Submitted:
21 March 2024
Posted:
22 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Composition of Meat Analogues
3. Plant-Based Burgers: Ingredients and Functionality
3.1. Plant Proteins
3.2. Binding and Texturizing Agents
3.3. Fats and Oils
3.4. Flavouring Agents (Taste and Flavouring Enhancers)
3.5. Colouring Agents
3.6. Preservatives
3.7. Fortification
4. Clean Label
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Graça, J.; Calheiros, M.M.; Oliveira, A. Attached to Meat? (Un)Willingness and Intentions to Adopt a More Plant-Based Diet. Appetite 2015, 95, 113–125. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Sustainable Protein Production and Consumption: Pigs or, Peas?; Aiking, H. Sustainable Protein Production and Consumption: Pigs or Peas?; Aiking, H., Boer, J., Vereijken, J., Eds.; Environment & Policy; Springer Netherlands, 2006; Vol. 45; ISBN 978-1-4020-4062-7.
- Brown, L.R. Running on Empty. In Proceedings of the Forum for Applied Research and Public Policy; Executive Sciences Institute Inc, 2001; Vol. 16; pp. 6–8. [Google Scholar]
- Liu, Z.; Liu, Y. Mitigation of Greenhouse Gas Emissions from Animal Production. Greenhouse Gases 2018, 8, 627–638. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Slade, P. If You Build It, Will They Eat It? Consumer Preferences for Plant-Based and Cultured Meat Burgers. Appetite 2018, 125, 428–437. [Google Scholar] [CrossRef]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of Sensory Evaluation in Consumer Acceptance of Plant-Based Meat Analogs and Meat Extenders: A Scoping Review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef]
- Tuorila, H.; Hartmann, C. Consumer Responses to Novel and Unfamiliar Foods. Current Opinion in Food Science 2020, 33, 1–8. [Google Scholar] [CrossRef]
- Dekkers, B.L.; Boom, R.M.; Goot, A.J. van der Structuring Processes for Meat Analogues. Trends in Food Science & Technology 2018, 81, 25–36. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A Review of Research on Plant-based Meat Alternatives: Driving Forces, History, Manufacturing, and Consumer Attitudes. Comprehensive Reviews in Food Science and Food Safety 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Ahmad, M.; Qureshi, S.; Akbar, M.H.; Siddiqui, S.A.; Gani, A.; Mushtaq, M.; Hassan, I.; Dhull, S.B. Plant-Based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Applied Food Research 2022, 2, 100154. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends in Food Science & Technology 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Ishaq, A.; Irfan, S.; Sameen, A.; Khalid, N. Plant-Based Meat Analogs: A Review with Reference to Formulation and Gastrointestinal Fate. Current Research in Food Science 2022, 5, 973–983. [Google Scholar] [CrossRef]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2021, 11, 105. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Rizzolo-Brime, L.; Orta-Ramirez, A.; Puyol Martin, Y.; Jakszyn, P. Nutritional Assessment of Plant-Based Meat Alternatives: A Comparison of Nutritional Information of Plant-Based Meat Alternatives in Spanish Supermarkets. Nutrients 2023, 15, 1325. [Google Scholar] [CrossRef]
- Soria-Hernández, C.; Serna-Saldívar, S.; Research Center for Protein Development (CIDPRO), School of Engineering and Sciences, Monterrey Institute of Technology, Av. Eugenio Garza Sada 2501 Sur, CP 64849, Monterrey, N.L., México; Chuck-Hernández, C.; Research Center for Protein Development (CIDPRO), School of Engineering and Sciences, Monterrey Institute of Technology, Av. Eugenio Garza Sada 2501 Sur, CP 64849, Monterrey, N.L., México Physicochemical and Functional Properties of Vegetable and Cereal Proteins as Potential Sources of Novel Food Ingredients. Food Technol. Biotechnol. 2015, 53. [Google Scholar] [CrossRef]
- Marchi, M.D.; Costa, A.; Pozza, M.; Goi, A.; Manuelian, C.L. OPEN Detailed Characterization of Plant-based Burgers. Scientific Reports 2021.
- Bohrer, B.M. An Investigation of the Formulation and Nutritional Composition of Modern Meat Analogue Products. Food Science and Human Wellness 2019, 10. [Google Scholar] [CrossRef]
- Boukid, F.; Castellari, M. Veggie Burgers in the EU Market: A Nutritional Challenge? Eur Food Res Technol 2021, 247, 2445–2453. [Google Scholar] [CrossRef]
- Penna Franca, P.A.; Duque-Estrada, P.; da Fonseca e Sá, B.F.; van der Goot, A.J.; Pierucci, A.P.T.R. Meat Substitutes - Past, Present, and Future of Products Available in Brazil: Changes in the Nutritional Profile. Future Foods 2022, 5, 100133. [Google Scholar] [CrossRef]
- Xuejie, L.; Jian, L. The Flavor of Plant-Based Meat Analogues. CFW 2020, 65. [Google Scholar] [CrossRef]
- Costa-Catala, J.; Toro-Funes, N.; Comas-Basté, O.; Hernández-Macias, S.; Sánchez-Pérez, S.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Castell-Garralda, V.; Vidal-Carou, M.C. Comparative Assessment of the Nutritional Profile of Meat Products and Their Plant-Based Analogues. Nutrients 2023, 15, 2807. [Google Scholar] [CrossRef]
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur Food Res Technol 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Kerler, J.; Winkel, C.; Davidek, T.; Blank, I. Basic Chemistry and Process Conditions for Reaction Flavours with Particular Focus on Maillard-Type Reactions. In Food Flavour Technology; Taylor, A.J., Linforth, R.S.T., Eds.; Wiley-Blackwell: Oxford, UK, 2010; pp. 51–88. ISBN 978-1-4443-1777-0. [Google Scholar]
- Kyed, M.-H.; Rusconi, P. Protein Composition for Meat Products or Meat Analog Products 2009.
- Singh, M.; Trivedi, N.; Enamala, M.K.; Kuppam, C.; Parikh, P.; Nikolova, M.P.; Chavali, M. Plant-Based Meat Analogue (PBMA) as a Sustainable Food: A Concise Review. Eur Food Res Technol 2021, 247, 2499–2526. [Google Scholar] [CrossRef]
- Akharume, F.U.; Aluko, R.E.; Adedeji, A.A. Modification of Plant Proteins for Improved Functionality: A Review. Comprehensive Reviews in Food Science and Food Safety 2021, 20, 198–224. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Elsevier, 2019; pp. 103–126 ISBN 978-0-12-814874-7.
- Mosibo, O.K.; Ferrentino, G.; Alam, M.R.; Morozova, K.; Scampicchio, M. Extrusion Cooking of Protein-Based Products: Potentials and Challenges. Critical Reviews in Food Science and Nutrition 2022, 62, 2526–2547. [Google Scholar] [CrossRef]
- Riaz, M.N. Texturized Soy Protein as an Ingredient. 2004.
- Saerens, W.; Smetana, S.; Van Campenhout, L.; Lammers, V.; Heinz, V. Life Cycle Assessment of Burger Patties Produced with Extruded Meat Substitutes. Journal of Cleaner Production 2021, 306. [Google Scholar] [CrossRef]
- Plattner, B. Extrusion Techniques for Meat Analogues. CFW 2020, 65. [Google Scholar] [CrossRef]
- Ryu, G.-H. Extrusion Cooking of High-Moisture Meat Analogues. In Extrusion Cooking; Elsevier, 2020; pp. 205–224 ISBN 978-0-12-815360-4.
- Fu, Y.; Chen, T.; Chen, S.H.Y.; Liu, B.; Sun, P.; Sun, H.; Chen, F. The Potentials and Challenges of Using Microalgae as an Ingredient to Produce Meat Analogues. Trends in Food Science & Technology 2021, 112, 188–200. [Google Scholar] [CrossRef]
- Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Hwang, Y.-H.; Joo, S.-T. Traditional Plant-Based Meat Alternatives, Current, and Future Perspective: A Review. J. Agirc. Life Sci. 2021, 55, 1–11. [Google Scholar] [CrossRef]
- Malav, O.P.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat Analog: A Review. Critical Reviews in Food Science and Nutrition 2015, 55, 1241–1245. [Google Scholar] [CrossRef]
- Chiang, J.H.; Loveday, S.M.; Hardacre, A.K.; Parker, M.E. Effects of Soy Protein to Wheat Gluten Ratio on the Physicochemical Properties of Extruded Meat Analogues. Food Structure 2019, 19, 100102. [Google Scholar] [CrossRef]
- Samard, S.; Gu, B.; Ryu, G. Effects of Extrusion Types, Screw Speed and Addition of Wheat Gluten on Physicochemical Characteristics and Cooking Stability of Meat Analogues. J. Sci. Food Agric. 2019, 99, 4922–4931. [Google Scholar] [CrossRef]
- Tóth, A.J.; Dunay, A.; Battay, M.; Illés, C.B.; Bittsánszky, A.; Süth, M. Microbial Spoilage of Plant-Based Meat Analogues. Applied Sciences 2021, 11, 8309. [Google Scholar] [CrossRef]
- Mittermeier-Kleßinger, V.K.; Hofmann, T.; Dawid, C. Mitigating Off-Flavors of Plant-Based Proteins. J. Agric. Food Chem. 2021, 69, 9202–9207. [Google Scholar] [CrossRef]
- Kim, H.; Lee, M.-Y.; Lee, J.; Jo, Y.-J.; Choi, M.-J. Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty. Foods 2022, 11, 3337. [Google Scholar] [CrossRef]
- Reglamento (CE) n o 1332/2008; 2008; Vol. 354;
- Committee on Technological Options to Improve the Nutritional Attributes of Animal Products Designing Foods: Animal Product Options in the Marketplace; National Academies Press: Washington, DC, USA, 1988; ISBN 978-0-309-03795-2.
- GFI 2022-Plant-Based-State-of-the-Industry-Report. 2021.
- Rios, R.V.; Pessanha, M.D.F.; Almeida, P.F. de; Viana, C.L.; Lannes, S.C. da S. Application of Fats in Some Food Products. Food Sci. Technol (Campinas) 2014, 34, 3–15. [Google Scholar] [CrossRef]
- Godschalk-Broers, L.; Sala, G.; Scholten, E. Meat Analogues: Relating Structure to Texture and Sensory Perception. 2022, 31.
- Zahari, I.; Ferawati, F.; Helstad, A.; Ahlström, C.; Östbring, K.; Rayner, M.; Purhagen, J.K. Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods 2020, 9, 772. [Google Scholar] [CrossRef]
- MacLeod, G.; Ames, J.; Betz, N.L. Soy Flavor and Its Improvement. Critical Reviews in Food Science and Nutrition 1988, 27, 219–400. [Google Scholar] [CrossRef]
- Fraser, R.; Brown, P.O.; Karr, J.; Holz-Schietinger, C.; Cohn, E. Methods and Compositions for Affecting the Flavor and Aroma Profile of Consumables 2017.
- Kale, P.; Mishra, A.; Annapure, U.S. Development of Vegan Meat Flavour: A Review on Sources and Techniques. Future Foods 2022, 5, 100149. [Google Scholar] [CrossRef]
- Spence, C. On the Psychological Impact of Food Colour. Flavour 2015, 4, 21. [Google Scholar] [CrossRef]
- Gregson, C.M.; Lee, T.-C. Quality Modification of Food by Extrusion Processing. In Quality of Fresh and Processed Foods; Shahidi, F., Spanier, A.M., Ho, C.-T., Braggins, T., Eds.; Advances in Experimental Medicine and Biology; Springer US: Boston, MA, 2004; Volume 542, pp. 187–200 . ISBN 978-1-4613-4790-3. [Google Scholar]
- Hamilton, M.N.; Ewing, C.E. Food Coloring Composition 2005.
- Rolan, T.; Mueller, I.; Mertle, T.J.; Swenson, K.J.; Conley, C.; Orcutt, M.W.; Mease, L.E. Ground Meat and Meat Analog Compositions Having Improved Nutritional Properties 2008.
- Fraser, R.Z.; Shitut, M.; Agrawal, P.; Mendes, O.; Klapholz, S. Safety Evaluation of Soy Leghemoglobin Protein Preparation Derived From Pichia Pastoris, Intended for Use as a Flavor Catalyst in Plant-Based Meat. Int J Toxicol 2018, 37, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Devaere, J.; De Winne, A.; Dewulf, L.; Fraeye, I.; Šoljić, I.; Lauwers, E.; De Jong, A.; Sanctorum, H. Improving the Aromatic Profile of Plant-Based Meat Alternatives: Effect of Myoglobin Addition on Volatiles. Foods 2022, 11, 1985. [Google Scholar] [CrossRef] [PubMed]
- Orcutt, M.W.; Sandoval, A.; Mertle, T.J.; Mueller, I.; Altemueller, P.A.; Downey, J. Meat Compositions Comprising Colored Structured Protein Products 2008.
- Wild, F.; Czerny, M.; Janssen, A.; Kole, A.; Zunabovic, M.; Domig, K. The Evolution of a Plant-Based Alternative to Meat: From Niche Markets to Widely Accepted Meat Alternatives. Agro Food Industry Hi-Tech 2014, 25, 45–49. [Google Scholar]
- Dwivedi, S.; Prajapati, P.; Vyas, N.; Malviya, S.; Kharia, A. A Review on Food Preservation. .. 2017.
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.-N.; Tang, G.-Y.; Li, H.-B. Antibacterial and Antifungal Activities of Spices. IJMS 2017, 18, 1283. [Google Scholar] [CrossRef]
- Strategies to Reduce Sodium Intake in the United States; Institute of Medicine (U. S.), Henney, J.E., Taylor, C.L., Boon, C.S., Eds.; National Academies Press: Washington, D.C, 2010; ISBN 978-0-309-14805-4. [Google Scholar]
- Harnack, L.; Mork, S.; Valluri, S.; Weber, C.; Schmitz, K.; Stevenson, J.; Pettit, J. Nutrient Composition of a Selection of Plant-Based Ground Beef Alternative Products Available in the United States. Journal of the Academy of Nutrition and Dietetics 2021, 121, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Curtain, F.; Grafenauer, S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of on Nutrition and Health Claims Made on Foods; 2006; Vol. 404; 20 December.
- Caporgno, M.P.; Böcker, L.; Müssner, C.; Stirnemann, E.; Haberkorn, I.; Adelmann, H.; Handschin, S.; Windhab, E.J.; Mathys, A. Extruded Meat Analogues Based on Yellow, Heterotrophically Cultivated Auxenochlorella Protothecoides Microalgae. Innovative Food Science & Emerging Technologies 2020, 59, 102275. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron Bioavailability and Dietary Reference Values. The American Journal of Clinical Nutrition 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- van Vliet, S.; Kronberg, S.L.; Provenza, F.D. Plant-Based Meats, Human Health, and Climate Change. Front. Sustain. Food Syst. 2020, 4, 128. [Google Scholar] [CrossRef]
- Uauy, R.; Hertrampf, E.; Reddy, M. Iron Fortification of Foods: Overcoming Technical and Practical Barriers. The Journal of Nutrition 2002, 132, S849–S852. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Parrott, S.J.; Raj, S.; Cullum-Dugan, D.; Lucus, D. How Prevalent Is Vitamin B 12 Deficiency among Vegetarians? Nutr Rev 2013, 71, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Temova Rakuša, Ž.; Roškar, R.; Hickey, N.; Geremia, S. Vitamin B12 in Foods, Food Supplements, and Medicines—A Review of Its Role and Properties with a Focus on Its Stability. Molecules 2022, 28, 240. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 1170/2009 of ; 2009; Vol. 314; 30 November.
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) Scientific Opinion on Dietary Reference Values for Cobalamin (Vitamin B12). EFS2 2015, 13. [CrossRef]
- Wegmüller, R.; Tay, F.; Zeder, C.; Brnić, M.; Hurrell, R.F. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide. The Journal of Nutrition 2014, 144, 132–136. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Peschel, A.O. Consumer Perception of Plant-Based Proteins: The Value of Source Transparency for Alternative Protein Ingredients. Food Hydrocolloids 2019, 96, 20–28. [Google Scholar] [CrossRef]
- Maruyama, S.; Streletskaya, N.A.; Lim, J. Clean Label: Why This Ingredient but Not That One? Food Quality and Preference 2021, 87, 104062. [Google Scholar] [CrossRef]
- Monteiro, C.; Cannon, G.; Lawrence, M.; Louzada, M.L.; Machado, P. FAO. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System. 2019.
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Filipič, M.; Jose Frutos, M.; Galtier, P.; et al. Re-evaluation of Celluloses E 460(i), E 460(Ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as Food Additives. EFS2 2018, 16. [CrossRef]
- Lima, R. da S.; Block, J.M. Coconut Oil: What Do We Really Know about It so Far? Food Quality and Safety. 2019, 3, 61–72. [Google Scholar] [CrossRef]
- Shirwaikar, A.; Shirwaikar, A. Coconut Oil - a Review of Potential Applications.; 2016.
- Heiman, A.; Lowengart, O. Calorie Information Effects on Consumers’ Food Choices: Sources of Observed Gender Heterogeneity. Journal of Business Research 2014, 67, 964–973. [Google Scholar] [CrossRef]
- Bryngelsson, S.; Moshtaghian, H.; Bianchi, M.; Hallström, E. Nutritional Assessment of Plant-Based Meat Analogues on the Swedish Market. International Journal of Food Sciences and Nutrition 2022, 73, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N. Nutritional Quality of Meat Analogues: Results From the Food Labelling of Italian Products (FLIP) Project. Frontiers in Nutrition 2022, 9. [Google Scholar]

| Ingredient | Source | Main functionality | Reference |
|---|---|---|---|
| Carbohydrates (polysaccharides) | Starches, flours, fibers, and purified polysaccharides | Thickening, emulsification, water and oil retention and gelation | [13,16,25] |
| Sugars | Sucrose, dextrose, maltose, xylose etc. | Flavour and color “Maillard reaction”. | [26,27] |
| Fats | Low saturated fatty acid oils: (e.g. sunflower oil, olive oil, corn oil, turnip oil and canola oil) and high saturated fatty acid oils: (e.g. coconut oil, palm oil and cocoa butter) | Texture contribution (tenderness, mouthfeel, juiciness) and flavour release. | [11,19,28] |
| Proteins | Texturized, isolates and concentrates: (e.g. soy, wheat, pea, chickpea, faba bean, rice and sunflower) | Texturization, mouthfeel and texture contribution, emulsification, oil and water retention, flavor binding, nutritional value | [12,16,29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
