Submitted:
07 March 2024
Posted:
07 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Sources
2.3. Zagros Grass Index
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bajocco, S., Rosati, L., Ricotta, C. Knowing fire incidence through fuel phenology: A remotely sensed approach. Ecological Modelling. 2010, 221(1), 59–66. [CrossRef]
- Pacheco, A. P., Claro, J., Fernandes, P. M., De Neufville, R., Oliveira, T., Borges, J. G., Rodrigues, J. Cohesive fire management within an uncertain environment: A review of risk handling and decision support systems. Forest Ecology and Management. 2015, 347, 1–17. [CrossRef]
- Pourtaghi, Z. S., Pourghasemi, H. R., Aretano, R., Semeraro, T. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecological Indicators. 2016 64, 72–84. [CrossRef]
- Global biomass burning. In the MIT Press eBooks, 1991. [CrossRef]
- Cao, Y., Wang, M., Li, K. Wildfire susceptibility assessment in Southern China: A comparison of multiple methods. International Journal of Disaster Risk Science. 2017, 8(2), 164–181. [CrossRef]
- Carlson, J. D., Burgan, R. E. Review of users’ needs in operational fire danger estimation: The Oklahoma example. International Journal of Remote Sensing. 2003, 24(8), 1601–1620. [CrossRef]
- Fernández-Guisuraga, J. M., Suárez-Seoane, S., Calvo, L. Radiative transfer modeling to measure fire impact and forest engineering resilience at short-term. Isprs Journal of Photogrammetry and Remote Sensing. 2021, 176, 30–41. [CrossRef]
- Shaluf, I. M. Technological disaster stages and management. Disaster Prevention and Management. 2008, 17(1), 114–126. [Google Scholar] [CrossRef]
- Oliveira, S., Laneve, G., Fusilli, L., GeorgiosEftychidis, Nunes, A., Lourenço, L., López, A. S. A common approach to foster prevention and recovery of forest fires in Mediterranean Europe. In InTech eBooks. 2017. [CrossRef]
- Rahimi, I., Azeez, S. N., Ahmed, I. H. Mapping Forest-Fire potentiality using remote sensing and GIS, Case study: Kurdistan Region-Iraq. In Springer water. 2019, 499–513. [CrossRef]
- Tian, X., Zhao, F., Shu, L., Wang, M. Distribution characteristics and the influence factors of forest fires in China. Forest Ecology and Management. 2013, 310, 460–467. [CrossRef]
- Adab, H., Kanniah, K. D., Solaimani, K., Sallehuddin, R. Modelling static fire hazard in a semi-arid region using frequency analysis. International Journal of Wildland Fire. 2015, 24(6), 763. [CrossRef]
- Causes of fire incidences in Kurdistan forests. ISNA. (August 10, 2019), from https://www.isna.ir/xd54pZ.
- Rojhelat environmentalists blame government inactivity for frequent forest fires. (2023, August 17). RUDAW. Retrieved August 17, 2023, from https://www.rudaw.net.
- San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Liberta’, G., Artes, V. T., Jacome, F. O. D., Branco, A., De, R. D., Ferrari, D., Pfeiffer, H., Grecchi, R., Nuijten, D. (n.d.). Advance report on wildfires in Europe, Middle East and North Africa 2021. JRC Publications Repository. 2021. [CrossRef]
- Press corner. (n.d.). European Commission - European Commission. 22 Nov 2023. https://ec.europa.eu/commission/presscorner/detail/en/IP_23_5951.
- Teodoro, A. C., Santos, P., Marques, J. E., Ribeiro, J., Mansilha, C., Melo, A., Duarte, L., De Almeida, C. R., Flores, D. An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case. Environments. 2021 8(6), 48. [CrossRef]
- Teodoro, A.C.; Amaral, A.L. A statistical and spatial analysis of Portuguese forest fires in summer 2016 considering Landsat 8 and Sentinel 2A data. Environments. 2019, 6(3), 36. [Google Scholar] [CrossRef]
- Teodoro, A. C., Duarte, L. Forest fire risk maps: a GIS open source application – a case study in Norwest of Portugal. International Journal of Geographical Information Science. 2013, 27(4), 699–720. [CrossRef]
- Dasgupta, S., Qu, J. J., Hao, X., Bhoi, S. Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia, USA. Remote Sensing of Environment. 2007, 108(2), 138–150. [CrossRef]
- Babu, K. V. S., Vanama, V. S. K., Roy, A., Prasad, P. Assessment of forest fire danger using automatic weather stations and MODIS TERRA satellite datasets for the state Madhya Pradesh, India. ieeexplore.ieee.org. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017. [CrossRef]
- Saah, D., Tenneson, K., Matin, M. A., Uddin, K., Cutter, P., Poortinga, A., Nguyen, Q., Patterson, M., Johnson, G. W., Markert, K., Flores, A., Anderson, E., Weigel, A., Ellenberg, W. L., Bhargava, R., Aekakkararungroj, A., Bhandari, B., Khanal, N., Housman, I. W., Chishtie, F. Land cover mapping in data scarce Environments: Challenges and opportunities. Frontiers in Environmental Science. 2019, 7. [CrossRef]
- Hellesen, T., Matikainen, L. An Object-Based approach for mapping shrub and tree cover on grassland habitats by use of LIDAR and CIR orthoimages. Remote Sensing. 2013, 5(2), 558–583. [CrossRef]
- Guirado, E., Tabik, S., Alcaraz-Segura, D., Cabello, J., Herrera, F. Deep-learning Versus OBIA for Scattered Shrub Detection with Google Earth Imagery: Ziziphus lotus as Case Study. Remote Sensing. 2017, 9(12), 1220. [CrossRef]
- Ayhan, B.; Kwan, C. Tree, shrub, and grass classification using only RGB images. Remote Sensing. 2020, 12(8), 1333. [Google Scholar] [CrossRef]
- Zaabar, N., Niculescu, S., Mihoubi, M. K. Application of convolutional neural networks with Object-Based image analysis for land cover and land use mapping in coastal areas: a case study in Ain Témouchent, Algeria. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2022, 15, 5177–5189. [CrossRef]
- Madasa, A., Orimoloye, I. R., Ololade, O. O. Application of geospatial indices for mapping land cover/use change detection in a mining area. Journal of African Earth Sciences. 2021, 175, 104108. [CrossRef]
- Diaz, B. M., Blackburn, G. A. Remote sensing of mangrove biophysical properties: Evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. International Journal of Remote Sensing. 2003, 24(1), 53–73. [CrossRef]
- Meshesha, D. T., Ahmed, M. M., Abdi, D. Y., Haregeweyn, N. Prediction of grass biomass from satellite imagery in Somali regional state, eastern Ethiopia. Heliyon. 2020, 6(10), e05272. [CrossRef]
- Fakhri, S. A., Sayadi, S., Naghavi, H., Latifi, H. A novel vegetation index-based workflow for semi-arid, sparse woody cover mapping. Journal of Arid Environments. 2022, 201, 104748. [CrossRef]
- Qian, Y., Zhou, W., Nytch, C. J., Han, L., Li, Z. A new index to differentiate tree and grass based on high resolution image and object-based methods. Urban Forestry Urban Greening. 2020, 53, 126661. [CrossRef]
- Grigorieva, O. V., Brovkina, O., Saidov, A. An original method for tree species classification using multitemporal multispectral and hyperspectral satellite data. Silva Fennica. 2020, 54(2). [CrossRef]
- Eskandari, S., Jaafari, M. R., Oliva, P., Ghorbanzadeh, O., Blaschke, T. Mapping land cover and tree canopy cover in Zagros forests of Iran: application of Sentinel-2, Google Earth, and field data. Remote Sensing. 2020, 12(12), 1912. [CrossRef]
- Shafeian, E., Fassnacht, F. E., Latifi, H. Mapping fractional woody cover in an extensive semi-arid woodland area at different spatial grains with Sentinel-2 and very high-resolution data. International Journal of Applied Earth Observation and Geoinformation. 2021, 105, 102621. [CrossRef]
- Nasir, S. M., Kamran, K. V., Blaschke, T., Karimzadeh, S. Change of land use / land cover in kurdistan region of Iraq: A semi-automated object-based approach. 2022, 26, 100713. [CrossRef]
- Rash, A., Mustafa, Y. T., Hamad, R. Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq. Heliyon. 2023, 9(11), e21253. [CrossRef]
- Aragoneses, E., Chuvieco, E. Generation and mapping of fuel types for fire risk assessment. Fire. 2023 4(3), 59. [CrossRef]
- Pettinari, M. L., Chuvieco, E. Fire Behavior Simulation from Global Fuel and Climatic Information. Forests, 2017, 8(6), 179. [CrossRef]
- Motlagh, M. G., Alchin, A. A., Daghestani, M. Detection of high fire risk areas in Zagros Oak forests using geospatial methods with GIS techniques. Arabian Journal of Geosciences. 2022, 15(9). [CrossRef]
- Taufik, A., Ahmad, S. S. S., Ahmad, A. Classification of Landsat 8 satellite data using NDVI tresholds. Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2016, 8(4), 37–40.
- Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J., Tucker, C. J., Stenseth, N. C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution. 2005, 20(9), 503–510. [CrossRef]
- McInnes, W. S., Smith, B., McDermid, G. J. Discriminating native and nonnative grasses in the dry mixedgrass prairie with MODIS NDVI Time Series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015, 8(4), 1395–1403. [CrossRef]
- Clementini, C., Del Frate, F., Pomente, A., Salvucci, G. D., Teillard, F., Kanamaru, H., Fujisawa, M., Mottet, A., Heureux, A. Grass Biomass Estimation on Zambian pastures for future climate Change Effects Mitigation and adaptation using satellite imagery and neural network technique. IEEE. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain. 2018. [CrossRef]
- Royimani, L., Mutanga, O., Dube, T. Progress in Remote sensing of grass senescence: A review on the challenges and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021, 14, 7714–7723. [CrossRef]
- Rahimi, I., Duarte, L., Teodoro, A. C. A new indicator for enhancing fire fuel mapping in Marivan forests, west of Iran. Proc. SPIE 12734, Earth Resources and Environmental Remote Sensing/GIS Applications. (6-9th September, 2023). [CrossRef]
- Abu-Rabia, A. Ethno-Botanic Treatments for Paralysis (FALIJ) in the Middle East. Chinese Medicine. 2012, 03(04), 157–166. [Google Scholar] [CrossRef]
- El-Moslimany, A.P. Ecology and late-Quaternary history of the Kurdo-Zagrosian oak forest near Lake Zeribar, western Iran. Vegetation. 1986, 68(1), 55–63. [Google Scholar] [CrossRef]
- Pourhashemi, M. Zandebasiri, P. Panahi, Structural characteristics of oak coppice stands of Marivan Forests. Iran. J. Plant Res. 2014, 27, 766–776.
- Jazirehi, M.H. and Rostaaghi, E.M. Silviculture in Zagros. University of Tehran Press, Tehran. 2003, 560 p. - References - Scientific Research Publishing. (n.d.). https://www.scirp.org/reference/referencespapers?referenceid=1852053.
- Kurdistan Regional Government. KRG administered territory. (2023). https://gov.krd/english.
- Kurdistan Region Presidency, Oil-for-Food Distribution Plan. approved by the UN, December. UNEP (December, 2003).
- Rahimzadeh-Bajgiran, P., Darvishsefat, A. A., Khalili, A., Makhdoum, M. Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran. Journal of Arid Environments. 2008, 72(6), 1086–1096. [CrossRef]
- USGS EROS Archive - Digital Elevation - Shuttle Radar Topography Mission (SRTM) 1 ArC-Second Global | U.S. Geological Survey. (July, 2018). https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevationshuttle- radar-topography-mission-srtm-1.
- Kheshti, M. Protect Iran’s Zagros forests from wildfires. Science. 2020, 369(6507), 1066. [Google Scholar] [CrossRef]
- Duarte, L., Teodoro, A. C., Gonçalves, H. Deriving phenological metrics from NDVI through an open source tool developed in QGIS. Proceedings of SPIE. V, 924511 (23 October 2014). [CrossRef]
- Malhi, R. K. M., Kiran, G. S., Shah, M. N., Mistry, N., Bhavsar, V. H., Singh, C. P., Bhattarcharya, B. K., Townsend, P. A., Mohan, S. Applicability of Smoothing Techniques in Generation of Phenological Metrics of Tectona grandis L. Using NDVI Time Series Data. Remote Sensing. 2021, 13(17), 3343. [CrossRef]
- Chen, X., Xu, C., Tan, Z. An analysis of relationships among plant community phenology and seasonal metrics of Normalized Difference Vegetation Index in the northern part of the monsoon region of China. International Journal of Biometeorology. 2001, 45(4), 170–177. [CrossRef]
- Hott, M. C., De Carvalho, L. M. T., Antunes, M. a. H., De Resende, J. C., Da Rocha, W. S. D. Analysis of Grassland Degradation in Zona da Mata, MG, Brazil, Based on NDVI Time Series Data with the Integration of Phenological Metrics. Remote Sensing. 2019, 11(24), 2956. [CrossRef]
- Ji, Z., Pan, Y., Zhu, X., Wang, J., Li, Q. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Sensors. 2021, 21(4), 1406. [CrossRef]
- Li, M., Bao, G., Tong, S., Yin, S., Bao, Y., Jiang, K., Hong, Y., Tuya, A., Huang, X. Elevation-dependent response of spring phenology to climate and its legacy effect on vegetation growth in the mountains of northwest Mongolia. Ecological Indicators. 2021, 126, 107640. https://www.jstor.org/stable/24870440. [CrossRef]
- Ziello, C., Estrella, N., Kostova, M., Koch, E., & Menzel, A. Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Climate Research. 2009, 39(3), 227–234. [CrossRef]
- Yang, J. Yang, J., Weisberg, P. J., Bristow, N. Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture analysis. Remote Sensing of Environment. 2012, 119, 62–71. [CrossRef]
- Higginbottom, T. P., Symeonakis, E., Meyer, H., Van Der Linden, S. Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data. Isprs Journal of Photogrammetry and Remote Sensing. 2018, 139, 88–102. [CrossRef]
- Yulianto, F., Kushardono, D., Budhiman, S., Nugroho, G., Chulafak, G. A., Dewi, E. K., Pambudi, A. I. Evaluation of the threshold for an improved surface water extraction index using optical remote sensing data. The Scientific World Journal. 2022, 1–19. [CrossRef]
- MosaBeigi M, Mirza Beigi F. Zoning forest fire risk in the Manesht and Qalarang Protected Area using a network analysis model and geographic information system”. Environ Sci. 2017, 14, 1, 175–188. ((In Persian))
- Zaïdi, A. Predicting wildfires in Algerian forests using machine learning models. Heliyon. 2023, 9(7), e18064. [CrossRef]
- Clementini, C. Clementini, C., Del Frate, F., Pomente, A., Salvucci, G. D., Teillard, F., Kanamaru, H., Fujisawa, M., Mottet, A., Heureux, A. Grass Biomass Estimation on Zambian pastures for future climate Change Effects Mitigation and adaptation using satellite imagery and neural network technique. Fire Safety Journal. 2018b, 104, 130–146. [CrossRef]
- Scott, J. R., Burgan, R. E. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. Gen. Tech. Rep. RMRS-GTR-153. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2005, 72 p. [CrossRef]
- Chuvieco, E., Riaño, D., Van Wagtendonk, J. W., Morsdof, F. Fuel loads and fuel type mapping. In Series in remote sensing. 2003, 119–142. [CrossRef]
- Wragg, P. D., Mielke, T., Tilman, D. Forbs, grasses, and grassland fire behaviour. Journal of Ecology. 2018a, 106(5), 1983–2001. [CrossRef]
- Pourreza, M., Hosseini, S. M., Sinegani, A. a. S., Matinizadeh, M., Alavai, S. J. Herbaceous species diversity in relation to fire severity in Zagros oak forests, Iran. Journal of Forestry Research. 2014, 25(1), 113–120. [CrossRef]
- Wragg, P. D., Mielke, T., Tilman, D. Forbs, grasses, and grassland fire behaviour. Journal of Ecology. 2018b, 106(5), 1983–2001. [CrossRef]
- Sagheb-Talebi, K., Sajedi, T., Pourhashemi, M. Forests of Iran. In Plant and vegetation. 2014. [CrossRef]
- eel, M. C., Finlayson, B., McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences. 2007, 11(5), 1633–1644. [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
