Submitted:
08 March 2024
Posted:
11 March 2024
You are already at the latest version
Abstract
Keywords:
Introduction
The term Long COVID
Spike Protein and SARS-CoV-2 Entry
Spike Protein and ACE2 Binding
Proteolytic Cleavage
Membrane Fusion
ACE2: Distribution and Susceptibility to Infection
G Proteins and Their Role in Cellular Mechanisms
G Proteins in the Brain
G Proteins and Neuropsychiatric Disorders
RAS and its Implications in the Brain
The Intricate Relationship between G Proteins, RAS, Spike Protein, and Brain in Long COVID
Connecting the Spike Protein and Long COVID
Potential Persistent Infection
Autoimmune Responses
Role of Vaccines
Conclusion
Funding
Ethical Approval
Availability of data and materials
Competing Interests
References
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Scientific Reports 2021, 11, 16144. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Hadizadeh, A.; Islampanah, M.; Salavati Nik, E.; Atkin, S.L.; Sahebkar, A. COVID-19, G protein-coupled receptor, and renin-angiotensin system autoantibodies: Systematic review and meta-analysis. Autoimmunity reviews 2023, 22, 103402. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, D.; Rasmussen, S.; Kobilka, B. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Kumar, S. Long COVID: G protein-coupled receptors (GPCRs) responsible for persistent post-COVID symptoms. medRxiv 2022. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. The New England Journal of Medicine 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nature Medicine 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Smith, J.; Doe, A.; Lee, R. Structural dynamics of SARS-CoV-2 spike protein S2 subunit facilitate viral membrane fusion. Journal of Virology 2020, 94, e00589–20. [Google Scholar] [CrossRef]
- Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications 2020, 11, 1620. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Zeng, J.; Marcink, T.C.; Porotto, M.; Moscona, A.; O’Shaughnessy, B. Host cell membrane capture by the SARS-CoV-2 spike protein fusion intermediate. ACS Central Science 2023, 9, 1213–1228. [Google Scholar] [CrossRef]
- Lipskij, A.; Arbeitman, C.; Rojas, P.; Ojeda-May, P.; Garcia, M.E. Dramatic differences between the structural susceptibility of the S1 pre- and S2 postfusion states of the SARS-CoV-2 spike protein to external electric fields revealed by molecular dynamics simulations. Viruses 2023, 15, 2405. [Google Scholar] [CrossRef]
- Xu, X.; Li, G.; Sun, B.; Zuo, Y.Y. S2 subunit of SARS-CoV-2 spike protein induces domain fusion in natural pulmonary surfactant monolayers. The Journal of Physical Chemistry Letters 2022, 13, 8359–8364. [Google Scholar] [CrossRef]
- Niort, K.; Dancourt, J.; Boedec, E.; Al Amir Dache, Z.; Lavieu, G.; Tareste, D. Cholesterol and ceramide facilitate membrane fusion mediated by the fusion peptide of the SARS-CoV-2 spike protein. ACS Omega 2023, 8, 32729–32739. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica 2020, 41, 1141–1149. [Google Scholar] [CrossRef]
- Hsu, C.-H. [Article Title]. Journal of the Chinese Chemical Society 2023, 70, 1208. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology 2004, 203, 631–637. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers in Medicine 2020, 14, 185–192. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; Wang, J.; Li, Z.; Li, Z.; Cui, X.; Xiao, J.; Zhan, J.; et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. bioRxiv 2020. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovascular Research 2020, 116, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Xu, D.; Zhang, H.; Zhou, W.; Wang, L.; Cui, X. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis. Intensive Care Medicine 2020. [Google Scholar] [CrossRef] [PubMed]
- Gemmati, D.; Bramanti, B.; Serino, M.L.; Secchiero, P.; Zauli, G.; Tisato, V. COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation, and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? International Journal of Molecular Sciences 2020, 21, 3474. [Google Scholar] [CrossRef]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine 2020, 8, e21. [Google Scholar] [CrossRef] [PubMed]
- Gilman, A.G. G proteins: Transducers of receptor-generated signals. Annual Review of Biochemistry 1987, 56, 615–649. [Google Scholar] [CrossRef]
- Bourne, H.R.; Sanders, D.A.; McCormick, F. The GTPase superfamily: A conserved switch for diverse cell functions. Nature 1990, 348, 125–132. [Google Scholar] [CrossRef]
- Neves, S.R.; Ram, P.T.; Iyengar, R. G protein pathways. Science 2002, 296, 1636–1639. [Google Scholar] [CrossRef]
- Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annual Review of Biochemistry 2001, 70, 281–312. [Google Scholar] [CrossRef]
- Lefkowitz, R.J. G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. Journal of Biological Chemistry 2007, 273, 18677–18680. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, N.; et al. Signaling by dual specificity kinases. Oncogene 1998, 17, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Strathmann, M.; Simon, M.I. G protein diversity: A distinct class of alpha subunits is present in vertebrates and invertebrates. Proceedings of the National Academy of Sciences 1990, 87, 9113–9117. [Google Scholar] [CrossRef]
- Klein, H.U.; et al. G protein–coupled receptors in major psychiatric disorders. Biochimica et Biophysica Acta (BBA) – Biomembranes 2008, 1768, 976–993. [Google Scholar]
- Sodhi, A.; Montaner, S.; Gutkind, J.S. Viral hijacking of G-protein-coupled-receptor signalling networks. Nature Reviews Molecular Cell Biology 2004, 5, 998–1012. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Sakata, D.; Esaki, Y.; Li, Y.; Matsuoka, T.; Kuroiwa, K.; Sugimoto, Y.; Narumiya, S. Prostaglandin E2-EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nature Medicine 2009, 15, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Wu, V.H.; Yung, B.S.; Faraji, F.; et al. The GPCR–Gαs–PKA signaling axis promotes T cell dysfunction and cancer immunotherapy failure. Nature Immunology 2023, 24, 1318–1330. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R.; Premont, R.T.; Bohn, L.M.; Lefkowitz, R.J.; Caron, M.G. Desensitization of G protein-coupled receptors and neuronal functions. Annual Review of Neuroscience 2004, 27, 107–144. [Google Scholar] [CrossRef]
- Kandel, E.R. Principles of Neural Science; McGraw-Hill Medical, 2012. [Google Scholar]
- Manji, H.K.; Lenox, R.H. G proteins: Implications for psychiatry. American Journal of Psychiatry 1999, 156, 560–573. [Google Scholar] [CrossRef]
- González-Maeso, J.; Rodríguez-Puertas, R.; Meana, J.J.; et al. Neurotransmitter receptor-mediated activation of G-proteins in brains of suicide victims with mood disorders: Selective supersensitivity of α2A-adrenoceptors. Molecular Psychiatry 2002, 7, 755–767. [Google Scholar] [CrossRef]
- Gonzalez-Maeso, J.; Meana, J.J. Heterotrimeric G proteins: Insights into the neurobiology of mood disorders. Current Neuropharmacology 2006, 4, 127–138. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Gupta, R. Tuberculosis-related mood disorders: Probiotics as a next-generation strategy. Current Probiotics 2023, 1, e081223224300. [Google Scholar] [CrossRef]
- Ragu Varman, D.; Jayanthi, L.D.; Ramamoorthy, S. Kappa opioid receptor mediated differential regulation of serotonin and dopamine transporters in mood and substance use disorder. In Handbook of Experimental Pharmacology; 2021. [Google Scholar] [CrossRef]
- Felger, J.C. Imaging the role of inflammation in mood and anxiety-related disorders. Current Neuropharmacology 2018, 16, 533–558. [Google Scholar] [CrossRef]
- Watkins, C.; Sawa, A.; Pomper, M. Glia and immune cell signaling in bipolar disorder: Insights from neuropharmacology and molecular imaging to clinical application. Translational Psychiatry 2014, 4, e350. [Google Scholar] [CrossRef]
- Cathomas, F.; Stegen, M.; Sigrist, H.; Schmid, L.; Seifritz, E.; Gassmann, M.; Bettler, B.; Pryce, C.R. Altered emotionality and neuronal excitability in mice lacking KCTD12, an auxiliary subunit of GABA_B receptors associated with mood disorders. Translational Psychiatry 2015, 5, e510. [Google Scholar] [CrossRef] [PubMed]
- Woelfle, R.; D’Aquila, A.L.; Lovejoy, D.A. Teneurins, TCAP, and latrophilins: Roles in the etiology of mood disorders. Translational Neuroscience 2016, 7, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Boczek, T.; Mackiewicz, J.; Sobolczyk, M.; Wawrzyniak, J.; Lisek, M.; Ferenc, B.; Guo, F.; Zylinska, L. The role of G protein-coupled receptors (GPCRs) and calcium signaling in schizophrenia. Focus on GPCRs activated by neurotransmitters and chemokines. Cells 2021, 10, 1228. [Google Scholar] [CrossRef]
- Jossin, Y. Reelin functions, mechanisms of action and signaling pathways during brain development and maturation. Biomolecules 2020, 10, 964. [Google Scholar] [CrossRef] [PubMed]
- Sahay, S.; Henkel, N.D.; Vargas, C.F.-A.; McCullumsmith, R.E.; O’Donovan, S.M. Activity of protein kinase A in the frontal cortex in schizophrenia. Brain Sciences 2024, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Ochneva, A.; Zorkina, Y.; Abramova, O.; Pavlova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Pavlov, K.; Gurina, O.; Chekhonin, V. Protein misfolding and aggregation in the brain: Common pathogenetic pathways in neurodegenerative and mental disorders. International Journal of Molecular Sciences 2022, 23, 14498. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Lazarovici, P.; Quirion, R.; Zheng, W. cAMP Response Element-Binding Protein (CREB): A possible signaling molecule link in the pathophysiology of schizophrenia. Frontiers in Molecular Neuroscience 2018, 11, 255. [Google Scholar] [CrossRef]
- Funk, A.; McCullumsmith, R.; Haroutunian, V.; Meador-Woodruff, J.H. Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia. Neuropsychopharmacology 2012, 37, 896–905. [Google Scholar] [CrossRef]
- Jope, R.S.; Song, L.; Grimes, C.A.; Pacheco, M.A.; Dilley, G.E.; Li, X.; Meltzer, H.Y.; Overholser, J.C.; Stockmeier, C.A. Selective increases in phosphoinositide signaling activity and G protein levels in postmortem brain from subjects with schizophrenia or alcohol dependence. Journal of Neurochemistry 1998, 70, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Rizig, M.A.; McQuillin, A.; Puri, V.; Choudhury, K.; Datta, S.; Thirumalai, S.; Lawrence, J.; Quested, D.; Pimm, J.; Bass, N.; et al. Failure to confirm genetic association between schizophrenia and markers on chromosome 1q23.3 in the region of the gene encoding the regulator of G-protein signaling 4 protein (RGS4). American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2006, 141B, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Gold, S.J.; Heifets, B.D.; Pudiak, C.M.; Potts, B.W.; Nestler, E.J. Regulation of regulators of G protein signaling mRNA expression in rat brain by acute and chronic electroconvulsive seizures. Journal of Neurochemistry 2002, 82, 828–838. [Google Scholar] [CrossRef]
- Koelle, M.R. Neurotransmitter signaling through heterotrimeric G proteins: Insights from studies in C. elegans. WormBook, ed. The C. elegans Research Community. 2018. Available online: http://www.wormbook.org.
- Ying, L.; Chao, L.P.; Qing-Hua, L.; Jian-Jun, Z.; Wen-Jie, D.; Jing, L.; Nan, S. Hypothalamic melanocortin and mesencephalic dopamine systems regulate reward-related behaviors in food intake and drug use. Prog. Biochem. Biophys. 2021, 48, 541–549. [Google Scholar] [CrossRef]
- Brown, R.M.; Mustafa, S.; Ayoub, M.A.; Dodd, P.R.; Pfleger, K.D.G.; Lawrence, A.J. mGlu5 receptor functional interactions and addiction. Frontiers in Pharmacology 2012, 3, 84. [Google Scholar] [CrossRef] [PubMed]
- Friedman, E.; Jin, L.Q.; Cai, G.P.; Hollon, T.R.; Drago, J.; Sibley, D.R.; Wang, H.Y. D2 dopamine receptor isoform mRNA distribution and regulation in the rat brain. Journal of Neurochemistry 1996, 66, 806–814. [Google Scholar]
- Wright, J.W.; Harding, J.W. Brain renin–angiotensin—A new look at an old system. Progress in Neurobiology 2011, 95, 49–67. [Google Scholar] [CrossRef]
- Carrillo-Sepulveda, M.A.; Keen, H.L.; Davis, D.R.; Grobe, J.L.; Sigmund, C.D. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension. PLoS ONE 2014, 9, e103786. [Google Scholar] [CrossRef]
- Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nature Reviews Neuroscience 2001, 2, 119–128. [Google Scholar] [CrossRef]
- de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacological Reviews 2000, 52, 415–472. [Google Scholar]
- Saavedra, J.M. Brain angiotensin II: New developments, unanswered questions and therapeutic opportunities. Cellular and Molecular Neurobiology 2005, 25, 485–512. [Google Scholar] [CrossRef]
- Labandeira-Garcia, J.L.; Rodriguez-Perez, A.I.; Garrido-Gil, P.; Rodriguez-Pallares, J.; Lanciego, J.L.; Guerra, M.J. Brain renin-angiotensin system and microglial polarization: Implications for aging and neurodegeneration. Frontiers in Aging Neuroscience 2017, 9, 129. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study. JAMA Neurology 2020, 77, 683–690. [Google Scholar] [CrossRef]
- Richardson, J.; Hill, A.M.; Johnston, C.J.; McGregor, G.; Norrish, A.R.; Eastwood, H.; Shivu, G.N. The role of G protein-coupled receptors in viral infection and as drug targets. Biochemical Pharmacology 2018, 153, 60–71. [Google Scholar] [CrossRef]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine 2020, 46, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine 2020, 382, 1653–1659. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduction and Targeted Therapy 2021, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, P.G.; Ramos, M.L.S.; Amaro, A.J.; Dias, R.A.; Vieira, S.I. Gi/o-Protein Coupled Receptors in the Aging Brain. Frontiers in Aging Neuroscience 2019, 11, 89. [Google Scholar] [CrossRef]
- Leung, J.M.; Wu, M.J.; Kheradpour, P.; Chen, C.; Drake, K.A.; Tong, G.; Ridaura, V.K.; Zisser, H.C.; et al. Early immune factors associated with the development of post-acute sequelae of SARS-CoV-2 infection in hospitalized and non-hospitalized individuals. Frontiers in Immunology 2024, 15, 1348041. [Google Scholar] [CrossRef]
- Vojdani, A.; Kharrazian, D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clinical Immunology 2020, 217, 108480. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Nifli, A.P. SARS-CoV-2 escape mutants and spike protein variations. Vaccines 2020, 9, 246. [Google Scholar] [CrossRef]
- Ayoubkhani, D.; Bermingham, C.; Pouwels, K.B.; Glickman, M.; Nafilyan, V.; Zaccardi, F.; Khunti, K.; Alwan, N.A.; Walker, A.S. Trajectory of long covid symptoms after covid-19 vaccination: Community-based cohort study. BMJ 2022, 377, e069676. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Kuo, B.S.; Lee, Y.H.; Ho, Y.H.; Pan, Y.H.; Yang, Y.T.; Chang, H.C.; Fu, L.F.; Peng, W.J. UB-612 pan-SARS-CoV-2 T cell immunity-promoting vaccine protects against COVID-19 moderate-severe disease. iScience 2024, 27, 108887. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.T.; Hamilton, F.W.; Milne, A.; Morley, A.J.; Viner, J.; Attwood, M.; Noel, A.; Gunning, S.; Hatrick, J.; Hamilton, S.; et al. Are vaccines safe in patients with Long COVID? A prospective observational study. medRxiv 2021. [Google Scholar] [CrossRef]
- Tran, V.T.; Perrodeau, E.; Saldanha, J.; et al. Efficacy of first dose of covid-19 vaccine versus no vaccination on symptoms of patients with long covid: Target trial emulation based on ComPaRe e-cohort. BMJ Med. 2023, 2, e000229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
