Submitted:
04 April 2024
Posted:
05 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Characterization of the Seasons of the Year
2.2. Management of Donors
2.3. Follicular Aspiration and In Vitro Embryo Production
2.4. COCs Response Variables
2.5. Embryo Response Variables
2.6. Hormonal Covariates and Glucose
2.7. Physiological Covariates
2.8. Statistical Analysis
3. Results
3.1. COCs
3.2. Effect of Hormonal and Physiological Covariates on COCs
3.3. Embryos
3.4. Effect of Hormonal and Physiological COVARIATES on embryos
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferré, B.L.; Alvarez-Gallardo, H.; Romo, S.; Fresno, C.; Stroud, T.; Stroud, B.; Lindsey, B.; Kjelland, M. Transvaginal ultrasound-guided oocyte retrieval in cattle: State-of—The-art and its impact on the in vitro fertilization embryo production outcome. Reprod. Domest. Anim 2022, 00, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Herrick, J.R. Assisted reproductive technologies for endangered species conservation: Developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod 2019, 1, 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Sartori, R.; Prata, A.B.; Figueredo, A.C.S.; Sanches, B.V.; Pontes, G.C.S.; Viana, J.H.M.; Pontes, J.H.; Vasconcelos, J.L.M.; Pereira, M.H.C.; Dode, M.A.N.; et al. Update and overview on assisted reproductive technologies (ARTs) in Brazil. Anim. Reprod 2016, 13, 300–312. [Google Scholar] [CrossRef]
- Viana, J.H.M.; Siqueira, L.G.B.; Palhao, M.P.; Camargo, S.A. Use of in vitro fertilization technique in the last decade and its effect on Brazilian embryo industry and animal production. Acta Sci. Vet 2010, 38 (Suppl. 2), s661–s674. Available online: https://www.ufrgs.br/actavet/38-suple-2/23_SBTE_JHENRIQUE.pdf (accessed on 28 June 2022).
- Goicochea, V.J.; Rondón, J.W.; Acosta, P.F.; Gómez, M.Y.; Montalvo, M.M.; Salvatierra, A.M.; Martel, F.J.; Ballarte, Z.O.; Díaz, Z.J.; Ratto, F.M. Efecto de dos medios de fertilización en el desarrollo in vitro de embriones bovinos criollos. Rev. Inv. Vet. Perú 2021, 32, e18709. [Google Scholar] [CrossRef]
- Rocha, A.; Randel, D.; Broussard, J.R.; Lim, J.M.; Blair, R.M.; Roussel, J.D.; Godke, R.A.; Hansel, W. High environmental temperature and humidity decrease oocyte quality in Bos taurus but not in Bos indicus cows. Theriogenology 1997, 49, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Breuel, K.F.; Lewis, P.E.; Schrick, F.N.; Lishman, A.W.; Inskeep, E.K.; Butcher, R.L. Factors affecting fertility in the postpartum cow: Role of the oocyte and follicle in conception rate. Biol. Reprod 1993, 48, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Boni, R. Heat stress, a serious threat to reproductive function in animals and humans. Mol. Reprod. Dev 2019, 86, 1307–1323. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, T.C.; Negrão, J.A.; de Souza, C.T.; Martins, T.R.; da Cunha, L.S.T.M.; Luis, H.F.; Ferrari, C.R.; Franco, P.A.M.; Lencioni, T.E.A. Heat stress and ACTH administration on cortisol and insulin-like growth factor I (IGF-I) levels in lactating Holstein cows. J. App. Anim. Res 2017, 45, 1–7. [Google Scholar] [CrossRef]
- Itoh, F.; Obara, Y.; Rose, M.T.; Fuse, H.; Hashimoto, H. Insulin and glucagon secretion in lactating cows during heat exposure. J. Anim. Sci 1998, 76, 2182–2189. [Google Scholar] [CrossRef]
- Rashamol, V.P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Bhatta, R. Physiological adaptability of livestock to heat stress: An updated review. J. Anim. Behav. Biometerol 2018, 6, 62–71. [Google Scholar] [CrossRef]
- Cartwright, S.; Schmied, J.; Livernois, A.; Mallard, B.A. Physiological response to heat stress in immune phenotyped Canadian Holstein dairy cattle in free-stall and tie-stall management systems. Front. Anim. Sci 2022, 3, 852958. [Google Scholar] [CrossRef]
- Fernandez-Novo, A.; Pérez-Garnelo, S.S.; Villagrá, A.; Pérez-Villalobos, N.; Astiz, S. The effect of stress on reproduction and reproductive technologies in beef cattle- a review. Animals 2020, 10, 2096. [Google Scholar] [CrossRef] [PubMed]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Universidad Nacional Autónoma de México, Instituto de Geografía: Ciudad de México, México, 2004; Available online: http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1 (accessed on 23 April 2020).
- SMN. Sistema de información climatológica y geográfica del estado de Veracruz, México; Consulta de base de datos 2000-2013. 2020. Available online: https://smn.conagua.gob.mx/es/ (accessed on 20 April 2020). (In Spanish).
- Gutiérrez-García, G.; Ricker, M. Climate and climate change in the region of Los Tuxtlas (Veracruz, México): A statistical analysis. Atmósfera 2011, 24, 347–373. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&=S0187-62362011000400001.
- Ortega-Gaucin, D.; Cruz, B.J.; Castellano, B.H.V. Drought vulnerability indices in Mexico. Water 2018, 10, 1671. [Google Scholar] [CrossRef]
- Rosales-Martínez, F.; Rosendo-Ponce, A.; Cortez-Romero, C.; Gallegos-Sánchez, J.; Cuca-García, J.M.; Becerril-Pérez, C.M. Relation of the maximum temperature and relative humidity close to the insemination with the tropical milking criollo heifer’s gestation in three seasons. Trop. Anim. Health Prod 2020, 53, 27. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Hunter, R.H.F. Pre-ovulatory follicular cooling correlates positively with the potential for pregnancy in dairy cows: Implications for human IVF. J. Gynecol. Obstet. Human. Reprod 2019, 48, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Sakatani, M. Effects of heat stress on bovine preimplantation embryos produced in vitro. J. Reprod. Dev 2017, 63, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.O.F.; Paula-Lopez, F.F. Cellular and epigenetic changes induced by heat stress in bovine preimplantation embryos. Mol. Reprod. Dev 2018, 85, 810–820. [Google Scholar] [CrossRef]
- AMCROLET (Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical, A.C). Libro de registro de raza Criollo Lechero Tropical, Veracruz, México, 2015.
- de Alba, J. El libro de los Bovinos Criollos de América. Ed. Colegio de Postgraduados. Biblioteca Básica de Agricultura, México 2011.
- Rosendo-Ponce, A.; Becerril-Pérez, C.M. Avance en el conocimiento del bovino criollo Lechero Tropical de México. Ecosistemas Rec. Agrop 2015, 2, 233–243. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-90282015000200012.
- Rosales-Martínez, F.; Becerril-Pérez, C.M.; Rosendo-Ponce, A.; Cortez-Romero, C.; Torres-Hernández, G.; Gallegos-Sánchez, J. Effects of season, maximum temperature and relative humidity on the gestation success of tropical milking criollo cows. Agrociencia 2023, 57, 860–881. [Google Scholar] [CrossRef]
- Hernández-Cerón, J.; Chase, C.C., Jr.; Hansen, J.P. Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds. J. Dairy Sci 2004, 87, 53–58. [Google Scholar] [CrossRef] [PubMed]
- SAGARPA. Norma Oficial Mexicana, Especificaciones Técnicas para la Producción, Cuidado y uso de los Animales de Laboratorio. Diario Oficial de la Federación 2001. Available online in pdf: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf.
- Colegio de Postgraduados (COLPOS). Reglamento Para el Uso y Cuidado de Animales Destinados a la Investigación en el Colegio de Postgraduados. 2016. Available online: www.colpos.mx (accessed on 18 May 2021).
- Wildman, E.E.; Jones, G.M.; Wagner, P.E.; Boman, R.L.; Trout, J.R.; Lesch, T.N. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci 1982, 65, 495–512. [Google Scholar] [CrossRef]
- Leibfried, L.; First, N.L. Characterization of bovine follicular oocytes and their ability to mature in vitro. J. Anim. Sci 1979, 48, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Bó, A.G.; Mapletoft, J.R. Evaluation and classification of bovine embryos. Anim. Reprod 2013, 10, 344–348. Available online: https://www.animal-reproduction.org/article/5b5a604cf7783717068b46a2/pdf/animreprod-10-3-344.pdf.
- Statistical Analysis System (SAS). User’s Guide: Statistic; Version 9.4 for Windows. SAS Inst. Inc. Cary, NC, USA, 2010.
- Wolfenson, D.; Thatcher, W.W.; Badinga, L.; Savio, J.D.; Meidan, R.; Lew, B.J.; Braw-Tal, R.; Berman, A. Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod 1995, 52, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Peralta-Torres, J.A.; Aké-López, J.R.; Centurión-Castro, F.G.; Segura-Correa, J.C. Effect of season and breed group on the follicular population and cyclicity of heifers under tropical conditions. Trop. Anim. Health Prod 2017, 49, 207–2011. [Google Scholar] [CrossRef] [PubMed]
- Takuma, T.; Sakai, S.; Ezoe, D.; Ichimaru, H.; Jinnouchi, T.; Kaedei, Y.; Nagai, T.; Otoi, T. Effect of season and reproductive phase on the quality, quantity and developmental competence of oocytes aspirated from Japanese Black cows. J. Reprod. Dev 2010, 56, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Torres-Júnior, S.J.R.; Pires, F.A.M.; Sá, F.W.; Ferreira, M.A.; Viana, M.J.H.; Camargo, A.L.S.; Ramos, A.A.; Folhadella, M.I.; Polisseni, J.; Freitas, C.; Clemente, A.C.A.; Sá Filho, M.F.; Paula-Lopes, F.F.; Baruselli, S.P. Effect of maternal heat-stress on follicular growth competence in Bos indicus cattle. Theriogenology 2008, 69, 155–166. [Google Scholar] [CrossRef]
- Nogueira, B.G.R.; Souza, L.F.A.d.; Puelker, R.Z.; Giometti, I.C.; Firretti, S.M.G.; Dias, T.S.d.S.B.; Castilho, C. Factors affecting the in vitro production of embryos in a commercial program. Res. Soc. Dev 2021, 10, e16110212264. [Google Scholar] [CrossRef]
- Ponsart, C.; Gamarra, G.; Lacaze, S.; Ponter, A.A. Nutritional status of donor cows: Insulin related strategies to enhance embryo development. Anim. Reprod 2014, 11, 195–198. Available online: https://www.animal-reproduction.org/article/5b5a603ef7783717068b4655/pdf/animreprod-11-3-195.pdf.
- Krishnan, G.; Bagath, M.; Pragna, P.; Kusha, V.M.; Aleena, J.; Ravindranathan, A.P.; Sejian, V.; Bhatta, R. Mitigation of the heat stress impact in livestock reproduction. In: Carreira, P.R, editor. Theriogenology, 1. Portugal: InTech, 2017.
- Romero, P.M.H.; Uribe-Velásquez, L.F.; Sánchez, V.J.A. Biomarcadores de estrés como indicadores de bienestar animal en ganado de carne. Biosalud 2011, 10, 71–87. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-95502011000100007.
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, M.D.; Phillips, J.C.C. Non-invasive physiological indicators of heat stress in cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef]
- Krisher, R.L. The effect of oocyte quality on development. J. Anim. Sci 2004, 82, E14–E23. [Google Scholar] [CrossRef]
- Aguila, L.; Treulen, F.; Therrien, J.; Felmer, R.; Valdivia, M.; Smith, C.L. Oocyte selection for in vitro embryo production in bovine species: Noninvasive approaches for new challenges of oocyte competence. Animals 2020, 10, 2196. [Google Scholar] [CrossRef]
- Al-Katanani, Y.M.; Paula-Lopes, F.F.; Hansen, J.P. Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J. Dairy Sci 2002, 85, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Nazhat, S.A.; Aziz, A.; Zabuli, J.; Rahmati, S. Importance of body condition scoring in reproductive performance of dairy cows: A review. Open J. Vet. Med 2021, 11, 272–288. [Google Scholar] [CrossRef]
- Ferreira, M.R.; Ayres, H.; Chiaratti, R.M.; Ferraz, L.M.; Araujo, B.A.; Rodrigues, A.C.; Watanabe, F.Y.; Vireque, A.A.; Joaquim, C.D.; Smith, C.L.; Meirelles, V.F.; Baruselli, S.P. The low fertility of repeated-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. J. Dairy Sci 2011, 94, 2383–2392. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.A.; Nashiruddullah, N.; Dutta, D.; Biswas, R.K.; Borah, P. Cumulus cell expansion and ultrastructural changes in matured bovine oocytes under heat stress. Iran J. Vet. Res 2017, 18, 203–207. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674444/pdf/ijvr-18-203.pdf.
- Gendelman, M.; Roth, Z. ; Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates effects of summer thermal stress on developmental competence. Biol. Reprod 2012, 87, 118. [Google Scholar] [CrossRef]
- Báez, F.; Camargo, A.; Reyes, A.L.; Márquez, A.; Paula-Lopes, F.; Viñoles, C. Time-dependent effects of heat shock on the zona pellucida ultrastructure and in vitro developmental competence of bovine oocytes. Reprod. Biol 2019, 19, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Lee, J.S.; Jeon, S.W.; Peng, D.Q.; Kim, Y.S.; Bae, M.H.; Jo, Y.H.; Lee, H.G. Correlation between blood, physiological and behavioral parameters in beef calves under heat stress. Asian-Australas J. Anim. Sci 2018, 31, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Harkal, S.B.; Pawshe, C.H.; Ingawale, M.V.; Deshmukh, S.G.; Ambalkar, M.B.; Kale, S.D. Effect of frecuency of follicular aspiration on recovery of oocytes and follicular development. J. Entomol. Zool. Stud 2019, 7, 568–571. [Google Scholar] [CrossRef]
- Ward, F.A.; Lonergan, P.; Enright, B.P.; Boland, M.P. Factors affecting recovery and quality of oocytes for bovine embryo production in vitro using ovum pick-up technology. Theriogenology 2000, 54, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Turathum, B.; Gao, E.-M.; Chian, R.C. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells 2021, 10, 2292. [Google Scholar] [CrossRef] [PubMed]
- Peralta-Torres, J.A.; Aké-López, J.R.; Segura-Correa, J.C.; Aké-Villanueva, J.R. Effect of season on follicular population, quality and nuclear maturation of bovine oocytes under tropical conditions. Anim. Reprod. Sci 2017, 187, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.T.; Ispada, J.; Risolia, H.B.P.; Rodrigues, T.M.; Lima, S.R.; Assumpcao, F.O.A.M.; Visintin, A.J.; Paula-Lopes, F.F. Thermoprotective effect of insulin-like growth factor 1 on in vitro matured bovine oocyte exposed to heat shock. Theriogenology 2016, 86, 2028–2039. [Google Scholar] [CrossRef]
- Andrew-Vázquez, C.; López-Gatius, F.; García-Ispierto, I.; Maya-Soriano, M.J.; Hunter, R.H.F.; López-Béjar, M. Does heat stress provoke the loss of continuous layer of cortical granules beneath the plasma membrane during oocyte maturation? Zygote 2010, 18, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.J.E.; Cerri, A.R.L.; Sartori, R. Nutritional management of donor cow. Theriogenology 2008, 69, 88–97. [Google Scholar] [CrossRef]
- Chaveiro, A.; Santos, P.; Carvalhais, I.; Agrícola, R.; Faheem, M.; Habibi, A.; Silva, M.F. Sire effect and sperm apoptosis on bovine embryonic cleavage and subsequent in vitro embryo development. Vet. Sci 2010. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, G.Y.; Seo, B.B. Effects of culture media conditions on production of eggs fertilized in vitro of embryos derived from ovary of high grade Hanwoo. J. Anim. Sci. Technol 2016, 58, 11. [Google Scholar] [CrossRef]
- Ealy, D.A.; Drost, M.; Hansen, J.P. Developmental changes in embryonic resistance to adverse effect of maternal heat stress in cows. J. Dairy Sci 1993, 76, 2899–2905. [Google Scholar] [CrossRef]
- Payton, R.R.; Romar, R.; Coy, P.; Saxton, A.M.; Lawrence, J.L.; Edwards, J.L. Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of stress in vitro. Biol. Reprod 2004, 71, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.C.; Sartorelli, S.E.; Castilho, C.S.A.; Satrapa, A.R.; Puelker, Z.R.; Razza, M.E.; Ticianelli, S.J.; Eduardo, P.H.; Loureiro, B.; Barros, M.C. Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro. Theriogenology 2013, 79, 351–357. [Google Scholar] [CrossRef]
- Erdem, H.; Karasahin, T.; Alkan, H.; Dursun, S.; Satilmis, F.; Guler, M. Effect of embryo quality and developmental stages on pregnancy rates during fresh embryo transfer in beef heifers. Trop. Anim. Health Prod 2020, 52, 2541–2547. [Google Scholar] [CrossRef]
- Marsico, V.T.; Camargo, J.; Valente, S.R.; Sudano, J.M. Embryo competence and cryosurvival: Molecular and cellular features. Anim. Reprod 2019, 16, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Jarrillo-Rodríguez, J.; Castillo-Gallegos, E.; Flores-Garrido, A.F.; Valles de la Mora, B.; Ramírez, A.L.; Escobar-Hernández, R.; Ocaña-Zavaleta, E. Forage yield, quality and utilization efficiency on native pastures under different stocking rates and seasons of the year in the mexicans humid tropics. Trop. Subtrop. Agroecosystems 2011, 13, 417–427. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1379/680.
- Baena, M.M.; Costa, A.C.; Viera, G.C.; Rocha, R.F.B.; Ribeiro, A.R.B.; Ibelli, A.M.G.; Meirelles, S.L.C. Heat tolerance responses in a Bos taurus cattle raised in a Brazilian climate. J. Therm. Biol 2019, 81, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Seijian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of animals to heat stress. Animal 2018, 12, S2–s431. [Google Scholar] [CrossRef]
- O’Brien, M.D.; Rhoads, R.P.; Sander, S.R.; Duff, G.C.; Baumgard, L.H. Metabolic adaptations to heat stress in growing cattle. Domest. Anim. Endocrinol 2010, 38, 86–94. [Google Scholar] [CrossRef]
- Abbas, Z.; Sammad, A.; Hu, L.; Fang, H.; Xu, Q.; Wang, Y. Glucose metabolism and dynamics of facilitative glucose transporters (GLUTs) under the influence of heat stress in dairy cattle. Metabolites 2020, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Anim. Front 2019, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Méndez, S.M.; Soria, E.M.; Galarza, R.L.; Perea, P.F.; Argudo, E.D. Effect of fetal calf serum on production and cryotolerance of in vitro bovine embryos from Ecuadorian creole heifers. Reprod. Fertil. Dev 2018, 31, 141–142. [Google Scholar] [CrossRef]
- Méndez, S.M.; Argudo, E.D.; Soria, E.M.; Galarza, R.L.; Perea, P.F. Efecto de la adición de melatonina en el medio de maduración y/o vitrificación de ovocitos sobre la producción in vitro de embriones bovinos. Rev. Investig. Vet. Perú 2020, 31. [Google Scholar] [CrossRef]
- Biscarini, F.; Nicolazzi, E.L.; Stella, A.; Boettcher, P.J.; Gandini, G. Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Martínez, R.; Ávila, O.; Pérez, J.; Gallego, J.; Onofre, H. Estructura y función del banco de germoplasma in vitro en Colombia. Arch. Zoot 2005, 54, 545–550. [Google Scholar]
- Chase Jr, C.C.; Hammond, A.C.; Olson, T.A.; Murphy, C.N.; Tewolde, A.; Griffin, J.L. Introduction and evaluation of Romosinuano in the USA. Latin American Arch. Anim. Prod 1997, 5 (Suppl. 2), 57–70. Available online: https://ojs.alpa.uy/index.php/ojs_files/article/view/223/216.
- Lima, S.R.; Assumpcao, O.D.M.E.; Visintin, J.A.; Paula-Lopes, F.F. Alteracoes celulares inducidas pelo estresse térmico em embrioes bovinos. Braz. J. Vet. Res. Anim. Sci 2013, 50, 257–264. [Google Scholar] [CrossRef]
| Variable | Season | |||
|---|---|---|---|---|
| Breed | Hot dry | Hot humid | Fresh dry | Global |
| Total COCs | ||||
| RM | 29.6 ± 2.6a | 22.6 ± 1.7b | 29.1 ± 2.3a | 26.9 ± 1.3 |
| TM | 18.9 ± 2.0b | 28.4 ± 2.2a | 26.6 ± 2.1a | 24.2 ± 1.3 |
| Global | 23.6 ± 1.5 | 25.4 ± 1.4 | 27.8 ± 1.6 | |
| Viable | ||||
| RM | 17.3 ± 2.1a | 12.8 ± 1.3b | 18.7 ± 1.9a | 16.1 ± 1.0A |
| TM | 13.7 ± 1.8ab | 17.4 ± 1.8a | 8.0 ± 1.0c | 12.4 ± 0.9B |
| Global | 15.4 ± 1.2 | 14.9 ± 1.1 | 12.2 ± 1.0 | |
| Unviable | ||||
| RM | 1.7 ± 0.6b | 1.7 ± 0.5b | 1.8 ± 0.5b | 1.8 ± 0.3 |
| TM | 0.4 ± 0.3a | 3.0 ± 0.8b | 1.5 ± 0.5b | 1.2 ± 0.3 |
| Global | 0.9 ± 0.3Y | 2.3 ± 0.4XZ | 1.7 ± 0.4YZ | |
| Denuded | ||||
| RM | 9.4 ± 1.4b | 7.5 ± 1.0b | 8.3 ± 1.1b | 8.4 ± 0.7 |
| TM | 4.2 ± 0.8a | 6.0 ± 1.0ab | 17.1 ± 2.2c | 7.6 ± 0.7 |
| Global | 6.3 ± 0.7X | 6.7 ± 0.7X | 11.9 ± 1.1Y | |
| Total matured in vitro | ||||
| RM | 27.8 ± 2.7a | 24.6 ± 2.0a | 22.9 ± 2.1a | 25.0 ± 1.3A |
| TM | 13.3 ± 1.5c | 16.7 ± 1.5c | 20.0 ± 1.8abc | 16.5 ± 1.0B |
| Global | 19.3 ± 1.3 | 20.3 ± 1.2 | 21.4 ± 1.4 | |
| Variable | Season | |||
|---|---|---|---|---|
| Breed | Hot dry | Hot humid | Fresh dry | Global |
| Cleavage | ||||
| RM | 10.8 ± 1.6ab | 13.3 ± 1.7a | 10.8 ± 1.5ab | 11.6 ± 1.0A |
| TM | 3.9 ± 0.7c | 5.4 ± 0.9bc | 7.8 ± 1.2b | 5.5 ± 0.6B |
| Global | 6.5 ± 0.7 | 8.5 ± 0.8 | 9.2 ± 0.9 | |
| Blastocysts code one | ||||
| RM | 1.5 ± 0.5 | 1.6 ± 0.5 | 1.1 ± 0.4 | 1.4 ± 0.3 |
| TM | 1.3 ± 0.6 | 1.5 ± 0.4 | 0.6 ± 0.2 | 1.1 ± 0.3 |
| Global | 1.4 ± 0.4 | 1.5 ± 0.3 | 0.9 ± 0.2 | |
| Blastocysts code two | ||||
| RM | 1.3 ± 0.7 | 0.7 ± 0.4 | 0.4 ± 0.2 | 0.7 ± 0.2 |
| LT | 0.5 ± 0.3 | 0.5 ± 0.3 | 0.3 ± 0.2 | 0.4 ± 0.2 |
| Global | 0.8 ± 0.3 | 0.6 ± 0.2 | 0.4 ± 0.2 | |
| Total blastocysts | ||||
| RM | 5.0 ± 1.2 | 3.4 ± 0.8 | 1.8 ± 0.5 | 3.1 ± 0.5 |
| TM | 2.6 ± 0.7 | 3.0 ± 0.6 | 1.1 ± 0.3 | 2.1 ± 0.4 |
| Global | 3.6 ± 0.6X | 3.2 ± 0.5X | 1.4 ± 0.3Y | |
| Degenerate | ||||
| RM | 2.0 ± 0.9 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.5 ± 0.2 |
| TM | 0.6 ± 0.3 | 0.7 ± 0.3 | 0.2 ± 0.1 | 0.4 ± 0.2 |
| Global | 1.1 ± 0.3Y | 0.4 ± 0.1XY | 0.2 ± 0.1X | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
