Submitted:
10 May 2024
Posted:
13 May 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction
- It would be cheap.
- It could deliver large DNA constructs to use as homologous repair templates or large serine recombinase/CRISPR transposase cargo for individuals with genetic disorders wherein long stretches of nucleotides are affected.
- Flagellar motility of the vector allows for autonomous, widespread delivery throughout the organ or organ system[22].
Prototype for the Liver
Other Organs and Organ Systems
Conclusions
References
- Spinner NB, Loomes KM, Krantz ID, Gilbert MA. Alagille Syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al., editors. GeneReviews®, Seattle (WA): University of Washington, Seattle; 1993.
- Stoller JK, Hupertz V, Aboussouan LS. Alpha-1 Antitrypsin Deficiency. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al., editors. GeneReviews®, Seattle (WA): University of Washington, Seattle; 1993.
- Myerowitz, R. Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum Mutat 1997;9:195–208. [CrossRef]
- Butchbach, M.E.R. Genomic Variability in the Survival Motor Neuron Genes (SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int. J. Mol. Sci. 2021, 22, 7896. [Google Scholar] [CrossRef] [PubMed]
- Daiger, S.P.; Sullivan, L.S.; Bowne, S.J. Genes and mutations causing retinitis pigmentosa. Clin. Genet. 2013, 84, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 2021, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Liu, B.; Dong, X.; Gaston, N.; Sontheimer, E.J.; Xue, W. Template-jumping prime editing enables large insertion and exon rewriting in vivo. Nat. Commun. 2023, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.T.; Ponnazhagan, S.; Curiel, D.T. Synthetic Biology Design as a Paradigm Shift toward Manufacturing Affordable Adeno-Associated Virus Gene Therapies. ACS Synth. Biol. 2023, 12, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Becker, Z. Sporting a $3.5M price tag, CSL and uniQure’s hemophilia B gene therapy crosses FDA finish line. Fierce Pharma 2022. https://www.fiercepharma.com/pharma/csl-and-uniqures-hemophilia-b-gene-therapy-scores-approval-35-million-price-tag (accessed , 2023). 9 December.
- Bluebird Bio Secures Deal with Large Commercial Payer for Lyfgenia Amid Price Concerns. BioSpace n.d. https://www.biospace.com/article/bluebird-bio-secures-deal-with-large-commercial-payer-for-lyfgenia-amid-price-concerns/ (accessed , 2024). 4 January.
- Wei, T.; Sun, Y.; Cheng, Q.; Chatterjee, S.; Traylor, Z.; Johnson, L.T.; Coquelin, M.L.; Wang, J.; Torres, M.J.; Lian, X.; et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 2023, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chen K, Han H, Zhao S, Xu B, Yin B, Trinidad M, et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 RNP 2023:2023.11.15.566339. [CrossRef]
- Behr, M.; Zhou, J.; Xu, B.; Zhang, H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm. Sin. B 2021, 11, 2150–2171. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Sun, Y.; Yu, X.; Lee, S.M.; Cheng, Q.; Wei, T.; Gong, J.; Robinson, J.; Zhang, D.; et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 2022, 18, 265–291. [Google Scholar] [CrossRef]
- Verma, M.; Ozer, I.; Xie, W.; Gallagher, R.; Teixeira, A.; Choy, M. The landscape for lipid-nanoparticle-based genomic medicines. Nat. Rev. Drug Discov. 2023, 22, 349–350. [Google Scholar] [CrossRef]
- Shepherd, S.J.; Han, X.; Mukalel, A.J.; El-Mayta, R.; Thatte, A.S.; Wu, J.; Padilla, M.S.; Alameh, M.-G.; Srikumar, N.; Lee, D.; et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proc. Natl. Acad. Sci. 2023, 120. [Google Scholar] [CrossRef]
- Mehta, M.; Bui, T.A.; Yang, X.; Aksoy, Y.; Goldys, E.M.; Deng, W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater. Au 2023, 3, 600–619. [Google Scholar] [CrossRef]
- Stahl, E.C.; Sabo, J.K.; Kang, M.H.; Allen, R.; Applegate, E.; Kim, S.E.; Kwon, Y.; Seth, A.; Lemus, N.; Salinas-Rios, V.; et al. Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs. Mol. Ther. 2023, 31, 2422–2438. [Google Scholar] [CrossRef]
- Tan, X.; Petri, B.; DeVinney, R.; Jenne, C.N.; Chaconas, G. The Lyme disease spirochete can hijack the host immune system for extravasation from the microvasculature. Mol. Microbiol. 2021, 116, 498–515. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liu, M.; Lu, J.; Chu, B.; Yang, Y.; Song, B.; Wang, H.; He, Y. Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy. Nat. Commun. 2022, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Toley, B.J.; Forbes, N.S. Motility is critical for effective distribution and accumulation of bacteria in tumor tissue. Integr. Biol. 2011, 4, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Harimoto, T.; Hahn, J.; Chen, Y.-Y.; Im, J.; Zhang, J.; Hou, N.; Li, F.; Coker, C.; Gray, K.; Harr, N.; et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat. Biotechnol. 2022, 40, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Stritzker, J.; Hill, P.J.; Gentsche, I.; Szalay, A.A. Myristoylation negative msbB-mutants of probiotic E. coli Nissle 1917 retain tumor specific colonization properties but show less side effects in immunocompetent mice. Bioeng. Bugs 2010, 1, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Gawish, R.; Maier, B.; Obermayer, G.; Watzenboeck, M.L.; Gorki, A.-D.; Quattrone, F.; Farhat, A.; Lakovits, K.; Hladik, A.; Korosec, A.; et al. A neutrophil–B-cell axis impacts tissue damage control in a mouse model of intraabdominal bacterial infection via Cxcr4. eLife 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Yevtodiyenko, A.; Bazhin, A.; Khodakivskyi, P.; Godinat, A.; Budin, G.; Maric, T.; Pietramaggiori, G.; Scherer, S.S.; Kunchulia, M.; Eppeldauer, G.; et al. Portable bioluminescent platform for in vivo monitoring of biological processes in non-transgenic animals. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Mi, Z.; Yao, Q.; Qi, Y.; Zheng, J.; Liu, J.; Liu, Z.; Tan, H.; Ma, X.; Zhou, W.; Rong, P. Salmonella-mediated blood‒brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy. Acta Pharm. Sin. B 2023, 13, 819–833. [Google Scholar] [CrossRef]
- Dash, R.; Holsinger, K.A.; Chordia, M.D.; Gh. , M.S.; Pires, M.M. Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in Escherichia coli. ACS Infect. Dis. 2024, 10, 1602–1611. [Google Scholar] [CrossRef]
- Chan, C.T.Y.; Lee, J.W.; Cameron, D.E.; Bashor, C.J.; Collins, J.J. 'Deadman' and 'Passcode' microbial kill switches for bacterial containment. Nat. Chem. Biol. 2015, 12, 82–86. [Google Scholar] [CrossRef]
- Branchini, B.R.; Ablamsky, D.M.; Rosenman, J.M.; Uzasci, L.; Southworth, T.L.; Zimmer, M. Synergistic Mutations Produce Blue-Shifted Bioluminescence in Firefly Luciferase. Biochemistry 2007, 46, 13847–13855. [Google Scholar] [CrossRef]
- Nash, A.I.; McNulty, R.; Shillito, M.E.; Swartz, T.E.; Bogomolni, R.A.; Luecke, H.; Gardner, K.H. Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc. Natl. Acad. Sci. 2011, 108, 9449–9454. [Google Scholar] [CrossRef]
- Allouche-Arnon, H.; Khersonsky, O.; Tirukoti, N.D.; Peleg, Y.; Dym, O.; Albeck, S.; Brandis, A.; Mehlman, T.; Avram, L.; Harris, T.; et al. Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nat. Biotechnol. 2022, 40, 1143–1149. [Google Scholar] [CrossRef]
- Yu, S.; Yang, H.; Li, T.; Pan, H.; Ren, S.; Luo, G.; Jiang, J.; Yu, L.; Chen, B.; Zhang, Y.; et al. Efficient intracellular delivery of proteins by a multifunctional chimaeric peptide in vitro and in vivo. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Kannoly, S.; Gao, T.; Dey, S.; Wang, I.-N.; Singh, A.; Dennehy, J.J. Optimum Threshold Minimizes Noise in Timing of Intracellular Events. iScience 2020, 23, 101186. [Google Scholar] [CrossRef]
- Sultana, A.; Kumar, R. Modified bactofection for efficient and functional DNA delivery using invasive E. coli DH10B vector into human epithelial cell line. J. Drug Deliv. Sci. Technol. 2022, 70, 103159. [Google Scholar] [CrossRef]
- Grillot-Courvalin, C.; Goussard, S.; Huetz, F.; Ojcius, D.M.; Courvalin, P. Functional gene transfer from intracellular bacteria to mammalian cells. Nat. Biotechnol. 1998, 16, 862–866. [Google Scholar] [CrossRef]
- Zare, M.; Farhadi, A.; Zare, F.; Dehbidi, G.R.; Zarghampoor, F.; Ahmadi, M.K.B.; Behbahani, A.B. Genetically engineered E. coli invade epithelial cells and transfer their genetic cargo into the cells: an approach to a gene delivery system. Biotechnol. Lett. 2023, 45, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Schembri, M.A.; Dalsgaard, D.; Klemm, P. Capsule Shields the Function of Short Bacterial Adhesins. J. Bacteriol. 2004, 186, 1249–57. [Google Scholar] [CrossRef]
- Hickey, A.M.; Bhaskar, U.; Linhardt, R.J.; Dordick, J.S. Effect of eliminase gene (elmA) deletion on heparosan production and shedding in Escherichia coli K5. J. Biotechnol. 2013, 165, 175–177. [Google Scholar] [CrossRef]
- Raman, V.; Van Dessel, N.; Hall, C.L.; Wetherby, V.E.; Whitney, S.A.; Kolewe, E.L.; Bloom, S.M.K.; Sharma, A.; Hardy, J.A.; Bollen, M.; et al. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nat. Commun. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brumell, J.H.; Tang, P.; Zaharik, M.L.; Finlay, B.B. Disruption of the Salmonella-Containing Vacuole Leads to Increased Replication of Salmonella enterica Serovar Typhimurium in the Cytosol of Epithelial Cells. Infect. Immun. 2002, 70, 3264–3270. [Google Scholar] [CrossRef] [PubMed]
- Pilgrim, S.; Stritzker, J.; Schoen, C.; Kolb-Mäurer, A.; Geginat, G.; Loessner, M.J.; Gentschev, I.; Goebel, W. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther. 2003, 10, 2036–2045. [Google Scholar] [CrossRef] [PubMed]
- Johansson, P.; Lindgren, T.; Lundström, M.; Holmström, A.; Elgh, F.; Bucht, G. PCR-generated linear DNA fragments utilized as a hantavirus DNA vaccine. Vaccine 2002, 20, 3379–3388. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Batra, H.; Ananthaswamy, N.; Mahalingam, M.; Tao, P.; Wu, X.; Guo, W.; Fokine, A.; Rao, V.B. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat. Commun. 2023, 14, 2928. [Google Scholar] [CrossRef] [PubMed]
- Molinari, S.; Shis, D.L.; Bhakta, S.P.; Chappell, J.; Igoshin, O.A.; Bennett, M.R. A synthetic system for asymmetric cell division in Escherichia coli. Nat. Chem. Biol. 2019, 15, 917–924. [Google Scholar] [CrossRef]
- Eswarappa, S.M.; Negi, V.D.; Chakraborty, S.; Sagar, B.K.C.; Chakravortty, D. Division of theSalmonella-Containing Vacuole and Depletion of Acidic Lysosomes inSalmonella-Infected Host Cells Are Novel Strategies ofSalmonella entericaTo Avoid Lysosomes. Infect. Immun. 2010, 78, 68–79. [Google Scholar] [CrossRef]
- Pabon, J.; Singer, Z.; Huang, H.; Rice, C.; Danino, T. Abstract 6906: Engineered bacteria launch and control an oncolytic virus. Cancer Res 2024, 84, 6906–6906. [Google Scholar] [CrossRef]
- Mc Cafferty, S.; De Temmerman, J.; Kitada, T.; Becraft, J.R.; Weiss, R.; Irvine, D.J.; Devreese, M.; De Baere, S.; Combes, F.; Sanders, N.N. In Vivo Validation of a Reversible Small Molecule-Based Switch for Synthetic Self-Amplifying mRNA Regulation. Mol. Ther. 2020, 29, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, M.; Gawletta, S.; Hempel, T.; Brill, S.; Nett, E.; Sahin, U.; Beissert, T. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol. Ther. 2023, 31, 1636–1646. [Google Scholar] [CrossRef]
- Heinrich, J.; Wiegert, T. Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. Res. Microbiol. 2009, 160, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Brink, K.R.; Hunt, M.G.; Mu, A.M.; Groszman, K.; Hoang, K.V.; Lorch, K.P.; Pogostin, B.H.; Gunn, J.S.; Tabor, J.J. An E. coli display method for characterization of peptide–sensor kinase interactions. Nat. Chem. Biol. 2022, 19, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Arbab, M.; Matuszek, Z.; Kray, K.M.; Du, A.; Newby, G.A.; Blatnik, A.J.; Raguram, A.; Richter, M.F.; Zhao, K.T.; Levy, J.M.; et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023, 380, eadg6518–eadg6518. [Google Scholar] [CrossRef] [PubMed]
- Mofford, D.M.; Adams, S.T.; Reddy, G.S.K.K.; Miller, S.C. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity. J. Am. Chem. Soc. 2015, 137, 8684–8687. [Google Scholar] [CrossRef]
- Antas, P.; Carvalho, C.; Cabral-Teixeira, J.; de Lemos, L.; Seabra, M.C. Toward low-cost gene therapy: mRNA-based therapeutics for treatment of inherited retinal diseases. Trends Mol. Med. 2024, 30, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Yiu, G.; Chung, S.H.; Mollhoff, I.N.; Nguyen, U.T.; Thomasy, S.M.; Yoo, J.; Taraborelli, D.; Noronha, G. Suprachoroidal and Subretinal Injections of AAV Using Transscleral Microneedles for Retinal Gene Delivery in Nonhuman Primates. Mol. Ther. - Methods Clin. Dev. 2020, 16, 179–191. [Google Scholar] [CrossRef]
- Chuah, J.-A.; Matsugami, A.; Hayashi, F.; Numata, K. Self-Assembled Peptide-Based System for Mitochondrial-Targeted Gene Delivery: Functional and Structural Insights. Biomacromolecules 2016, 17, 3547–3557. [Google Scholar] [CrossRef]
- Than, A.; Liu, C.; Chang, H.; Duong, P.K.; Cheung, C.M.G.; Xu, C.; Wang, X.; Chen, P. Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yang RY, Quan J, Sodaei R, Aguet F, Segrè AV, Allen JA, et al. A systematic survey of human tissue-specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation 2018:311563. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).