Submitted:
15 March 2024
Posted:
18 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Chemoenzymatic Synthesis of the SUU' Subclass Category TAGs (S)-1 and 2
2.1.1. DDQ Deprotection with an Incorporated MUFA Present
2.1.2. DDQ Deprotection with an Incorporated PUFA Present
2.1.3. Chemical Coupling of the Final Fatty Acid
2.2. Chemoenzymatic Synthesis of the USU' Subclass Category TAGs (S)-5 and 6
2.3. Chemoenzymatic Synthesis of the Remaining SUU' Subclass Category TAGs (S)-3 and 4
2.3.1. Deprotection with an Open sn-2 Position
2.3.2. TAG Synthesis via a Double Lipase-Step Method
3. Materials and Methods
3.1. General Information
3.2. Synthesis of the SUU' Subclass Category TAGs (S)-1 and 2
3.2.1. Synthesis of 2,3-O-Isopropylidene-1-O-(p-methoxybenzyl)-sn-glycerol, (R)-7
3.2.2. Synthesis of 1-O-(p-methoxybenzyl)-sn-glycerol, (S)-8
3.2.3. Synthesis of 3-Dodecanoyl-1-O-(p-methoxybenzyl)-sn-glycerol, (R)-9a
3.2.4-5. Synthesis of (R)-9b and (R)-9c
3.2.6. Synthesis of 3-Dodecanoyl-1-O-(p-methoxybenzyl)-2-[(9Z)-octadec-9-enoyl)]-sn-glycerol, (R)-10a
3.2.7-10. Synthesis of (R)-10b, (R)-10c, (R)-10d and (R)-10e
3.2.11. Synthesis of 3-Dodecanoyl-2-[(9Z)-octadec-9-enoyl)]-sn-glycerol, (R)-11a
3.2.12-13. Synthesis of 2-[(9Z)-Octadec-9-enoyl)]-3-tetradecanoyl-sn-glycerol, (R)-11b and (R)-11c
3.2.14. Synthesis of 3-Hexadecanoyl-2-[(9Z,12Z)-octadeca-9,12-dienoyl)]-sn-glycerol, (R)-11e
3.2.15. Synthesis of 3-Dodecanoyl-1-[(9Z,12Z)-octadeca-9,12-dienoyl)]-2-[(9Z)-octadec-9-enoyl)]-sn-glycerol, (S)-1
3.2.16-22. Synthesis of (S)-2, (R)-12a, (R)-12b, (R)-12c, (R)-12d, (R)-12e and (R)-12f
3.3. Synthesis of the USU' Subclass Category TAGs (S)-5 and 6
3.3.1. Synthesis of Oleic Acid Acetoxime Ester, 13
3.3.2. Synthesis of 1-O-(p-Methoxybenzyl)-3-[(9Z)-octadec-9-enoyl)]-sn-glycerol, (R)-14
3.3.3-8. Synthesis of (R)-15a, (R)-15b, (R)-16a, (R)-16b, (S)-5 and (S)-6
3.4. Synthesis of the SUU' Subclass Category TAGs (S)-3 and 4
3.4.1. Synthesis of 3-Dodecanoyl-sn-glycerol, (R)-17
3.4.2. Synthesis of [2-(p-Methoxyphenyl)-1,3-dioxolan-4-yl]methyl dodecanoate, (R)-18
3.4.3. Conversion of Acetal (R)-18 into (R)-17
3.4.4-11. Synthesis of (R)-8, (S)-14, (S)-19, (S)-20a, (S)-20b, (S)-3 and (S)-4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunstone, F. D. The Chemistry of Oils and Fats. Sources, Composition, Properties and Uses; Blackwell Publishing: Oxford, UK, 2004; pp 50-75.
- IUPAC-IUB Commission on Biochemical Nomenclature, 1977. The nomenclature of lipids, Eur J. Biochem. 1977, 79, 11-21. [CrossRef]
- Lísa, M.; Holčapek, M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal. Chem. 2013, 85, 1852–1859. [CrossRef]
- Kalpio, M.; Nylund, M.; Linderborg, K. M.; Yang, B.; Kristinsson, B.; Haraldsson, G. G.; Kallio, H. Enantioselective chromatography in analysis of triacylglycerols common in edible fats and oils. Food Chem. 2015, 172, 718–724. [CrossRef]
- Řezanka, T.; Kolouchová, I.; Nedbalová, L.; Sigler, K. Enantiomeric separation of triacylglycerols containing very long chain fatty acids. J. Chromatogr. A 2018, 1557, 9–19. [CrossRef]
- Nagai, T.; Kinoshita, T.; Kasamatsu, E.; Yoshinaga, K.; Mizobe, H.; Yoshida, A.; Itabashi, Y.; Gotoh, N. Simultaneous separation of triacylglycerol enantiomers and positional isomers by chiral high performance liquid chromatography coupled with mass spectrometry. J. Oleo Sci. 2019, 68, 1019–1026. [CrossRef]
- Kalpio, M.; Magnússon, J. D.; Gudmundsson, H. G.; Linderborg, K. M.; Kallio, H.; Haraldsson, G. G.; Yang, B. Synthesis and enantiospecific analysis of enantiostructured triacylglycerols containing n-3 polyunsaturated fatty acids. Chem. Phys. Lipids 2020, 231, 104937. [CrossRef]
- Chen, Y. J.; Zhou, X. H.; Han, B.; Yu, Z.; Yi, H. X.; Jiang, S. L.; Li, Y. Y.; Pan, J. C.; Zhang, L. W. Regioisomeric and enantiomeric analysis of primary triglycerides in human milk by silver ion and chiral HPLC atmospheric pressure chemical ionization-MS. J. Dairy Sci. 2020, 103, 7761–7774. [CrossRef]
- Kallio, H.; Yli-Jokipii, K.; Kurvinen, J. P.; Sjövall, O.; Tahvonen, R. Regioisomerism of Triacylglycerols in Lard, Tallow, Yolk, Chicken Skin, Palm Oil, Palm Olein, Palm Stearin, and a Transesterified Blend of Palm Stearin and Coconut Oil Analyzed by Tandem Mass Spectrometry. J. Agric. Food Chem. 2001, 49, 3363–3369. [CrossRef]
- Sun, C.; Wei, W.; Zou, X.; Huang, J.; Jin, Q.; Wang, X. Evaluation of Triacylglycerol Composition in Commercial Infant Formulas on the Chinese Market: A Comparative Study Based on Fat Source and Stage. Food Chem. 2018, 252, 154–162. [CrossRef]
- Zhang, X.; Qi, C.; Zhang, Y.; Wei, W.; Jin, Q.; Xu, Z.; Tao, G.; Wang, X. Identification and Quantification of Triacylglycerols in Human Milk Fat Using Ultra-Performance Convergence Chromatography and Quadrupole Time-of-Flight Mass Spectrometery with Supercritical Carbon Dioxide as a Mobile Phase. Food Chem. 2019, 275, 712–720. [CrossRef]
- Kristinsson, B.; Linderborg, K.M.; Kallio, H.; Haraldsson, G.G. Synthesis of enantiopure structured triacylglycerols. Tetrahedron: Asymmetry 2014, 25, 125-132. [CrossRef]
- Gudmundsson, H. G.; Linderborg, K. M.; Kallio, H.; Yang, B.; Haraldsson, G. G. Synthesis of Enantiopure ABC-Type Triacylglycerols. Tetrahedron 2020, 76 (2), 130813. [CrossRef]
- Kristinsson, B.; Haraldsson, G.G. Chemoenzymaatic synthesis of enantiopure structured triacylglycerols. Synlett 2008, 14, 2178-2182.
- Greene, T.W.; Wuts, P.G.M. Protection for the hydroxyl group, including 1,2- and 1,3-diols. In Greene's Protective Groups in Organic Synthesis, 4th ed.; Greene, T.W., Wuts, P.G.M., Eds.; John Wiley and sons: New Jersey, USA, 2006; pp 16-366.
- Kociensky, P.J. Protecting groups, 3rd ed.; Thieme Verlag: Stuttgart, Germany, 2005; 279 pp.
- Kodali, D.R.; Tercyak, A.; Fahey, D.A.; Small, D.M. Acyl migration in 1,2-dipalmitoyl-sn-glycerol. Chem. Phys. Lipids 1990, 52, 163-170. [CrossRef]
- Laszlo, J.A.; Compton, D.L.; Vermillion, K.E. Acyl migration kinetics of vegetable oil 1,2-diacylglycerols. J. Am. Oil Chem. Soc. 2008, 85, 307-312. [CrossRef]
- Compton, D.L.; Laszlo, J.A.; Appell, M.; Vermillion, K.E.; Evans, K.O. 2012. Influence of fatty acid desaturation on spontaneous acyl migration in 2-monoacylglycerols. J. Am. Oil Chem. Soc. 2012, 89, 2259–2267. [CrossRef]
- Yadav, J. S.; Satyanarayana, M.; Raghavendra, S.; Balanarsaiah, E. Chemoselective hydrolysis of terminal isopropylidene acetals in acetonitrile using molecular iodine as a mild and efficient catalyst. Tetrahedron Lett. 2005, 46, 8745-8748. [CrossRef]
- Sun, J.; Dong, Y.; Cao, L.; Wang, X.; Wang, S.; Hu, Y. Highly efficient chemoselective deprotection of O,O-acetals and O,O-ketals catalyzed by molecular iodine in acetone. J. Org. Chem 2004, 69, 8932-8934. [CrossRef]
- Halldorsson, A.; Magnusson, C.D.; Haraldsson, G.G. Chemoenzymatic synthesis of structured triacylglycerols by highly regioselective acylation. Tetrahedron 2003, 59, 9101-9109. [CrossRef]
- Magnusson, C.D.; Haraldsson, G.G. Chemoenzymatic synthesis of symmetrically structured triacylglycerols possessing short-chain fatty acids. Tetrahedron 2010, 66, 2728-2731. [CrossRef]
- Christie, W.W. Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lpids. The oily press, 3rd edition, 2003. Chapter 4, pp 105-135.
- Thomas, A. E.; Scharoun, J. E.; Ralston, H. Quantitative estimation of isomeric monoglycerides by thin-layer chromatography. J. Am. Oil Chem. Soc. 1965, 42, 789-792. [CrossRef]
- Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Specific removal of o-methoxybenzyl protection by DDQ oxidation. Tetrahedron Lett. 1982, 23, 885-888. [CrossRef]
- Frankel, E. N. Lipid oxidation. Progr. Lipid Res. 1980, 19, 1–22.
- Frankel, E. N. Volatile lipid oxidation products. Progr. Lipid Res. 1982, 22, 1–33. [CrossRef]
- Frankel, E. N. Lipid oxidation: Mechanisms, products and biological significance. J. Am. Oil Chem. Soc. 1984, 61(12), 1908–1917. [CrossRef]
- Porter, N.A.; Caldwell, S.E.; Mills, K.A. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 1995, 30, 277–290. [CrossRef]
- Ahonen, E; Damerau, A.; Suomela, J.-P.; Kortesniemi, M.; Linderborg, K.M. Oxidative stability, oxidation pattern and α-tocopherol response of docosahexaenoic acid (DHA, 22:6n-3)-containing triacylglycerols and ethyl esters. Food Chem. 2022, 387, 132882.
- Schlenk, W., Jr. Synthesis and analysis of optically active triglycerides. J. Am. Oil Chem. Soc. 1965, 42, 945–957. [CrossRef]
- Mislow, K; Bickart, P., An epistemological note on chirality. Isr. J. Chem. 1976/1977, 15, 1-6. [CrossRef]
- Foss, B. J.; Sliwka, H.-R.; Partali, V.; Köpsel, C.; Mayer, B.; Martin, H.-D.; Zsila, F.; Bikadi, Z.; Simonyi, M., Optically active oligomer units in aggregates of a highly unsaturated optically inactive carotenid phospholipid. Chem. Eur. J. 2005, 11, 4103-4108.
- Magnusson, C.D.; Haraldsson, G.G. Activation of n-3 polyunsaturated fatty acids as oxime esters: a novel approach for their exclusive incorporation into the primary alcoholic positions of the glycerol moiety by lipase. Chem. Phys. Lipids 2012, 165, 712-720. [CrossRef]
- Gudmundsdottir, A.V.; Hansen, K.-A.; Magnusson, C.D.; Haraldsson, G.G. Synthesis of reversed structured triacylglycerols possessing EPA and DHA at their terminal positions. Tetrahedron 2015, 71, 8544-8550. [CrossRef]
- Haraldsdottir, H. Synthesis and Analysis of Enantiopure Structured ABC-type Triacylglycerols. Master´s Thesis, University of Iceland, Reykjavik, Iceland, 2023, 241 pp.





| Compound | sn-1 | sn-2 | sn-3 | Yields | [α]20D |
|---|---|---|---|---|---|
| (R)-9a | PMB | OH | 12:0 | >99% | -1.28 |
| (R)-9b | PMB | OH | 14:0 | 91% | -1.93 |
| (R)-9c | PMB | OH | 16:0 | 94% | -1.18 |
| (R)-14 | PMB | OH | 18:1 | 87% | -0.72 |
| Compound | sn-1 | sn-2 | sn-3 | Yields | [α]20D |
|---|---|---|---|---|---|
| (R)-10a | PMB | 18:1 | 12:0 | 99% | -6.77 |
| (R)-10b | PMB | 18:1 | 14:0 | 99% | -6.61 |
| (R)-10c | PMB | 18:1 | 16:0 | 88% | -6.24 |
| (R)-10d | PMB | 18:2 | 12:0 | 88% | -6.05 |
| (R)-10e | PMB | 18:2 | 16:0 | 89% | -6.80 |
| (R)-15a | PMB | 14:0 | 18:1 | 94% | -6.86 |
| (R)-15b | PMB | 16:0 | 18:1 | 91% | -6.75 |
| Compound | sn-1 | sn-2 | sn-3 | Yields | [α]20D |
|---|---|---|---|---|---|
| (R)-11a | OH | 18:1 | 12:0 | 91% | +2.43 |
| (R)-11b | OH | 18:1 | 14:0 | 92% | +2.09 |
| (R)-11c | OH | 18:1 | 16:0 | 85% | +2.10 |
| (R)-16a | OH | 14:0 | 18:1 | 95% | +2.41 |
| (R)-16b | OH | 16:0 | 18:1 | 91% | +2.39 |
| Compound | sn-1 | sn-2 | sn-3 | Yields | [α]20D |
|---|---|---|---|---|---|
| (S)-1 | 18:2 | 18:1 | 12:0 | 85% | +0.03 |
| (S)-2 | 18:2 | 18:1 | 16:0 | 92% | -0.01 |
| (S)-5 | 18:2 | 14:0 | 18:1 | 94% | +0.05 |
| (S)-6 | 18:2 | 16:0 | 18:1 | 95% | -0.02 |
| (R)-12a | 12:0 | 18:1 | 14:0 | 90% | +0.04 |
| (R)-12b | 10:0 | 18:1 | 16:0 | 98% | +0.05 |
| (R)-12c | 12:0 | 18:1 | 16:0 | 99% | +0.02 |
| (R)-12d | 14:0 | 18:1 | 16:0 | 96% | -0.02 |
| (S)-12e | 20:0 | 18:1 | 16:0 | 97% | +0.01 |
| (R)-12f | 12:0 | 18:2 | 16:0 | 86% | +0.09 |
| Compound | sn-1 | sn-2 | sn-3 | Yields | [α]20D |
|---|---|---|---|---|---|
| (S)-7 | isopropylidene | 12:0 | 85% | +0.03 | |
| (R)-8 | OH | OH | PMB | 92% | -1.84 |
| (S)-14 | 18:1 | OH | PMB | 74% | +0.79 |
| (S)-19 | 18:1 | OH | OH | 70% | +1.05 |
| (S)-20a | 18:1 | OH | 12:0 | 83% | -1.28 |
| (S)-20b | 18:1 | OH | 16:0 | 87% | -0.76 |
| (S)-3 | 18:1 | 18:2 | 12:0 | 97% | +0.08 |
| (S)-4 | 18:1 | 18:2 | 16:0 | 96% | +0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
