Submitted:
07 May 2024
Posted:
10 May 2024
You are already at the latest version
Abstract
Keywords:
Apollonius’ Problem and Lorentz Invariance


Foci of the Ellipse


Two Given Circles Inside Another Given Circle

The Lorentz Transformation
Conclusions
References
- Coxeter HSM (1 January 1968). "The Problem of Apollonius". The American Mathematical Monthly. 75 (1): 5-15. doi:10.2307/2315097. ISSN 0002-9890. JSTOR 2315097. [CrossRef]
- Dorrie H (1965). "The Tangency Problem of Apollonius". 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover. pp. 154-160 (32).
- Coolidge JL (1916). A Treatise on the Circle and the Sphere. Oxford: Clarendon Press. pp. 167-172.
- Coxeter HSM, Greitzer SL (1967). Geometry Revisited. Washington: MAA. ISBN 978-0-88385-619-2.
- Needham, T (2007). Visual Complex Analysis. New York: Oxford University Press. pp. 140-141. ISBN 978-0-19-853446-4.
- Hofmann-Wellenhof B, Legat K, Wieser M, Lichtenegger H (2003). Navigation: Principles of Positioning and Guidance. Springer. ISBN 978-3-211-00828-7.
- Schmidt, RO (1972). "A new approach to geometry of range difference location". IEEE Transactions on Aerospace and Electronic Systems. AES-8 (6): 821-835. Bibcode:1972ITAES...8..821S. doi:10.1109/TAES.1972.309614. S2CID 51648067. [CrossRef]
- Coaklay GW (1860). "Analytical Solutions of the Ten Problems in the Tangencies of Circles; and also of the Fifteen Problems in the Tangencies of Spheres". The Mathematical Monthly. 2: 116-126.
- Althiller-Court N (1961). "The problem of Apollonius". The Mathematics Teacher. 54: 444-452. doi:10.5951/MT.54.6.0444. [CrossRef]
- Gabriel-Marie F (1912).Exercices de gie, comprenant l’exposs modes giques et 2000 questions rlues (in French). Tours: Maison A. Mame et Fils. pp. 18-20, 673-677.
- van Roomen A (1596). Problema Apolloniacum quo datis tribus circulis, quaeritur quartus eos contingens, antea a...Francisco Vieta...omnibus mathematicis...ad construendum propositum, jam vero per Belgam...constructum (in Latin). Wrzburg: Typis Georgii Fleischmanni. (in Latin).
- Newton I (1974). DT Whiteside (ed.). The Mathematical Papers of Isaac Newton, Volume VI: 1684-1691. Cambridge: Cambridge University Press. p. 164. ISBN 0-521-08719-8.
- Newton I (1974). DT Whiteside (ed.). The Mathematical Papers of Isaac Newton, Volume VI: 1684-1691. Cambridge: Cambridge University Press. pp. 162-165, 238-241. ISBN 0-521-08719-8.
- Bold B (1982). Famous problems of geometry and how to solve them. Dover Publications. pp. 29-30. ISBN 0-486-24297-8.
- Boyer CB, Merzbach UC (1991). "Apollonius of Perga". A History of Mathematics (2nd ed.). John Wiley and Sons, Inc. p. 322. ISBN 0-471-54397-7.
- Pedoe D (1970). "The missing seventh circle". Elemente der Mathematik. 25: 14-15.
- Bruen A, Fisher JC, Wilker JB (1983). "Apollonius by Inversion". Mathematics Magazine. 56 (2): 97-103.
- Zlobec BJ, Kosta NM (2001). "Configurations of Cycles and the Apollonius Problem". Rocky Mountain Journal of Mathematics. 31 (2): 725?744. doi:10.1216/rmjm/1020171586. [CrossRef]
- Euler L (1790). "Solutio facilis problematis, quo quaeritur circulus, qui datos tres circulos tangat" (PDF). Nova Acta Academiae Scientiarum Imperialis Petropolitanae (in Latin). 6: 95-101. Reprinted in Euler’s Opera Omnia, series 1, volume 26, pp. 270-275.
- Gauss CF (1873). Werke, 4. Band (in German) (reprinted in 1973 by Georg Olms Verlag (Hildesheim) ed.). Gttingen: Kniglichen Gesellschaft der Wissenschaften. pp. 399-400. ISBN 3-487-04636-9.
- Knight RD (2005). "The Apollonius contact problem and Lie contact geometry". Journal of Geometry. 83 (1-2): 137-152. doi:10.1007/s00022-005-0009-x. S2CID 12222852. [CrossRef]
- Ogilvy, C. S. (1990). Excursions in Geometry. Dover. pp. 48?51 (Apollonius’ problem), 60 (extension to tangent spheres). ISBN 0-486-26530-7.
- Eisenbud, David and Harris, Joe, 3264 and All That: A Second Course in Algebraic Geometry. Cambridge University Press, 2016. ISBN 978-1107602724. pp. 66-68.
- Milorad R. Stevanovic, Predrag B. Petrovic, and Marina M. Stevanovic, "Radii of circles in Apollonius’ problem", Forum Geometricorum 17 (2017), 359-372: Theorem 1. http://forumgeom.fau.edu/FG2017volume17/FG201735.pdf.
- Dreschler K, Sterz U (1999). "Apollonius’ contact problem in n-space in view of enumerative geometry". Acta Mathematica Universitatis Comenianae. 68 (1): 37-47.
- Fitz-Gerald JM (1974). "A Note on a Problem of Apollonius". Journal of Geometry. 5: 15-26. doi:10.1007/BF01954533. S2CID 59444157. [CrossRef]
- Eppstein D (1 January 2001). "Tangent Spheres and Triangle Centers". The American Mathematical Monthly. 108 (1): 63-66. arXiv:math/9909152. doi:10.2307/2695679. ISSN 0002-9890. JSTOR 2695679. S2CID 14002377. [CrossRef]
- Pedoe D (1 June 1967). "On a theorem in geometry". Amer. Math. Monthly. 74 (6): 627-640. doi:10.2307/2314247. ISSN 0002-9890. JSTOR 2314247. [CrossRef]
- Mumford D, Series C, Wright D (2002). Indra’s Pearls: The Vision of Felix Klein. Cambridge: Cambridge University Press. pp. 196-223. ISBN 0-521-35253-3.
- Spiesberger, JL (2004). "Geometry of locating sounds from differences in travel time: Isodiachrons". Journal of the Acoustical Society of America. 116 (5): 3168-3177. Bibcode:2004ASAJ..116.3168S. [CrossRef]
- Lewis RH, Bridgett S (2003). "Conic Tangency Equations and Apollonius Problems in Biochemistry and Pharmacology". Mathematics and Computers in Simulation. 61 (2): 101-114. CiteSeerX 10.1.1.106.6518. doi:10.1016/S0378-4754(02)00122-2. [CrossRef]
- Cheney, Ward; Kincaid, David (2009). Linear Algebra: Theory and Applications. Sudbury, Ma: Jones and Bartlett. pp. 544, 558. ISBN 978-0-7637-5020-6.
- Generalization of the Apollonius theorem for simplices and related problems, Michael N. Vrahatis, 2024, 2401.03232, arXiv, math.GT.
- J. A. De Loera, X. Goaoc, F. Meunier, and N. Mustafa, The discrete yet ubiquitous theorems of Caratheodory, Helly, Sperner, Tucker, and Tverberg, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 3, 415-511. MR 3974609. [CrossRef]
- S. Har-Peled and E. Robson, On the width of the regular n-simplex, arXiv:2301.02616 (2023).
- M. N. Vrahatis, Towards the mathematical foundation of the minimum enclosing ball and related problems, preprint, to appear (2024), 1-12.
- Nocar, D. and Dofkova, R., APOLLONIUS’ PROBLEMS IN SECONDARY EDUCATION USING ICT, 12th International Conference on Education and New Learning Technologies, EDULEARN20 Proceedings, 978-84-09-17979-4, 2340-1117, 10.21125/edulearn.2020.0998, https://doi.org/10.21125/edulearn.2020.0998, IATED, Online Conference, 6-7 July, 2020, 2020, 3572-3580. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).