Submitted:
06 May 2024
Posted:
08 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Modified Gravity Theories
2.1. Gravity Theories
2.2. Lovelock gravity theory
3. Fundamentals of Morris-Thorne (MT) Wormhole Stabilization
3.1. MT Wormhole Stabilization in GR
- The throat is at minimum of r, specified as .
- is finite, continuous, and differentiable.
- In this spacetime, , which implies , and so .
- Proper radial distance is defined byand should be real and finite for .
- As (asymptotically flat regions of the Universe), and so .
- There should be no horizons, since it will prevent 2-way travel through the wormhole. There are no singularities. This implies that is finite, continuous, and differentiable everywhere, and the fact that measures proper time in asymptotically flat regions implies as .
- The flare-out conditionand so, . That is, the throat of the wormhole must expand outward from the central point. The throat of the wormhole must open up as one travels through it.
- ,
- ,
- ,
- .
3.2. A General Methodology for MT Wormhole Stabilization in Gravity Theories
4. Wormholes in Gravity Theories
4.1. Wormholes in gravity theory
4.2. Violation of Energy Conditions
4.3. Wormholes in Lovelock Gravity Theory
5. Conclusion and Further Research
Author Contributions
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| DOAJ | Directory of open access journals |
| TLA | Three letter acronym |
| LD | Linear dichroism |
References
- Epstein, H.; Glaser, V.; Jaffe, A. Nonpositivity of the energy density in quantized field theories. Il Nuovo Cimento (1955-1965) 1965, 36, 1016–1022. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Zangeneh, M.K.; Lobo, F.S.N. Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition. Phys. Rev. D 2015, 91, 084004. [Google Scholar] [CrossRef]
- Carroll, S.M. Lecture Notes on General Relativity. arXiv e-prints, 2019. [Google Scholar] [CrossRef]
- Klinkhamer, F. Defect Wormhole: A Traversable Wormhole Without Exotic Matter. Acta Physica Polonica B 2023, 54, 1. [Google Scholar] [CrossRef]
- Baines, J.; Gaur, R.; Visser, M. Defect Wormholes Are Defective. Universe 2023, 9. [Google Scholar] [CrossRef]
- Chanda, A.; Dey, S.; Paul, B.C. Morris–Thorne wormholes in modified f(R, T) gravity. General Relativity and Gravitation 2021, 53. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Dayyani, Z. Lorentzian wormholes in Lovelock gravity. Phys. Rev. D 2009, 79, 064010. [Google Scholar] [CrossRef]
- Zangeneh, M.K.; Lobo, F.S.N.; Dehghani, M.H. Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity. Phys. Rev. D 2015, 92, 124049. [Google Scholar] [CrossRef]
- Mishra, B.; Agrawal, A.; Tripathy, S.; Ray, S. Traversable wormhole models in f(R) gravity. International Journal of Modern Physics A 2022, 37, 2250010. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Levi Said, J.; Mifsud, J.; Di Valentino, E. Teleparallel gravity: from theory to cosmology. Reports on Progress in Physics 2023, 86, 026901. [Google Scholar] [CrossRef]
- Hohmann, M. , Teleparallel Gravity. In Lecture Notes in Physics; Springer International Publishing, 2023; p. 145–198. [CrossRef]
- ARCOS, H.I.; PEREIRA, J.G. TORSION GRAVITY: A REAPPRAISAL. International Journal of Modern Physics D 2004, 13, 2193–2240. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Myrzakulov, R. Wormholes in a viable f(T) gravity. The European Physical Journal C 2013, 73. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Kofinas, G.; Tsoukalas, M. On the action of the complete Brans–Dicke theory. The European Physical Journal C 2016, 76. [Google Scholar] [CrossRef]
- Klein, O. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English). Z. Phys. 1926, 37, 895–906. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Oliveira, M.A. Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D 2009, 80, 104012. [Google Scholar] [CrossRef]
- Godani, N.; Samanta, G.C. Traversable wormholes in f(R) gravity with constant and variable redshift functions. New Astronomy 2020, 80, 101399. [Google Scholar] [CrossRef]
- Parsaei, F.; Rastgoo, S. Wormhole in f(R) gravity revisited. arXiv e-prints, 2021; arXiv:2110.07278. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- Sotiriou, T.P. 6+1 lessons fromf(R) gravity. Journal of Physics: Conference Series 2009, 189, 012039. [Google Scholar] [CrossRef]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Ziaie, A.H. Dynamical wormholes in Lovelock gravity. Phys. Rev. D 2021, 104, 104050. [Google Scholar] [CrossRef]
- Choudhury, S.G. Application of the Raychaudhuri Equation in Gravitational Systems. PhDthesis, IISER, Kolkata. 2022; arXiv:gr-qc/2301.08055]. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
