0.4456 |
| FRQ.B | 0.0044 | 0.0216 | -0.0747 | -0.1418 |
| FRQ.W | 0.0050 | 0.0128 | -0.0749 | -0.1034 |
| LIS.NO | 0.1003 | 0.0854 | 0.7100 | 0.5643 |
| LIS.YES | 1.8280 | 4.5479 | -0.4404 | 0.5983 |
| MGS.FOOD PARCEL | 2.1021 | 0.0695 | -0.3484 | -0.0546 |
| MGS.FOOD PARCEL/INDUMENTS | 0.0513 | 0.1407 | -1.0464 | 1.4931 |
| MGS.GROCERY VOUCHERS | 0.4383 | 0.0044 | 1.6352 | -0.1406 |
| MGS.GROCERY VOUCHERS/UTILITY | 1.4355 | 0.0144 | 1.6152 | -0.1392 |
| MGS.INDUMENTS | 0.0083 | 0.0114 | -0.8422 | 0.8515 |
| MGS.NO | 0.0081 | 0.0001 | 0.8311 | 0.0634 |
| MGS.YES | 0.0142 | 0.3412 | -0.2162 | 0.9118 |
| MGS.SUPPORT | 0.0034 | 0.0128 | 0.3787 | -0.6377 |
| MGS.UTILITY BILLS | 0.1653 | 0.0019 | 0.9114 | 0.0844 |
| Description | Cla/Mod | Mod/Cla | Global | p-value | v.test |
|---|---|---|---|---|---|
| PN=PN_HP | 95.575 | 97.738 | 12.370 | < 0,0001 | 34.512 |
| SN=SN_POV | 78.292 | 99.548 | 15.380 | < 0,0001 | 32.097 |
| RES=Marcianise | 81.855 | 91.855 | 13.574 | < 0,0001 | 30.195 |
| COU=Italia | 16.479 | 99.548 | 73.071 | < 0,0001 | 11.617 |
| MGS=MGS_FOOD PARCEL | 14.875 | 99.548 | 80.952 | < 0,0001 | 9.330 |
| DRES=31to40 | 73.333 | 9.955 | 1.642 | < 0,0001 | 7.797 |
| EQ=MS | 15.513 | 88.235 | 68.801 | < 0,0001 | 7.142 |
| DRES=41to50 | 55.882 | 8.597 | 1.861 | < 0,0001 | 6.168 |
| FC=2015 | 34.409 | 14.480 | 5.090 | < 0,0001 | 5.780 |
| FC=2014 | 41.379 | 10.860 | 3.175 | < 0,0001 | 5.724 |
| HS=OP | 26.708 | 19.457 | 8.812 | < 0,0001 | 5.327 |
| ES=IE | 19.797 | 35.294 | 21.565 | < 0,0001 | 5.023 |
| DRES=21to30 | 40.909 | 8.145 | 2.408 | < 0,0001 | 4.880 |
| FC=2022 | 19.919 | 22.172 | 13.465 | < 0,0001 | 3.798 |
| GEN=GEN_M | 15.916 | 44.796 | 34.045 | < 0,0001 | 3.531 |
| FRQ=FRQ_M | 12.963 | 95.023 | 88.670 | < 0,0001 | 3.429 |
| NC=4to6 | 16.057 | 35.747 | 26.929 | < 0,0001 | 3.072 |
| RES=Recale | 36.842 | 3.167 | 1.040 | < 0,0001 | 2.762 |
| CHD=2 | 16.113 | 28.507 | 21.401 | < 0,0001 | 2.668 |
| ES=UW | 16.216 | 27.149 | 20.252 | < 0,0001 | 2.639 |
| MS=MS_M | 13.857 | 60.633 | 52.928 | < 0,0001 | 2.450 |
| HS=RR | 13.072 | 80.090 | 74.111 | < 0,0001 | 2.199 |
| DRES=N | 13.907 | 47.511 | 41.325 | < 0,0001 | 1.979 |
| MGS=MGS_YES | 0.000 | 0.452 | 1.423 | < 0,0001 | -2.118 |
| COU=Albania | 2.083 | 0.452 | 2.627 | < 0,0001 | -2.396 |
| COU=Senegal | 0.000 | 0.000 | 1.861 | < 0,0001 | -2.513 |
| MS=MS_S | 8.290 | 14.480 | 21.128 | < 0,0001 | -2.658 |
| ES=PC | 2.778 | 0.905 | 3.941 | < 0,0001 | -2.761 |
| COU=Filippine | 0.000 | 0.000 | 2.244 | < 0,0001 | -2.823 |
| FC=2017 | 6.695 | 7.240 | 13.082 | < 0,0001 | -2.894 |
| ES=TC | 0.000 | 0.000 | 2.463 | < 0,0001 | -2.989 |
| NC=0to3 | 10.530 | 60.181 | 69.130 | < 0,0001 | -3.011 |
| EQ=BD | 0.000 | 0.000 | 2.627 | < 0,0001 | -3.108 |
| HS=UR | 0.000 | 0.000 | 2.956 | < 0,0001 | -3.337 |
| HS=SR | 0.000 | 0.000 | 3.175 | < 0,0001 | -3.482 |
| GEN=GEN_F | 10.124 | 55.204 | 65.955 | < 0,0001 | -3.531 |
| DRES=1to10 | 7.527 | 15.837 | 25.452 | < 0,0001 | -3.631 |
| SN=SN_IMM | 0.000 | 0.000 | 3.558 | < 0,0001 | -3.725 |
| ES=UNW | 0.000 | 0.000 | 3.612 | < 0,0001 | -3.759 |
| SN=SN.HP | 0.000 | 0.000 | 3.886 | < 0,0001 | -3.923 |
| FC=2023 | 0.000 | 0.000 | 4.050 | < 0,0001 | -4.020 |
| ES=PT | 0.000 | 0.000 | 4.433 | < 0,0001 | -4.237 |
| SN=SN.EI | 0.813 | 0.452 | 6.732 | < 0,0001 | -4.817 |
| PN=PN.PRO | 0.813 | 0.452 | 6.732 | < 0,0001 | -4.817 |
| RES=San Marco Evangelista | 0.000 | 0.000 | 5.692 | < 0,0001 | -4.894 |
| SN=SN.PRO | 0.000 | 0.000 | 8.539 | < 0,0001 | -6.167 |
| PN=PN.IMM | 0.000 | 0.000 | 9.086 | < 0,0001 | -6.388 |
| PN=PN.EI | 0.901 | 0.905 | 12.151 | < 0,0001 | -6.628 |
| CHD=0 | 0.000 | 0.000 | 10.016 | < 0,0001 | -6.751 |
| COU=Ucraina | 0.000 | 0.000 | 13.629 | < 0,0001 | -8.044 |
| RES=Maddaloni | 0.461 | 0.905 | 23.755 | < 0,0001 | -10.372 |
| LIS=LIS.YES | 0.497 | 1.810 | 44.061 | < 0,0001 | -15.416 |
| RES=Caserta | 0.337 | 1.357 | 48.714 | < 0,0001 | -16.961 |
| PN=PN.POV | 0.104 | 0.452 | 52.764 | < 0,0001 | -18.646 |
| Description | Cla/Mod | Mod/Cla | Global | p-value | v.test |
|---|---|---|---|---|---|
| PN=PN.POV | 99.481 | 69.898 | 52.764 | < 0,0001 | 28.096 |
| LIS=LIS.YES | 98.758 | 57.945 | 44.061 | < 0,0001 | 23.251 |
| MGS=MGS.FOOD PARCEL | 84.652 | 91.254 | 80.952 | < 0,0001 | 18.261 |
| RES=Maddaloni | 99.539 | 31.487 | 23.755 | < 0,0001 | 16.267 |
| SN=SN.PRO | 98.718 | 11.224 | 8.539 | < 0,0001 | 8.619 |
| SN=SN.EI | 98.374 | 8.819 | 6.732 | < 0,0001 | 7.407 |
| PN=PN.PRO | 98.374 | 8.819 | 6.732 | < 0,0001 | 7.407 |
| FC=2017 | 92.050 | 16.035 | 13.082 | < 0,0001 | 7.134 |
| RES=San Marco Evangelista | 99.038 | 7.507 | 5.692 | < 0,0001 | 7.062 |
| FC=2023 | 98.649 | 5.321 | 4.050 | < 0,0001 | 5.722 |
| ES=PT | 97.531 | 5.758 | 4.433 | < 0,0001 | 5.603 |
| HS=UR | 100.000 | 3.936 | 2.956 | < 0,0001 | 5.256 |
| SN=SN.HP | 97.183 | 5.029 | 3.886 | < 0,0001 | 5.107 |
| MS=MS.W | 87.963 | 13.848 | 11.823 | < 0,0001 | 4.945 |
| RES=San Nicola La Strada | 93.878 | 6.706 | 5.364 | < 0,0001 | 4.940 |
| ES=PC | 95.833 | 5.029 | 3.941 | < 0,0001 | 4.734 |
| FC=2016 | 89.583 | 9.402 | 7.882 | < 0,0001 | 4.503 |
| COU=Filippine | 100.000 | 2.988 | 2.244 | < 0,0001 | 4.499 |
| FC=2018 | 91.304 | 6.122 | 5.036 | < 0,0001 | 4.012 |
| FRQ=FRQ.W | 92.105 | 5.102 | 4.160 | < 0,0001 | 3.828 |
| EQ=BD | 95.833 | 3.353 | 2.627 | < 0,0001 | 3.799 |
| ES=TC | 95.556 | 3.134 | 2.463 | < 0,0001 | 3.604 |
| ES=HM | 81.687 | 24.708 | 22.715 | < 0,0001 | 3.604 |
| FC=2021 | 84.034 | 14.577 | 13.027 | < 0,0001 | 3.539 |
| MGS=MGS.YES | 100.000 | 1.895 | 1.423 | < 0,0001 | 3.455 |
| COU=Albania | 93.750 | 3.280 | 2.627 | < 0,0001 | 3.332 |
| ES=UNW | 90.909 | 4.373 | 3.612 | < 0,0001 | 3.261 |
| SN=SN.FAM | 100.000 | 1.676 | 1.259 | < 0,0001 | 3.213 |
| CHD=1 | 81.250 | 22.741 | 21.018 | < 0,0001 | 3.197 |
| FRQ=FRQ.B | 89.706 | 4.446 | 3.722 | < 0,0001 | 3.029 |
| FC=2020 | 83.036 | 13.557 | 12.261 | < 0,0001 | 3.018 |
| COU=Senegal | 94.118 | 2.332 | 1.861 | < 0,0001 | 2.822 |
| PN=PN.HI | 96.154 | 1.822 | 1.423 | < 0,0001 | 2.752 |
| HS=GS | 93.548 | 2.114 | 1.697 | < 0,0001 | 2.584 |
| MS=MS.M | 77.559 | 54.665 | 52.928 | < 0,0001 | 2.577 |
| GEN=GEN.F | 76.929 | 67.566 | 65.955 | < 0,0001 | 2.504 |
| PN=PN.FAM | 100.000 | 1.020 | 0.766 | < 0,0001 | 2.369 |
| FC=2010 | 100.000 | 0.948 | 0.712 | < 0,0001 | 2.260 |
| ES=UW | 79.459 | 21.429 | 20.252 | < 0,0001 | 2.196 |
| FC=2019 | 84.211 | 5.831 | 5.200 | < 0,0001 | 2.171 |
| DRES=21to30 | 59.091 | 1.895 | 2.408 | < 0,0001 | -2.349 |
| COU=Georgia | 0.000 | 0.000 | 0.164 | < 0,0001 | -2.424 |
| GEN=GEN.M | 71.543 | 32.434 | 34.045 | < 0,0001 | -2.504 |
| FC=2014 | 58.621 | 2.478 | 3.175 | < 0,0001 | -2.786 |
| COU=Iran | 0.000 | 0.000 | 0.219 | < 0,0001 | -2.894 |
| FC=2015 | 61.290 | 4.155 | 5.090 | < 0,0001 | -3.014 |
| COU=Ucraina | 67.068 | 12.172 | 13.629 | < 0,0001 | -3.071 |
| COU=Santo Domingo | 0.000 | 0.000 | 0.274 | < 0,0001 | -3.307 |
| FRQ=FRQ.M | 73.889 | 87.245 | 88.670 | < 0,0001 | -3.464 |
| DRES=N | 70.728 | 38.921 | 41.325 | < 0,0001 | -3.603 |
| DRES=41to50 | 44.118 | 1.093 | 1.861 | < 0,0001 | -3.849 |
| AGE=18-34 | 59.211 | 6.560 | 8.320 | < 0,0001 | -4.497 |
| MGS=MGS.GROCERY VOUCHERS | 14.286 | 0.146 | 0.766 | < 0,0001 | -4.676 |
| DRES=31to40 | 23.333 | 0.510 | 1.642 | < 0,0001 | -5.929 |
| ES=OT | 18.750 | 0.437 | 1.752 | < 0,0001 | -6.682 |
| MS=MS.S | 60.622 | 17.055 | 21.128 | < 0,0001 | -7.140 |
| HS=SR | 8.621 | 0.364 | 3.175 | < 0,0001 | -10.894 |
| ES=IE | 51.777 | 14.869 | 21.565 | < 0,0001 | -11.518 |
| EQ=MS | 67.621 | 61.953 | 68.801 | < 0,0001 | -11.73 |
| SN=SN.IMM | 1.538 | 0.073 | 3.558 | < 0,0001 | -13.097 |
| CHD=0 | 8.743 | 1.166 | 10.016 | < 0,0001 | -20.355 |
| PN=PN.IMM | 4.217 | 0.510 | 9.086 | < 0,0001 | -20.805 |
| RES=Marcianise | 17.742 | 3.207 | 13.574 | < 0,0001 | -20.840 |
| SN=SN.POV | 20.996 | 4.300 | 15.380 | < 0,0001 | -21.205 |
| PN=PN.HP | 4.425 | 0.729 | 12.370 | < 0,0001 | -24.823 |
| Description | Cla/Mod | Mod/Cla | Global | p-value | v.test |
|---|---|---|---|---|---|
| CHD=0 | 91.257 | 71.368 | 10.016 | < 0,0001 | 26.948 |
| PN=PN.IMM | 95.783 | 67.949 | 9.086 | < 0,0001 | 26.924 |
| RES=Caserta | 25.843 | 98.291 | 48.714 | < 0,0001 | 18.069 |
| SN=SN.IMM | 98.462 | 27.350 | 3.558 | < 0,0001 | 16.299 |
| HS=SR | 91.379 | 22.650 | 3.175 | < 0,0001 | 13.918 |
| MGS=MGS.GROCERY VOUCHERS | 95.745 | 19.231 | 2.573 | < 0,0001 | 13.182 |
| MS=MS.S | 31.088 | 51.282 | 21.128 | < 0,0001 | 11.062 |
| ES=IE | 28.426 | 47.863 | 21.565 | < 0,0001 | 9.661 |
| COU=Ucraina | 32.932 | 35.043 | 13.629 | < 0,0001 | 9.074 |
| EQ=MS | 16.866 | 90.598 | 68.801 | < 0,0001 | 8.403 |
| ES=OT | 75.000 | 10.256 | 1.752 | < 0,0001 | 8.099 |
| PN=PN.EI | 28.829 | 27.350 | 12.151 | < 0,0001 | 6.854 |
| MGS=MGS.GROCERY VOUCHERS | 85.714 | 5.128 | 0.766 | < 0,0001 | 6.093 |
| NC=0 to 3 | 15.044 | 81.197 | 69.130 | < 0,0001 | 4.430 |
| COU=Santo Domingo | 100.000 | 2.137 | 0.274 | < 0,0001 | 4.150 |
| DRES=1to10 | 18.280 | 36.325 | 25.452 | < 0,0001 | 3.955 |
| AGE=18-34 | 23.684 | 15.385 | 8.320 | < 0,0001 | 3.853 |
| COU=Iran | 100.000 | 1.709 | 0.219 | < 0,0001 | 3.649 |
| MGS=MGS.UTILITY BILLS | 47.059 | 3.419 | 0.930 | < 0,0001 | 3.417 |
| COU=Georgia | 100.000 | 1.282 | 0.164 | < 0,0001 | 3.079 |
| COU=Kirghizstan | 41.176 | 2.991 | 0.930 | < 0,0001 | 2.896 |
| DRES=N | 15.364 | 0.729 | 12.370 | < 0,0001 | 2.723 |
| AGE=13-17 | 100.000 | 0.855 | 0.109 | < 0,0001 | 2.401 |
| COU=Nigeria | 50.000 | 1.282 | 0.328 | < 0,0001 | 2.119 |
| PN=PN.DJ | 66.667 | 0.855 | 0.164 | < 0,0001 | 1.987 |
| SN=SN.FAM | 0.000 | 0.000 | 1.259 | < 0,0001 | -2.035 |
| MGS=MGS.YES | 0.000 | 0.000 | 1.423 | < 0,0001 | -2.203 |
| PN=PN.HI | 0.000 | 0.000 | 1.423 | < 0,0001 | -2.203 |
| FRQ=FRQ.B | 4.412 | 1.282 | 3.722 | < 0,0001 | -2.276 |
| DRES=41to50 | 0.000 | 0.000 | 1.861 | < 0,0001 | -2.610 |
| FC=2015 | 4.301 | 1.709 | 5.090 | < 0,0001 | -2.755 |
| CHD=2 | 8.696 | 14.530 | 21.401 | < 0,0001 | -2.828 |
| SN=SN.HP | 2.817 | 0.855 | 3.886 | < 0,0001 | -2.880 |
| COU=Filippine | 0.000 | 0.000 | 2.244 | < 0,0001 | -2.930 |
| DRES=21to30 | 0.000 | 0.000 | 2.408 | < 0,0001 | -3.058 |
| ES=PT | 2.469 | 0.855 | 4.433 | < 0,0001 | -3.239 |
| ES=PC | 1.389 | 0.427 | 3.941 | < 0,0001 | -3.456 |
| HS=UR | 0.000 | 0.000 | 2.956 | < 0,0001 | -3.459 |
| FC=2023 | 1.351 | 0.427 | 4.050 | < 0,0001 | -3.526 |
| FC=2018 | 2.174 | 0.855 | 5.036 | < 0,0001 | -3.606 |
| FC=2014 | 0.000 | 0.000 | 3.175 | < 0,0001 | -3.608 |
| NC=4 to 6 | 8.130 | 17.094 | 26.929 | < 0,0001 | -3.758 |
| FC=2019 | 1.053 | 0.427 | 5.200 | < 0,0001 | -4.209 |
| FRQ=FRQ.W | 0.000 | 0.000 | 4.160 | < 0,0001 | -4.227 |
| CHD=3 or more | 4.587 | 4.274 | 11.932 | < 0,0001 | -4.258 |
| FC=2016 | 2.778 | 1.709 | 7.882 | < 0,0001 | -4.291 |
| RES=San Marco Evangelista | 0.962 | 0.427 | 5.692 | < 0,0001 | -4.478 |
| RES=San Nicola La Strada | 0.000 | 0.000 | 5.364 | < 0,0001 | -4.894 |
| SN=SN.EI | 0.813 | 0.427 | 6.732 | < 0,0001 | -5.009 |
| PN=PN.PRO | 0.813 | 0.427 | 6.732 | < 0,0001 | -5.009 |
| ES=HM | 6.024 | 10.684 | 22.715 | < 0,0001 | -5.017 |
| SN=SN.PRO | 1.282 | 0.855 | 8.539 | < 0,0001 | -5.396 |
| CHD=1 | 5.208 | 8.547 | 21.018 | < 0,0001 | -5.425 |
| HS=OP | 1.242 | 0.855 | 8.812 | < 0,0001 | -5.518 |
| MS=MS.M | 8.583 | 35.470 | 52.928 | < 0,0001 | -5.663 |
| FC=2020 | 2.232 | 2.137 | 12.261 | < 0,0001 | -5.878 |
| ES=UW | 4.324 | 6.838 | 20.252 | < 0,0001 | -6.013 |
| MS=MS.W | 1.852 | 1.709 | 11.823 | < 0,0001 | -6.034 |
| FC=2021 | 1.681 | 1.709 | 13.027 | < 0,0001 | -6.508 |
| FC=2017 | 1.255 | 1.282 | 13.082 | < 0,0001 | -6.874 |
| FC=2022 | 0.813 | 0.855 | 13.465 | < 0,0001 | -7.384 |
| RES=Marcianise | 0.403 | 0.427 | 13.574 | < 0,0001 | -7.825 |
| PN=PN.HP | 0.000 | 0.000 | 12.370 | < 0,0001 | -7.863 |
| SN=SN.POV | 0.712 | 0.855 | 15.380 | < 0,0001 | -8.067 |
| COU=Italia | 8.689 | 49.573 | 73.071 | < 0,0001 | -8.229 |
| RES=Maddaloni | 0.000 | 0.000 | 23.755 | < 0,0001 | -11.485 |
| LIS=LIS.YES | 0.745 | 2.564 | 44.061 | < 0,0001 | -15.499 |
| PN=PN.POV | 0.415 | 1.709 | 52.764 | < 0,0001 | -18.511 |
| MGS=MGS.FOOD PARCEL | 0.473 | 2.991 | 80.952 | < 0,0001 | -29.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
