Submitted:
22 March 2024
Posted:
25 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Previous Related Works
1.2. Proposal of This Work
2. Modelling
2.1. The Reference Evapotranspiration Model
2.2. Crop Evapotranspiration Model
2.3. Water Footprint Model
3. Materials and Methods
3.1. The Brazilian Serra Gaúcha
3.2. Global Sensitivity Analysis Techniques
3.2.1. Sampling Strategy
3.2.2. Analysis of Elementary Effects (EEs)
3.2.3. Fourier Amplitude Sensitivity Testing – FAST
3.3. Assumptions of the Study
- The analysis considers only latitude, altitude, fraction of mulch covering in the soil and the temperatures of three months (October, November and December) in the water footprint for the wine production;
- The water footprint considers only the evapotranspiration portion of the viticulture of the wine production;
- Temperatures, relative humidities, and wind speeds are considered the same for the different latitudes and altitudes (this assumption may be reasonable considering the small size of the region under consideration; on the other hand, new studies can be conducted considering the uncertainties in temperatures and wind speeds, for instance). Besides, as pointed previously, the range of variation in the maximum temperatures is higher than the real differences in the regions under study.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Data Availability Statement
Conflicts of Interest
Abbreviations
| EE | Elementary Effects |
| FAO | Food and Agriculture Organization |
| FAST | Fourier Amplitude Sensitivity Test |
| LHS | Latin Hypercube Sampling |
| VBSA | Variance Based Sensitivity Analysis |
| WF | Water footprint |
References
- Finco, A.; Bentivoglio, D.; Chiaraluce, G.; Alberi, M.; Chiarelli, E.; Maino, A.; Mantovani, F.; Montuschi, M.; Raptis, K.G.C.; Semenza, F.; Strati, V.; Vurro, F.; Marchetti, E.; Bettelli, M.; Janni, M.; Anceschi, E.; Sportolaro, C.; Bucci, G. Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water 2022, 14. [Google Scholar] [CrossRef]
- Saraiva, A.; Presumido, P.; Silvestre, J.; Feliciano, M.; Rodrigues, G.; Silva, P.O.e.; Damásio, M.; Ribeiro, A.; Ramôa, S.; Ferreira, L.; Gonçalves, A.; Ferreira, A.; Grifo, A.; Paulo, A.; Ribeiro, A.C.; Oliveira, A.; Dias, I.; Mira, H.; Amaral, A.; Mamede, H.; Oliveira, M. Water Footprint Sustainability as a Tool to Address Climate Change in the Wine Sector: A Methodological Approach Applied to a Portuguese Case Study. Atmosphere 2020, 11. [Google Scholar] [CrossRef]
- Wurz, D.A. .; Brighenti, A.F.. Analysis of Brazilian wine competitiveness. BIO Web Conf. 2019, 12, 03015. [Google Scholar] [CrossRef]
- Alderete, M.V. The Wine Clusters of Mendoza and Serra Gaúcha: A Local Development Perspective. Frontera Norte 2014, 26, 179–204. (In Spanish) [Google Scholar]
- Zen, A.C.; Fensterseifer, J.E.; Prévot, F. The influence of resources on the internationalisation process of clustered wine companies. International Journal of Business and Globalisation 2012, 8, 30–48. [Google Scholar] [CrossRef]
- Fensterseifer, J.E. The emerging Brazilian wine industry: Challenges and prospects for the Serra Gaúcha wine cluster. International Journal of Wine Business Research 2007, 19, 187–206. [Google Scholar] [CrossRef]
- Hoekstra, A.; Hung, P. Virtual water trade: a quantification of virtual water flows between nations in relation to international crop trade. Value of Water. Research Report Series No.11; 2002.
- Herath, I.; Green, S.; Singh, R.; Horne, D.; van der Zijpp, S.; Clothier, B. Water footprinting of agricultural products: a hydrological assessment for the water footprint of New Zealand’s wines. Journal of Cleaner Production 2013, pp. 232–243. [CrossRef]
- Bonamente, E.; Scrucca, F.; Asdrubali, F.; Cotana, F.; Presciute, A. The Water Footprint of the Wine Industry: Implementation of an Assessment Methodology and Application to a Case Study. Sustentability 2015, 7, 12190–12208. [Google Scholar] [CrossRef]
- Jairman, C. Water footprint as an indicator of sustainable table and wine grape production. Technical Report 2020. [Google Scholar]
- Saraiva, A.; Rodrigues, G.; Silvestre, J.; Feliciano, M.; Silva, P.; Oliveira, M. A pegada hídrica na fileira vitivinícola portuguesa. Agrotec 2019, pp. 68–70. (In Portuguese).
- Allen, R.; Walter, I.; Elliot, R.; Howell, T.; Itenfisu, D.; Jensen, M. The ASCE Standardized Reference Evapotranspiration Equation; 2005.
- Beven, K. A Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Estimates. Journal of Hydrology 1979, 44, 169–190. [Google Scholar] [CrossRef]
- Ndiaye, P.; Bodian, A.; Diop, L.; Djaman, K. Sensitivity Analysis of the Penman-Monteith Reference Evapotranspiration to Climatic Variables: Case of Burkina Faso. Journal of Water Resource and Protection 2017, 9, 1364–1376. [Google Scholar] [CrossRef]
- Irmak, S.; Payero, J.O.; Martin, D.L.; Irmak, A.; Howell, T.A. Sensitivity Analyses and Sensitivity Coefficients of Standardized Daily ASCE-Penman-Monteith Equation. Journal of Irrigation and Drainage Engineering 2006, 132, 564–578. [Google Scholar] [CrossRef]
- Debnath, S.; Adamala, S.; Raghuwanshi, N. Sensitivity Analysis of FAO-56 Penman-Monteith Method for Different Agro-ecological Regions of India. Environmental Processes 2015, 2, 689–704. [Google Scholar] [CrossRef]
- Biazar, S.M.; Dinpashoh, Y.; Singh, V.P. Sensitivity analysis of the reference crop evapotranspiration in a humid region. Environmental Science and Pollution Research 2019, 26, 32517–32544. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Science of The Total Environment 2022, 807, 150741. [Google Scholar] [CrossRef]
- Rossi, L.; Regni, L.; Rinaldi, S.; Sdringola, P.; Calisti, R.; Brunori, A.; Dini, F.; Proietti, P. Long-Term Water Footprint Assessment in a Rainfed Olive Tree Grove in the Umbria Region, Italy. Agriculture 2020, 10. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C.; Hatano, R. Carbon, Nitrogen and Water Footprints of Organic Rice and Conventional Rice Production over 4 Years of Cultivation: A Case Study in the Lower North of Thailand. Agronomy 2022, 12. [Google Scholar] [CrossRef]
- Yong, S.L.S.; Ng, J.L.; Huang, Y.F.; Ang, C.K.; Mirzaei, M.; Ahmed, A.N. Local and global sensitivity analysis and its contributing factors in reference crop evapotranspiration. Water Supply 2023, 23, 1672–1683. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. Sensitivity and Uncertainty in Crop Water Footprint Accounting: A Case Study for the Yellow River Basin. Value of Water Research Report Series no. 62 62, UNESCO – IHE, Enschede, the Netherlands, 2013.
- Li, Z.; Feng, B.; Wang, W.; Yang, X.; Wu, P.; Zhuo, L. Spatial and temporal sensitivity of water footprint assessment in crop production to modelling inputs and parameters. Agricultural Water Management 2022, 271, 107805. [Google Scholar] [CrossRef]
- Conceição, M.A.F.; Mandelli, F. Climate trends in the Serra Gaúcha region. XV Brazilian Congress on Agrometereology;, 2007. (in Portuguese).
- Cardoso, I.P.; Siqueira, T.M.; Timm, L.C.; Rodrigues, A.A.; Nunes, A.B. Analysis of average annual temperatures and rainfall in southern region of the state of Rio Grande do Sul, Brazil. Brazilian Journal of Environmental Sciences (RBCIAMB) 2022, 57, 58–71. [Google Scholar] [CrossRef]
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave version 8.3.0 manual: a high-level interactive language for numerical computations, 2023.
- Pianosi, F.; Sarrazin, F.; Wagener, T. A Matlab toolbox for Global Sensitivity Analysis. Environmental Modelling & Software 2015, 70, 80–85. [Google Scholar] [CrossRef]
- Borges, L.F.A.; Ferreira, F.F.; Gonçalves, F.; Espósito Junior, A.; Oliveira, A.F.d.S.; Telles, W.R. IPSAL: Implementation of the module to generate the Sobol sequence and indices. VETOR 2023, 33, 60–69. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56 – Crop Evapotranspiration (guidelines for computing crop water requirements). Technical report, FAO, Roma, Itália, 1998.
- Martins, P.R. Water Footprint Modelling in Viticulture for the Wine Production in the Serra Gaúcha. Master’s thesis, Graduate Program in Agroindustrial Systems and Processes, Federal University of Rio Grande, Santo Antônio da Patrulha, Brazil, 2023. Available at https://argo.furg.br/?BDTD13706 (in Portuguese).
- Li, S.; Li, Y.; Lin, H.; Feng, H.; Dyck, M. Effects of different mulching technologies on evapotranspiration and summer maize growth. Agricultural Water Management 2018, 201, 309–318. [Google Scholar] [CrossRef]
- Fonseca, M.A. Models to estimate the crop coefficients (Kc) for irrigated grapevines; Embrapa – Brazil, 2016. in Portuguese.
- Rosa, J.D.; Álvaro Luiz Mafra. ; Nohatto, M.A.; Ferreira, E.Z.; de Oliveira, O.L.P.; Miquelluti, D.J.; Cassol, P.C.; Medeiros, J.C. Soil chemical properties and grapevine yield affected by cover crop management in Serra Gaúcha, Southern Brazil. Revista Brasileira de Ciência do Solo 2009, 33, 179–187. (in Portuguese). [Google Scholar] [CrossRef]
- López-Urrea, R.; Sánchez, J.; Montoro, A.; Mañas, F.; Intrigliolo, D. Effect of using pruning waste as an organic mulching on a drip-irrigated vineyard evapotranspiration under a semi-arid climate. Agricultural and Forest Meteorology 2020, 291, 108064. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Araujo, E.S. Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. Water 2021, 13. [Google Scholar] [CrossRef]
- Lazzarotto, J.J.; Protas, J.F.S. Capital costs and demands for the production of vineyards for processing in Bento Gonçalves on a Spaleswood. Observatórios Agropensa 2020, pp. 1–10. (in Portuguese).
- Noacco, V.; Sarrazin, F.; Pianosi, F.; Wagener, T. Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox. MethodsX 2019, 6, 2258–2280. [Google Scholar] [CrossRef]
- Viana, F.A.C. A Tutorial on Latin Hypercube Design of Experiments. Quality and Reliability Engineering International 2016, 32, 1975–1985. [Google Scholar] [CrossRef]
- Pang, M.; Xu, R.; Hu, Z.; Wang, J.; Wang, Y. Uncertainty and Sensitivity Analysis of Input Conditions in a Large Shallow Lake Based on the Latin Hypercube Sampling and Morris Methods. Water 2021, 13. [Google Scholar] [CrossRef]
- Sheikholeslami, R.; Razavi, S. Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models. Environmental Modelling & Software 2017, 93, 109–126. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Campolongo, F.; Saltelli, A.; Cariboni, J. From screening to quantitative sensitivity analysis. A unified approach. Computer Physics Communications 2011, 182, 978–988. [Google Scholar] [CrossRef]
- Tian, W.; Song, J.; Li, Z.; de Wilde, P. Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis. Applied Energy 2014, 135, 320–328. [Google Scholar] [CrossRef]
- Campolongo, F.; Cariboni, J.; Saltelli, A. An effective screening design for sensitivity analysis of large models. Environmental Modelling & Software 2007, 22, 1509–1518 Modelling, computer-assisted simulations, and mapping of dangerous phenomena for hazard assessment. [Google Scholar] [CrossRef]
- Sarrazin, F.; Pianosi, F.; Wagener, T. Global Sensitivity Analysis of environmental models: Convergence and validation. Environmental Modelling & Software 2016, 79, 135–152. [Google Scholar] [CrossRef]
- Saltelli, A.; Bolado, R. An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics & Data Analysis 1998, 26, 445–460. [Google Scholar] [CrossRef]
- Sobol<i>´</i>, I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Yan, M.; Tian, X.; Li, Z.; Chen, E.; Wang, X.; Han, Z.; Sun, H. Simulation of Forest Carbon Fluxes Using Model Incorporation and Data Assimilation. Remote Sensing 2016, 8. [Google Scholar] [CrossRef]
- Campolongo, F.; Cariboni, J. On the Relationship Between the Sensitivity Measures Proposed by Morris and the Variance Based Measures. Probabilistic Safety Assessment and Management; Spitzer, C., Schmocker, U., Dang, V.N., Eds.; Springer London: London, 2004; pp. 2030–2035. [Google Scholar] [CrossRef]







| Morris EE () | FAST-index | |
|---|---|---|
| Covered fraction | 34.2017 | 7.1938e-01 |
| Altitude | 15.2832 | 1.4891e-01 |
| Latitude | 2.9088 | 6.5333e-03 |
| 7.6636 | 4.0507e-02 | |
| 8.3152 | 4.7451e-02 | |
| 5.9991 | 2.2368e-02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
