Preprint
Article

This version is not peer-reviewed.

Understanding Super Heavy Mass Numbers and Maximum Binding Energy of Any Mass Number with Revised Strong and Electroweak Mass Formula

Submitted:

28 May 2024

Posted:

29 May 2024

Read the latest preprint version here

Abstract
In our recent publications, based on strong and electroweak interactions, we have developed a completely new formula for estimating nuclear binding energy. With reference to currently believed Semi Empirical Mass Formula (SEMF), we call our formula as ‘Strong and Electroweak Mass Formula’ (SEWMF). Our formula constitutes 4 simple terms and only one energy coefficient of magnitude 10.1 MeV. First term is a volume term, second term seems to be a representation of free nucleons associated with electroweak interaction, third term is a radial term and fourth one is an asymmetry term about the mean stable mass number. In this paper, we make an attempt to understand and estimate the maximum binding energy associated with any mass number. It can be expressed as, for A > 4, $\left(BE\right)_A\cong \left[A-0.000935A^2-A^{1/3}-A^{-1/2}\right]$ MeV. We are working on refining the 4th term with even-odd corrections, shell corrections and other microscopic corrections. Proceeding further, stable mass numbers and super heavy mass numbers can be understood with a relation of the form, $\left[\textrm{RoundOff}\left(\left(Z+2.9464\right)^{1.2}-1.7165\right)\right]\pm\left[0,1\right]\pm\left(2n\right)$ where $n \cong 0,1,2$. It needs a review with respect to even-odd proton numbers and other microscopic corrections.
Keywords: 
;  ;  ;  ;  ;  

1. Introduction

Based on 4G model of final unification, in our recent publications [1,2,3,4,5,6,7,8,9,10], we have clearly shown that, strong and weak interactions, play a vital role in basic nuclear structure. With our strong and electroweak mass formula, nuclear binding energy can be estimated with one unified energy coefficient having 4 simple terms. In this paper, considering our contribution pertaining to DAE-BRNS 2023 symposium proceedings [1] and recent journal publication [2], we make a minor change for understanding the maximum binding energy associated with any mass number. It can be refined with further study.

2. Three Assumptions of 4G Model of Final Unification

Following our 4G model of final unification [1,2,3,4,5,6,7,8,9,10]
  • There exists a characteristic electroweak fermion of rest energy, M w f c 2 584.725   GeV . It can be considered as the zygote of all elementary particles.
  • There exists a nuclear elementary charge in such a way that, ( e e n ) 2 α s 0.1152 = Strong coupling constant [11] and e n 2.9464 e .
  • Each atomic interaction is associated with a characteristic large gravitational coupling constant. Their fitted magnitudes are,
    • G e Electromgnetic   gravitational   constant 2.374335 × 10 37   m 3 kg 1 sec 2 G n Nuclear   gravitational   constant 3.329561 × 10 28 m 3 kg 1 sec 2 G w Electroweak   gravitational   constant 2.909745 × 10 22   m 3 kg 1 sec 2
It may be noted that,
1)
Weak interaction point of view, following our assumptions, Fermi’s weak coupling constant [11] can be fitted with the following relations.
G F ( m e m p ) 2 c R 0 2 G w M w f 2 R w 2   1.44021 × 10 62   J . m 3 where ,   { R 0 2 G n m p c 2 1 . 24   × 10 15   m   R w 2 G w M w f c 2 6.75 × 10 19   m }
2)
In a unified approach, most important point to be noted is that,   c G w M w f 2 . Clearly speaking, based on the electroweak interaction, the well believed quantum constant c seems to have a deep inner meaning [10]. It needs further study with respect to condensed matter physics.

3. Free Nucleons and Electroweak Term

With reference to our strong and electroweak mass formula [1,2,3,4,5,6,7,8,9,10],
1)
Nuclear volume can be split into ‘core inner’ and ‘core outer’.
2)
Nucleons residing in nuclear inner core help in increasing nuclear binding energy.
3)
Nucleons residing in outer core will not involve in nuclear binding.
4)
Outer core nucleons can be called as free or electroweak nucleons.
5)
Proportionality coefficient being m p M w f 938.272   MeV 584725   MeV 0.001605 , free nucleon number is proportional to half of the sum of squared proton number and squared mass number.
6)
Considering light and heavy atomic nuclides, by considering a correction factor [ 2 ( N Z ) ] , in our recent publications, we expressed our first approximate relation for free nucleon number as, A f r e e [ 2 ( N Z ) ] + [ 0.0016 ( Z 2 + A 2 2 ) ] [ 2 ( N Z ) ] + [ 0.0008 ( Z 2 + A 2 ) ] .

4. Nuclear Radius and Radial Term

1)
Interesting observation is that, nuclear binding energy seems to decrease with increasing radius.
2)
As nuclear volume is proportional the mass number, it is possible to understand the decreasing nuclear binding energy with cube root of the mass number  A r a d A 1 / 3 .

5. Stable Mass Number and Asymmetry Term

1)
Even though it is not exact stable mass number, we understood that, the ratio of nuclear charge and elementary charge and electroweak interaction seem to play a crucial role in understanding and estimating the approximate stable mass number of any atomic nuclide having a proton number Z. This is one best practical application of our proposed nuclear charge and electroweak fermion.
2)
Stable mass number seems to play a crucial role in estimating the binding energy of other isotopes of Z.
3)
Our estimated mass number close to stability can be called as ‘light house (like) mass number’ where one can find the beginning of relatively long living isotopes of Z.
4)
Keeping light and heavy atomic nuclides in view, we suggest a common and simple relation of the form [2,6],
A s RoundOff { ( Z + ( e n e ) ) 1.2 e n e } RoundOff { ( Z + 2.9464 ) 1.2 1.7165 }               where   ( e n e ) 1 6 ( 1 α s ) 1 12 1.19733 1.2
It may be noted that, right selection of stable mass number greatly helps in minimizing the error in estimating nuclear binding energy. Especially, for light atomic nuclides, whose stable mass number is very close to 2Z, estimated binding energy seems to be on lower side compared to actual binding energy. Hence, it seems better to select stable mass number of Z based on their relative time of living. Considering even-odd corrections, above relation can be refined for a better understanding in the following way. It can be reviewed in a better way with further study.
1)
If Z is even and obtained A s is odd, then, A s A s + 1.
2)
If Z is even and obtained A s is even, then, A s A s .
3)
If Z is odd and obtained A s is odd, then, A s A s .
4)
If Z is odd and obtained A s is even, then, A s A s + 1.
See Table 1 for a better understanding.
A s RoundOff { ( Z + 2.9464 ) 1.2 1.7165 } + EO   correction [ 0 , 1 ]
Following this relation, for odd elements, their best possible three mass numbers can be expressed as,
A s [ RoundOff { ( Z + 2.9464 ) 1.2 1.7165 } + [ 0 , 1 ] ] + 2 n           where   n = 0 , 1 , 2
Following this relation, odd proton super heavy elements can be estimated with a possible certainty. In the following Table 1. By adding 0, 2 and 4 to the even-odd corrected mass number, odd proton’s 3 stable mass numbers can be estimated. Estimated mass numbers corresponding to n = 0 , 1 , 2 can be called as, Ground level, 1st level and 2nd level mass numbers. For Z=99, possible super heavy mass numbers are 255, 257 and 259. Similarly, for Z=101, possible super heavy mass numbers are 261, 263 and 265. In this way, for super heavy elements, possible mass numbers having longer life time compared to their lower mass numbers can be estimated with a common concept. We are working on the possibility of considering ( 2 n ) for increasing the estimated range of heavy mass numbers on lower side [12,13,14,15]. If so, for Z=99, best possible mass range can be given as, 251 to 259. For Z=101, best possible mass range seems to be 257 to 265. Thus, relation (2C) can be expressed as,
A s [ RoundOff { ( Z + 2.9464 ) 1.2 1.7165 } + [ 0 , 1 ] ] ± 2 n           where   n = 0 , 1 , 2
Thus, for the heaviest Z=117, its possible long living mass range can be given as, 307 to 315. It needs further study.
5)
Number 0.0016 plays a very interesting role in estimating the free nucleon number as,
A f r e e [ 2 ( N Z ) ] + 0.0016 [ ( Z 2 + N 2 + ( Z 2 N ) 2 ) Z N ( N Z N + Z ) 2 ] [ 2 ( N Z ) ] + 0.0016 [ ( Z 2 + N 2 + ( Z 2 N ) 2 ) Z N ( A 2 Z A ) 2 ]
where [ 2 ( N Z ) ] is a correction factor that needs a review.
6)
Here, very interesting point to be noted is that, the number 0.0016 can also be understood as a ratio of the mean mass of pions to the mean mass of electroweak bosons. It can be expreessed as,
m p M w f ( ( m π c 2 ) 0 ( m π c 2 ) ± ( m z c 2 ) 0 ( m w c 2 ) ± ) ( 134.98 × 139.57   MeV 80379.0 × 91187.6   MeV ) 0.0016032
7)
Independent of proton number, approximate asymmetry term can be expressed as,
A a s y m ( A s A ) 2 A s
It may be noted that, even though it is an approximate relation, it greatly helps in estimating the binding energy of isotopes for the entire range of atomic nuclides. It seems essential to work on this kind of relations.
8)
For medium and heavy proton numbers and their isotopes, equality of excess neutron number and free nucleon number can be considered as an index of possible stability. It needs a review at fundamental level.

6. Unique Binding Energy Coefficient

We would like to emphasize the point that, nuclear binding energy can be understood with only one fixed energy coefficient. It can be understood in two different ways as expressed in following way.
Considering Up and Down quark masses [11],
B 0 1 2 [ ( 2 m u c 2 + m d c 2 ) + ( m u c 2 + 2 m d c 2 ) ]       3 2 ( m u c 2 + m d c 2 ) 10.1   MeV   ( Our   fit )   where   { m u 2.16 0.26 + 0.49 M e V / c 2   m d 4.67 0.17 + 0.48 M e V / c 2
Considering strong coupling constant and reduced Compton wavelength of proton,
B 0 ( 1 α s ) e 2 8 π ε 0 ( / m p c ) e n 2 8 π ε 0 ( G n m p / c 2 ) 10.1   MeV where { α s = Strong   coupling   constant 0 . 115   to   0 . 12   / m p c = Reduced   Comption   wavelength   of   proton G n m p / c 2 0.62 × 10 15 m
Considering B 0 as a form of total energy, it is possible to define its corresponding potential energy as,
E p o t e n 2 4 π ε 0 ( G n m p / c 2 ) 20.2   MeV
Using this energy unit, various energy coefficients of the currently beloved semi empirical mass can be fitted.

7. Revised and Reference Formulae for Nuclear Binding Energy

The most famous and most advanced SEMF that follows isospin concept can be expressed as [16,17,18,19,20],
B E { [ 1 + ( 4 k v A 2 ) | T z | ( | T z | + 1 ) ] a v * A } + { [ 1 + ( 4 k s A 2 ) | T z | ( | T z | + 1 ) ] a s * A 2 3 } + { a c * ( Z 2 A 1 / 3 ) } + { f p * Z 2 A } + E p }
where, T z 3 rd   component   of   isospin = 1 2 ( Z N )
{ a v = 15.4963   MeV 20.2 ( 1 2 α s ) 15.546   MeV   a s = 17.7937 20.2 ( 1 α s ) 17.873   MeV   MeV k v = 1.8232 [ 2 [ ( 1 + α s ) ( 1 α s ) ] 2 α s ] ( 2 0.183 ) 1 . 817   k s = 2.2593 [ 2 + [ ( 1 + α s ) ( 1 α s ) ] 2 α s ] ( 2 + 0.183 ) 2 . 183 a c = 0.7093 0.71   MeV   f p = 1.2739   MeV 20.2 α s 2 1 . 1635   MeV d n = 4.6919   MeV ,   d p = 4.7230   MeV d n d p 2 * 20.2 α s   4 . 6541   MeV } d n p = 6.4920   MeV 3 * 20.2 α s 6 . 981   MeV } and   { for   ( Z ,   N   )   Odd ,   E p d n N 1 / 3 + d p Z 1 / 3 + d n p A 2 / 3 for   ( Odd   Z ,   Even   N   ) ,   E p d p Z 1 / 3 for   ( Even   Z ,   Odd   N   ) ,   E p d n N 1 / 3 for   ( Even   Z ,   Even   N   ) ,   E p 0 }
For Z=6 to 118, including the correction factor [ 2 ( N Z ) ] , we express our revised binding energy relation as,
B E { A { [ 2 ( N Z ) ] + 0.0016 [ ( Z 2 + N 2 + ( Z 2 N ) 2 ) Z N ( N Z N + Z ) 2 ] } A 1 / 3 ( A s A ) 2 A s } 10.1   MeV
Based on this relation, in a trial-error approach, we have developed another relation for estimating the maximum binding energy associated with any mass number. Very interesting point is that, it is independent of proton number. It can be expressed as [1,2],
B E { A ( e e n ) 0.001605 A 2 A 1 / 3 A 1 / 2 } 10.1   MeV { A 0.000935 A 2 A 1 / 3 A 1 / 2 } 10.1   MeV
Close to the maximum binding energy of any mass number, number of free nucleons can be expressed as, A f r e e 0.000935 A 2 .
Considering isobars and finding the maximum binding energy associated with each mass number, above relation can be verified. See the following Table 2 and Figure 1. Our proposal is failing for A=4, A= 202 to 212 and A >267. It needs a review with respect to shell effects and other microscopic corrections.

8. Discussion

1)
Even though they are having wide scope and very accurate, currently believed semi empirical mass formulae are having many complicated energy coefficients with different terms and different concepts [16,17,18,19,20]. We would like to emphasize the point that, clarity is missing in coupling or interpreting the terms and coefficients with strong and weak interactions. Similarly, energy coefficients associated with recently developed relativistic continuum Hartree-Bogoliubov (RCHB) theory having relativistic density functions are much more complicated [18].
2)
Conceptually, relations (9) and (10) are very simple in understanding and having deep inner meaning. Relation (9) can be expressed as,
( B E ) ( Z , A ) ( A A f r e e A r a d A a s y ) 10.1   MeV
3)
Relation (10) can be expressed as,
( B E ) A ( A A f r e e A r a d A x ) 10.1   MeV where   A x   is   a   term   that   needs   a   review .  
It needs a review with respect to A=4 and A > 200. We are working in this new direction. With even-odd corrections, shell corrections and other microscopic corrections, it can be refined.

9. Conclusion

We would like to emphasize the point that, strong and weak interactions play a vital role in basic nuclear structure and further study may help in exploring the atomic nucleus in a unified approach. Based on the above concepts and data presented in Table 1, Table 2 and Figure 1, it seems possible to understand super heavy mass numbers and maximum binding energy associated with any mass number with our 4G model of final unification.

References

  1. Seshavatharam, U.V.S and Lakshminarayana S.A very brief review on strong and electroweak mass formula pertaining to 4G model of final unification. Proceedings of the DAE Symp. on Nucl. Phys. 67,1173,2023.
  2. Seshavatharam, U.V.S and Lakshminarayana S. Exploring condensed matter physics with refined electroweak term of the strong and electroweak mass formula. World Scientific News.193(2) 105-13, 2024.
  3. Seshavatharam, U.V.S and Lakshminarayana S. Inferring and confirming the rest mass of electron neutrino with neutron life time and strong coupling constant via 4G model of final unification. World Scientific News 191, 127-156, 2024.
  4. Seshavatharam U. V. S., Gunavardhana Naidu T and Lakshminarayana S. 2022. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2451 p 020003. [CrossRef]
  5. Seshavatharam, U.V.S and Lakshminarayana S. 4G model of final unification – A brief report Journal of Physics: Conference Series 2197 p 012029, 2022. [CrossRef]
  6. Seshavatharam, U.V.S and Lakshminarayana. Understanding nuclear stability range with 4G model of nuclear charge. World Scientific News. 177, 118-136, 2023.
  7. Seshavatharam, U.V.S, S. Lakshminarayana, H. K. Cherop and K. M. Khanna, Three Unified Nuclear Binding Energy Formulae. World Scientific News, 163, 30-77, 2022.
  8. Seshavatharam, U.V.S, Lakshminarayana, S., On the Combined Role of Strong and Electroweak Interactions in Understanding Nuclear Binding Energy Scheme. Mapana Journal of Sciences, 20(1), 1-18, 2021. [CrossRef]
  9. Seshavatharam, U.V.S and Lakshminarayana S., Strong and Weak Interactions in Ghahramany’s Integrated Nuclear Binding Energy Formula. World Scientific News, 161, 111-129, 2021. [CrossRef]
  10. Seshavatharam, U.V.S and Lakshminarayana S. Is reduced Planck’s constant - an outcome of electroweak gravity? Mapana Journal of Sciences. 19,1,1, 2020. [CrossRef]
  11. Workman R.L. et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01, 2022.
  12. Ghiorso, Albert. Einsteinium and Fermium. Chemical and Engineering News. 81 (36): 174–175, 2003.
  13. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 45 (3): 030001, 2021.
  14. Peter Möller. The limits of the nuclear chart set by fission and alpha decay. EPJ Web Conf. 131, 03002, 2016. [CrossRef]
  15. Oganessian, Yu & Rykaczewski, Krzysztof. (2015). A beachhead on the island of stability. Physics Today. 68. 32-38. 10.1063/PT.3.2880. [CrossRef]
  16. Myers W., D. and Swiatecki W. J. Nuclear Properties According to the Thomas-Fermi Model.LBL-36557 Rev. UC-413, 1995. [CrossRef]
  17. Myers W., D. and Swiatecki W. J. Table of nuclear masses according to the 1994 Thomas-Fermi model. United States: N. p., 1994. Web.
  18. X.W. Xia, Y. Lim, P.W. Zhao et al. The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory. Atomic Data and Nuclear Data Tables. 121–122, 1-215, 2018. [CrossRef]
  19. Bethe H., A. Thomas-Fermi Theory of Nuclei. Phys. Rev., 167(4), 879-907, 1968. [CrossRef]
  20. Gao, Z.P., Wang, YJ., Lü, HL. et al., Machine learning the nuclear mass. NUCL. SCI. TECH. 32, 109, 2021. [CrossRef]
Figure 1. Difference of experimental and estimated maximum binding energy of A.
Figure 1. Difference of experimental and estimated maximum binding energy of A.
Preprints 107709 g001
Table 1. Estimated light house like stable mass numbers of Z=5 to118.
Table 1. Estimated light house like stable mass numbers of Z=5 to118.
Proton number Estimated stable mass number Estimated mass number with EO corrections Proton number Estimated stable mass number Estimated mass number with EO corrections Proton number Estimated stable mass number Estimated mass number with EO corrections
5 10 11 43 97 97 81 202 203
6 12 12 44 100 100 82 205 206
7 14 15 45 102 103 83 208 209
8 16 16 46 105 106 84 211 212
9 18 19 47 107 107 85 214 215
10 20 20 48 110 110 86 217 218
11 22 23 49 113 113 87 219 219
12 24 24 50 115 116 88 222 222
13 26 27 51 118 119 89 225 225
14 28 28 52 121 122 90 228 228
15 30 31 53 123 123 91 231 231
16 32 32 54 126 126 92 234 234
17 35 35 55 129 129 93 237 237
18 37 38 56 131 132 94 240 240
19 39 39 57 134 135 95 243 243
20 41 42 58 137 138 96 246 246
21 43 43 59 140 141 97 249 249
22 46 46 60 142 142 98 252 252
23 48 49 61 145 145 99 255 255
24 50 50 62 148 148 100 258 258
25 53 53 63 151 151 101 261 261
26 55 56 64 153 154 102 264 264
27 57 57 65 156 157 103 268 269
28 60 60 66 159 160 104 271 272
29 62 63 67 162 163 105 274 275
30 65 66 68 165 166 106 277 278
31 67 67 69 167 167 107 280 281
32 69 70 70 170 170 108 283 284
33 72 73 71 173 173 109 286 287
34 74 74 72 176 176 110 289 290
35 77 77 73 179 179 111 292 293
36 79 80 74 182 182 112 295 296
37 82 83 75 185 185 113 298 299
38 84 84 76 187 188 114 301 302
39 87 87 77 190 191 115 304 305
40 89 90 78 193 194 116 308 308
41 92 93 79 196 197 117 311 311
42 94 94 80 199 200 118 314 314
Table 2. Estimated maximum binding energy of any mass number.
Table 2. Estimated maximum binding energy of any mass number.
Assumed mass number A Estimated Max. Binding energy of A (MeV) Experimental Max. Binding energy of A(MeV) (Experimental -Estimated) Binding energy(MeV)
4 19.17 28.3 9.13
5 28.48 27.56 -0.92
6 37.78 31.99 -5.79
7 47.10 39.25 -7.85
8 56.42 56.5 0.08
9 65.76 58.16 -7.60
10 75.10 64.98 -10.12
11 84.45 76.2 -8.25
12 93.80 92.16 -1.64
13 103.15 97.11 -6.04
14 112.51 105.28 -7.23
15 121.86 115.49 -6.37
16 131.21 127.62 -3.59
17 140.55 131.76 -8.79
18 149.89 139.81 -10.08
19 159.22 147.8 -11.42
20 168.55 160.64 -7.91
21 177.87 167.41 -10.46
22 187.18 177.77 -9.41
23 196.48 186.56 -9.92
24 205.77 198.26 -7.51
25 215.05 205.59 -9.46
26 224.31 216.68 -7.63
27 233.57 224.95 -8.62
28 242.82 236.54 -6.28
29 252.05 245.01 -7.04
30 261.27 255.62 -5.65
31 270.48 262.92 -7.56
32 279.68 271.78 -7.90
33 288.86 280.96 -7.90
34 298.03 291.84 -6.19
35 307.19 298.82 -8.37
36 316.33 308.71 -7.62
37 325.46 317.1 -8.36
38 334.57 327.34 -7.23
39 343.67 333.94 -9.73
40 352.75 343.81 -8.94
41 361.82 351.62 -10.20
42 370.88 361.9 -8.98
43 379.91 369.83 -10.08
44 388.94 380.96 -7.98
45 397.95 388.37 -9.58
46 406.94 398.77 -8.17
47 415.92 407.26 -8.66
48 424.88 418.7 -6.18
49 433.82 426.85 -6.97
50 442.75 437.78 -4.97
51 451.67 445.85 -5.82
52 460.57 456.35 -4.22
53 469.45 464.29 -5.16
54 478.31 474.01 -4.30
55 487.16 482.08 -5.08
56 495.99 492.26 -3.73
57 504.81 499.91 -4.90
58 513.61 509.95 -3.66
59 522.39 517.31 -5.08
60 531.16 526.85 -4.31
61 539.91 534.67 -5.24
62 548.64 545.26 -3.38
63 557.36 552.1 -5.26
64 566.06 561.76 -4.30
65 574.74 569.21 -5.53
66 583.40 578.14 -5.26
67 592.05 585.41 -6.64
68 600.68 595.39 -5.29
69 609.30 602 -7.30
70 617.89 611.09 -6.80
71 626.47 618.95 -7.52
72 635.04 628.69 -6.35
73 643.58 635.47 -8.11
74 652.11 645.66 -6.45
75 660.62 652.57 -8.05
76 669.11 662.07 -7.04
77 677.59 669.59 -8.00
78 686.05 679.99 -6.06
79 694.49 686.95 -7.54
80 702.91 696.87 -6.04
81 711.32 704.37 -6.95
82 719.71 714.27 -5.44
83 728.08 721.74 -6.34
84 736.43 732.27 -4.16
85 744.77 739.38 -5.39
86 753.09 749.23 -3.86
87 761.39 757.86 -3.53
88 769.67 768.47 -1.20
89 777.93 775.54 -2.39
90 786.18 783.9 -2.28
91 794.41 791.09 -3.32
92 802.62 799.73 -2.89
93 810.82 806.46 -4.36
94 818.99 814.68 -4.31
95 827.15 821.63 -5.52
96 835.29 830.78 -4.51
97 843.41 837.6 -5.81
98 851.52 846.25 -5.27
99 859.61 852.75 -6.86
100 867.67 861.93 -5.74
101 875.73 868.73 -7.00
102 883.76 877.95 -5.81
103 891.77 884.19 -7.58
104 899.77 893.09 -6.68
105 907.75 900.13 -7.62
106 915.71 909.48 -6.23
107 923.66 916.02 -7.64
108 931.58 925.24 -6.34
109 939.49 931.72 -7.77
110 947.38 940.64 -6.74
111 955.25 947.62 -7.63
112 963.10 957.01 -6.09
113 970.94 963.55 -7.39
114 978.75 972.59 -6.16
115 986.55 979.4 -7.15
116 994.33 988.68 -5.65
117 1002.10 995.62 -6.48
118 1009.84 1004.95 -4.89
119 1017.57 1011.43 -6.14
120 1025.27 1020.54 -4.73
121 1032.96 1026.71 -6.25
122 1040.64 1035.52 -5.12
123 1048.29 1042.1 -6.19
124 1055.92 1050.69 -5.23
125 1063.54 1057.27 -6.27
126 1071.14 1066.37 -4.77
127 1078.72 1072.66 -6.06
128 1086.28 1081.44 -4.84
129 1093.83 1088.24 -5.59
130 1101.35 1096.91 -4.44
131 1108.86 1103.51 -5.35
132 1116.35 1112.45 -3.90
133 1123.82 1118.88 -4.94
134 1131.28 1127.43 -3.85
135 1138.71 1134.18 -4.53
136 1146.13 1142.77 -3.36
137 1153.53 1149.68 -3.85
138 1160.90 1158.29 -2.61
139 1168.27 1164.55 -3.72
140 1175.61 1172.69 -2.92
141 1182.93 1178.12 -4.81
142 1190.24 1185.28 -4.96
143 1197.53 1191.26 -6.27
144 1204.80 1199.08 -5.72
145 1212.05 1204.83 -7.22
146 1219.28 1212.4 -6.88
147 1226.50 1217.8 -8.70
148 1233.69 1225.39 -8.30
149 1240.87 1231.26 -9.61
150 1248.03 1239.24 -8.79
151 1255.17 1244.84 -10.33
152 1262.30 1253.1 -9.20
153 1269.40 1258.99 -10.41
154 1276.49 1266.93 -9.56
155 1283.55 1273.58 -9.97
156 1290.60 1281.59 -9.01
157 1297.63 1287.95 -9.68
158 1304.65 1295.89 -8.76
159 1311.64 1302.02 -9.62
160 1318.62 1309.45 -9.17
161 1325.57 1316.09 -9.48
162 1332.51 1324.1 -8.41
163 1339.43 1330.37 -9.06
164 1346.33 1338.03 -8.30
165 1353.22 1344.25 -8.97
166 1360.08 1351.56 -8.52
167 1366.93 1358 -8.93
168 1373.76 1365.77 -7.99
169 1380.57 1371.78 -8.79
170 1387.36 1379.03 -8.33
171 1394.13 1385.42 -8.71
172 1400.88 1392.76 -8.12
173 1407.62 1399.13 -8.49
174 1414.34 1406.59 -7.75
175 1421.04 1412.41 -8.63
176 1427.72 1419.28 -8.44
177 1434.38 1425.46 -8.92
178 1441.02 1432.8 -8.22
179 1447.64 1438.9 -8.74
180 1454.25 1446.29 -7.96
181 1460.84 1452.24 -8.60
182 1467.41 1459.33 -8.08
183 1473.96 1465.52 -8.44
184 1480.49 1472.94 -7.55
185 1487.00 1478.69 -8.31
186 1493.50 1485.88 -7.62
187 1499.98 1491.88 -8.10
188 1506.43 1499.09 -7.34
189 1512.87 1505.01 -7.86
190 1519.29 1512.8 -6.49
191 1525.70 1518.56 -7.14
192 1532.08 1526.12 -5.96
193 1538.44 1532.06 -6.38
194 1544.79 1539.58 -5.21
195 1551.12 1545.68 -5.44
196 1557.43 1553.6 -3.83
197 1563.72 1559.45 -4.27
198 1569.99 1567 -2.99
199 1576.25 1573.48 -2.77
200 1582.48 1581.18 -1.30
201 1588.70 1587.41 -1.29
202 1594.90 1595.16 0.26
203 1601.07 1601.16 0.09
204 1607.24 1608.65 1.41
205 1613.38 1615.07 1.69
206 1619.50 1622.32 2.82
207 1625.61 1629.06 3.45
208 1631.69 1636.43 4.74
209 1637.76 1640.37 2.61
210 1643.81 1645.55 1.74
211 1649.84 1649.97 0.13
212 1655.85 1655.77 -0.08
213 1661.85 1660.13 -1.72
214 1667.82 1666.01 -1.81
215 1673.78 1670.16 -3.62
216 1679.72 1675.9 -3.82
217 1685.64 1680.58 -5.06
218 1691.54 1687.05 -4.49
219 1697.42 1691.51 -5.91
220 1703.28 1697.79 -5.49
221 1709.13 1702.42 -6.71
222 1714.95 1708.66 -6.29
223 1720.76 1713.82 -6.94
224 1726.55 1720.3 -6.25
225 1732.32 1725.21 -7.11
226 1738.07 1731.6 -6.47
227 1743.80 1736.71 -7.09
228 1749.52 1743.08 -6.44
229 1755.21 1748.33 -6.88
230 1760.89 1755.13 -5.76
231 1766.55 1760.25 -6.30
232 1772.19 1766.69 -5.50
233 1777.81 1771.93 -5.88
234 1783.41 1778.57 -4.84
235 1789.00 1783.86 -5.14
236 1794.56 1790.41 -4.15
237 1800.11 1795.53 -4.58
238 1805.64 1801.69 -3.95
239 1811.15 1806.97 -4.18
240 1816.64 1813.45 -3.19
241 1822.11 1818.69 -3.42
242 1827.56 1825 -2.56
243 1833.00 1830.03 -2.97
244 1838.41 1836.05 -2.36
245 1843.81 1841.36 -2.45
246 1849.19 1847.82 -1.37
247 1854.55 1852.98 -1.57
248 1859.89 1859.19 -0.70
249 1865.21 1864.02 -1.19
250 1870.52 1869.99 -0.53
251 1875.80 1875.09 -0.71
252 1881.07 1881.27 0.20
253 1886.32 1886.07 -0.25
254 1891.55 1892.1 0.55
255 1896.76 1896.64 -0.12
256 1901.95 1902.54 0.59
257 1907.12 1907.5 0.38
258 1912.28 1911.69 -0.59
259 1917.41 1906.33 -11.08
260 1922.53 1909.07 -13.46
261 1927.63 1923.93 -3.70
262 1932.71 1923.39 -9.32
263 1937.77 1929.63 -8.14
264 1942.81 1937.23 -5.58
265 1947.84 1943.25 -4.59
266 1952.84 1950.31 -2.53
267 1957.83 1956.31 -1.52
268 1962.80 1963.37 0.57
269 1967.74 1968.54 0.80
270 1972.67 1974.78 2.11
271 1977.59 1979.66 2.07
272 1982.48 1985.87 3.39
273 1987.35 1990.44 3.09
274 1992.21 1994.17 1.96
275 1997.05 2000.08 3.03
276 2001.86 2004.86 3.00
277 2006.66 2009.64 2.98
278 2011.44 2013 1.56
279 2016.21 2019.4 3.19
280 2020.95 2023.56 2.61
281 2025.68 2028.82 3.14
282 2030.38 2031.81 1.43
283 2035.07 2038.45 3.38
284 2039.74 2042.53 2.79
285 2044.39 2047.73 3.34
286 2049.02 2050.33 1.31
287 2053.63 2057.22 3.59
288 2058.22 2060.64 2.42
289 2062.80 2066.06 3.26
290 2067.36 2068.28 0.92
291 2071.89 2075.12 3.23
292 2076.41 2078.16 1.75
293 2080.91 2083.52 2.61
294 2085.39 2085.34 -0.05
295 2089.86
296 2094.30
297 2098.73
298 2103.13
299 2107.52
300 2111.89
301 2116.24
302 2120.57
303 2124.88
304 2129.18
305 2133.45
306 2137.71
307 2141.95
308 2146.17
309 2150.37
310 2154.55
311 2158.71
312 2162.86
313 2166.98
314 2171.09
315 2175.18
316 2179.25
317 2183.30
318 2187.33
319 2191.34
320 2195.34
321 2199.31
322 2203.27
323 2207.21
324 2211.13
325 2215.03
326 2218.91
327 2222.77
328 2226.62
329 2230.44
330 2234.25
331 2238.04
332 2241.81
333 2245.56
334 2249.29
335 2253.01
336 2256.70
337 2260.38
338 2264.03
339 2267.67
340 2271.29
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated