Submitted:
29 February 2024
Posted:
01 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. ASO Distribution in the Central Nervous System
3. Motor Neuron Diseases
4. Spinal Muscular Atrophy (SMA)
5. Amyotrophic Lateral Sclerosis (ALS)
5.1. SOD1 Gene
5.2. C9orf72 Gene
5.3. FUS Gene
5.3. Other ALS-Related Genes
6. Spinal Bulbar Muscular Atrophy (SBMA)
7. Discussion and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shadid, M.; Badawi, M.; Abulrob, A. Antisense Oligonucleotides: Absorption, Distribution, Metabolism, and Excretion. Expert Opin Drug Metab Toxicol 2021, 17(11), 1281–1292. [Google Scholar] [CrossRef]
- Bennett, C. F. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev Med 2019, 70, 307–321. [Google Scholar] [CrossRef]
- Crooke, S. T.; Wang, S.; Vickers, T. A.; Shen, W.; Liang, X.-H. Cellular Uptake and Trafficking of Antisense Oligonucleotides. Nat Biotechnol 2017, 35(3), 230–237. [Google Scholar] [CrossRef]
- Migawa, M. T.; Shen, W.; Wan, W. B.; Vasquez, G.; Oestergaard, M. E.; Low, A.; De Hoyos, C. L.; Gupta, R.; Murray, S.; Tanowitz, M.; Bell, M.; Nichols, J. G.; Gaus, H.; Liang, X.-H.; Swayze, E. E.; Crooke, S. T.; Seth, P. P. Site-Specific Replacement of Phosphorothioate with Alkyl Phosphonate Linkages Enhances the Therapeutic Profile of Gapmer ASOs by Modulating Interactions with Cellular Proteins. Nucleic Acids Res 2019, 47(11), 5465–5479. [Google Scholar] [CrossRef]
- Egli, M.; Manoharan, M. Chemistry, Structure and Function of Approved Oligonucleotide Therapeutics. Nucleic Acids Res 2023, 51(6), 2529–2573. [Google Scholar] [CrossRef]
- Chan, J. H. P.; Lim, S.; Wong, W. S. F. Antisense Oligonucleotides: From Design to Therapeutic Application. Clin Exp Pharmacol Physiol 2006, 33(5–6), 533–540. [Google Scholar] [CrossRef]
- Prakash, T. P.; Graham, M. J.; Yu, J.; Carty, R.; Low, A.; Chappell, A.; Schmidt, K.; Zhao, C.; Aghajan, M.; Murray, H. F.; Riney, S.; Booten, S. L.; Murray, S. F.; Gaus, H.; Crosby, J.; Lima, W. F.; Guo, S.; Monia, B. P.; Swayze, E. E.; Seth, P. P. Targeted Delivery of Antisense Oligonucleotides to Hepatocytes Using Triantennary N-Acetyl Galactosamine Improves Potency 10-Fold in Mice. Nucleic Acids Res 2014, 42(13), 8796–8807. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.-H.; Shen, W.; Sun, H.; Kinberger, G. A.; Prakash, T. P.; Nichols, J. G.; Crooke, S. T. Hsp90 Protein Interacts with Phosphorothioate Oligonucleotides Containing Hydrophobic 2’-Modifications and Enhances Antisense Activity. Nucleic Acids Res 2016, 44(8), 3892–3907. [Google Scholar] [CrossRef] [PubMed]
- Dowdy, S. F.; Setten, R. L.; Cui, X.-S.; Jadhav, S. G. Delivery of RNA Therapeutics: The Great Endosomal Escape! Nucleic Acid Ther 2022, 32(5), 361–368. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Deng, R.; Wang, L.; Zhang, K.; Li, J. RNA Splicing Process Analysis for Identifying Antisense Oligonucleotide Inhibitors with Padlock Probe-Based Isothermal Amplification. Chem Sci 2017, 8(8), 5692–5698. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.; Crooke, R. M.; Graham, M. J.; Lemonidis, K. M.; Lougheed, M.; Murray, S. F.; Witchell, D.; Steinbrecher, U.; Bennett, C. F. Phosphorothioate Oligodeoxynucleotides Distribute Similarly in Class A Scavenger Receptor Knockout and Wild-Type Mice. J Pharmacol Exp Ther 2000, 292(2), 489–496. [Google Scholar]
- Finkel, R. S.; Chiriboga, C. A.; Vajsar, J.; Day, J. W.; Montes, J.; De Vivo, D. C.; Yamashita, M.; Rigo, F.; Hung, G.; Schneider, E.; Norris, D. A.; Xia, S.; Bennett, C. F.; Bishop, K. M. Treatment of Infantile-Onset Spinal Muscular Atrophy with Nusinersen: A Phase 2, Open-Label, Dose-Escalation Study. The Lancet 2016, 388(10063), 3017–3026. [Google Scholar] [CrossRef] [PubMed]
- Kordasiewicz, H. B.; Stanek, L. M.; Wancewicz, E. V.; Mazur, C.; McAlonis, M. M.; Pytel, K. A.; Artates, J. W.; Weiss, A.; Cheng, S. H.; Shihabuddin, L. S.; Hung, G.; Bennett, C. F.; Cleveland, D. W. Sustained Therapeutic Reversal of Huntington’s Disease by Transient Repression of Huntingtin Synthesis. Neuron 2012, 74(6), 1031–1044. [Google Scholar] [CrossRef] [PubMed]
- Passini, M. A.; Bu, J.; Richards, A. M.; Kinnecom, C.; Sardi, S. P.; Stanek, L. M.; Hua, Y.; Rigo, F.; Matson, J.; Hung, G.; Kaye, E. M.; Shihabuddin, L. S.; Krainer, A. R.; Bennett, C. F.; Cheng, S. H. Antisense Oligonucleotides Delivered to the Mouse CNS Ameliorate Symptoms of Severe Spinal Muscular Atrophy. Sci. Transl. Med. 2011, 3(72). [Google Scholar] [CrossRef]
- Rigo, F.; Chun, S. J.; Norris, D. A.; Hung, G.; Lee, S.; Matson, J.; Fey, R. A.; Gaus, H.; Hua, Y.; Grundy, J. S.; Krainer, A. R.; Henry, S. P.; Bennett, C. F. Pharmacology of a Central Nervous System Delivered 2′- O -Methoxyethyl–Modified Survival of Motor Neuron Splicing Oligonucleotide in Mice and Nonhuman Primates. J Pharmacol Exp Ther 2014, 350(1), 46–55. [Google Scholar] [CrossRef] [PubMed]
- Smith, R. A.; Miller, T. M.; Yamanaka, K.; Monia, B. P.; Condon, T. P.; Hung, G.; Lobsiger, C. S.; Ward, C. M.; McAlonis-Downes, M.; Wei, H.; Wancewicz, E. V.; Bennett, C. F.; Cleveland, D. W. Antisense Oligonucleotide Therapy for Neurodegenerative Disease. J Clin Invest 2006, 116(8), 2290–2296. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Sahashi, K.; Hung, G.; Rigo, F.; Passini, M. A.; Bennett, C. F.; Krainer, A. R. Antisense Correction of SMN2 Splicing in the CNS Rescues Necrosis in a Type III SMA Mouse Model. Genes Dev. 2010, 24(15), 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- DeVos, S. L.; Miller, R. L.; Schoch, K. M.; Holmes, B. B.; Kebodeaux, C. S.; Wegener, A. J.; Chen, G.; Shen, T.; Tran, H.; Nichols, B.; Zanardi, T. A.; Kordasiewicz, H. B.; Swayze, E. E.; Bennett, C. F.; Diamond, M. I.; Miller, T. M. Tau Reduction Prevents Neuronal Loss and Reverses Pathological Tau Deposition and Seeding in Mice with Tauopathy. Sci Transl Med 2017, 9(374), eaag0481. [Google Scholar] [CrossRef]
- McCampbell, A.; Cole, T.; Wegener, A. J.; Tomassy, G. S.; Setnicka, A.; Farley, B. J.; Schoch, K. M.; Hoye, M. L.; Shabsovich, M.; Sun, L.; Luo, Y.; Zhang, M.; Comfort, N.; Wang, B.; Amacker, J.; Thankamony, S.; Salzman, D. W.; Cudkowicz, M.; Graham, D. L.; Bennett, C. F.; Kordasiewicz, H. B.; Swayze, E. E.; Miller, T. M. Antisense Oligonucleotides Extend Survival and Reverse Decrement in Muscle Response in ALS Models. J Clin Invest 2018, 128(8), 3558–3567. [Google Scholar] [CrossRef]
- Bennett, C. F.; Krainer, A. R.; Cleveland, D. W. Antisense Oligonucleotide Therapies for Neurodegenerative Diseases. Annu. Rev. Neurosci. 2019, 42(1), 385–406. [Google Scholar] [CrossRef]
- Benedict, C.; Frey, W. H.; Schiöth, H. B.; Schultes, B.; Born, J.; Hallschmid, M. Intranasal Insulin as a Therapeutic Option in the Treatment of Cognitive Impairments. Experimental Gerontology 2011, 46(2–3), 112–115. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, Y.; Wang, Y.; Tong, L.; Wang, F.; Song, S.; Xu, L.; Liu, B.; Yan, H.; Sun, Z. Current State and Future Directions of Intranasal Delivery Route for Central Nervous System Disorders: A Scientometric and Visualization Analysis. Front. Pharmacol. 2021, 12, 717192. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; He, K.-J.; Zhang, J.-B.; Ma, Q.-H.; Wang, F.; Liu, C.-F. Advances in Intranasal Application of Stem Cells in the Treatment of Central Nervous System Diseases. Stem Cell Res Ther 2021, 12(1), 210. [Google Scholar] [CrossRef]
- 24 Dhuria, S. V.; Hanson, L. R.; Frey, W. H. Intranasal Delivery to the Central Nervous System: Mechanisms and Experimental Considerations. Journal of Pharmaceutical Sciences 2010, 99(4), 1654–1673. [Google Scholar] [CrossRef] [PubMed]
- Min, H. S.; Kim, H. J.; Naito, M.; Ogura, S.; Toh, K.; Hayashi, K.; Kim, B. S.; Fukushima, S.; Anraku, Y.; Miyata, K.; Kataoka, K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew Chem Int Ed 2020, 59(21), 8173–8180. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S. M.; Hazell, G.; Shabanpoor, F.; Saleh, A. F.; Bowerman, M.; Sleigh, J. N.; Meijboom, K. E.; Zhou, H.; Muntoni, F.; Talbot, K.; Gait, M. J.; Wood, M. J. A. Systemic Peptide-Mediated Oligonucleotide Therapy Improves Long-Term Survival in Spinal Muscular Atrophy. Proc Natl Acad Sci U S A 2016, 113(39), 10962–10967. [Google Scholar] [CrossRef]
- Mercuri, E.; Sumner, C. J.; Muntoni, F.; Darras, B. T.; Finkel, R. S. Spinal Muscular Atrophy. Nat Rev Dis Primers 2022, 8(1), 52. [Google Scholar] [CrossRef] [PubMed]
- Sugarman, E. A.; Nagan, N.; Zhu, H.; Akmaev, V. R.; Zhou, Z.; Rohlfs, E. M.; Flynn, K.; Hendrickson, B. C.; Scholl, T.; Sirko-Osadsa, D. A.; Allitto, B. A. Pan-Ethnic Carrier Screening and Prenatal Diagnosis for Spinal Muscular Atrophy: Clinical Laboratory Analysis of >72,400 Specimens. Eur J Hum Genet 2012, 20(1), 27–32. [Google Scholar] [CrossRef]
- Ogino, S.; Leonard, D. G. B.; Rennert, H.; Ewens, W. J.; Wilson, R. B. Genetic Risk Assessment in Carrier Testing for Spinal Muscular Atrophy. Am. J. Med. Genet. 2002, 110(4), 301–307. [Google Scholar] [CrossRef]
- Emery, A. E. H. Population Frequencies of Inherited Neuromuscular Diseases—A World Survey. Neuromuscular Disorders 1991, 1(1), 19–29. [Google Scholar] [CrossRef]
- Schrank, B.; Götz, R.; Gunnersen, J. M.; Ure, J. M.; Toyka, K. V.; Smith, A. G.; Sendtner, M. Inactivation of the Survival Motor Neuron Gene, a Candidate Gene for Human Spinal Muscular Atrophy, Leads to Massive Cell Death in Early Mouse Embryos. Proc Natl Acad Sci U S A 1997, 94(18), 9920–9925. [Google Scholar] [CrossRef]
- Crisafulli, S.; Boccanegra, B.; Vitturi, G.; Trifirò, G.; De Luca, A. Pharmacological Therapies of Spinal Muscular Atrophy: A Narrative Review of Preclinical, Clinical–Experimental, and Real-World Evidence. Brain Sciences 2023, 13(10), 1446. [Google Scholar] [CrossRef] [PubMed]
- Rochette, C. F.; Gilbert, N.; Simard, L. R. SMN Gene Duplication and the Emergence of the SMN2 Gene Occurred in Distinct Hominids: SMN2 Is Unique to Homo Sapiens. Hum Genet 2001, 108(3), 255–266. [Google Scholar] [CrossRef] [PubMed]
- Cartegni, L.; Krainer, A. R. Disruption of an SF2/ASF-Dependent Exonic Splicing Enhancer in SMN2 Causes Spinal Muscular Atrophy in the Absence of SMN1. Nat Genet 2002, 30(4), 377–384. [Google Scholar] [CrossRef]
- (35) Cartegni, L.; Hastings, M. L.; Calarco, J. A.; de Stanchina, E.; Krainer, A. R. Determinants of Exon 7 Splicing in the Spinal Muscular Atrophy Genes, SMN1 and SMN2. Am J Hum Genet 2006, 78(1), 63–77. [Google Scholar] [CrossRef] [PubMed]
- Kashima, T.; Manley, J. L. A Negative Element in SMN2 Exon 7 Inhibits Splicing in Spinal Muscular Atrophy. Nat Genet 2003, 34(4), 460–463. [Google Scholar] [CrossRef] [PubMed]
- Kashima, T.; Rao, N.; David, C. J.; Manley, J. L. hnRNP A1 Functions with Specificity in Repression of SMN2 Exon 7 Splicing. Hum Mol Genet 2007, 16(24), 3149–3159. [Google Scholar] [CrossRef]
- Lorson, C. L.; Hahnen, E.; Androphy, E. J.; Wirth, B. A Single Nucleotide in the SMN Gene Regulates Splicing and Is Responsible for Spinal Muscular Atrophy. Proc Natl Acad Sci U S A 1999, 96(11), 6307–6311. [Google Scholar] [CrossRef]
- Prior, T. W.; Krainer, A. R.; Hua, Y.; Swoboda, K. J.; Snyder, P. C.; Bridgeman, S. J.; Burghes, A. H. M.; Kissel, J. T. A Positive Modifier of Spinal Muscular Atrophy in the SMN2 Gene. Am J Hum Genet 2009, 85(3), 408–413. [Google Scholar] [CrossRef]
- Rudnik-Schöneborn, S.; Berg, C.; Zerres, K.; Betzler, C.; Grimm, T.; Eggermann, T.; Eggermann, K.; Wirth, R.; Wirth, B.; Heller, R. Genotype-Phenotype Studies in Infantile Spinal Muscular Atrophy (SMA) Type I in Germany: Implications for Clinical Trials and Genetic Counselling. Clin Genet 2009, 76(2), 168–178. [Google Scholar] [CrossRef]
- Wirth, B.; Herz, M.; Wetter, A.; Moskau, S.; Hahnen, E.; Rudnik-Schöneborn, S.; Wienker, T.; Zerres, K. Quantitative Analysis of Survival Motor Neuron Copies: Identification of Subtle SMN1 Mutations in Patients with Spinal Muscular Atrophy, Genotype-Phenotype Correlation, and Implications for Genetic Counseling. Am J Hum Genet 1999, 64(5), 1340–1356. [Google Scholar] [CrossRef]
- Wirth, B.; Brichta, L.; Schrank, B.; Lochmüller, H.; Blick, S.; Baasner, A.; Heller, R. Mildly Affected Patients with Spinal Muscular Atrophy Are Partially Protected by an Increased SMN2 Copy Number. Hum Genet 2006, 119(4), 422–428. [Google Scholar] [CrossRef]
- Skordis, L. A.; Dunckley, M. G.; Yue, B.; Eperon, I. C.; Muntoni, F. Bifunctional Antisense Oligonucleotides Provide a Trans-Acting Splicing Enhancer That Stimulates SMN2 Gene Expression in Patient Fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(7), 4114–4119. [Google Scholar] [CrossRef]
- Keil, J. M.; Seo, J.; Howell, M. D.; Hsu, W. H.; Singh, R. N.; DiDonato, C. J. A Short Antisense Oligonucleotide Ameliorates Symptoms of Severe Mouse Models of Spinal Muscular Atrophy. Molecular Therapy - Nucleic Acids 2014, 3, e174. [Google Scholar] [CrossRef] [PubMed]
- Nizzardo, M.; Simone, C.; Dametti, S.; Salani, S.; Ulzi, G.; Pagliarani, S.; Rizzo, F.; Frattini, E.; Pagani, F.; Bresolin, N.; Comi, G.; Corti, S. Spinal Muscular Atrophy Phenotype Is Ameliorated in Human Motor Neurons by SMN Increase via Different Novel RNA Therapeutic Approaches. Sci Rep 2015, 5(1), 11746. [Google Scholar] [CrossRef]
- Hua, Y.; Vickers, T. A.; Okunola, H. L.; Bennett, C. F.; Krainer, A. R. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice. The American Journal of Human Genetics 2008, 82(4), 834–848. [Google Scholar] [CrossRef]
- Singh, N. K.; Singh, N. N.; Androphy, E. J.; Singh, R. N. Splicing of a Critical Exon of Human Survival Motor Neuron Is Regulated by a Unique Silencer Element Located in the Last Intron. Mol Cell Biol 2006, 26(4), 1333–1346. [Google Scholar] [CrossRef]
- Chiriboga, C. A.; Swoboda, K. J.; Darras, B. T.; Iannaccone, S. T.; Montes, J.; De Vivo, D. C.; Norris, D. A.; Bennett, C. F.; Bishop, K. M. Results from a Phase 1 Study of Nusinersen (ISIS-SMN (Rx)) in Children with Spinal Muscular Atrophy. Neurology 2016, 86(10), 890–897. [Google Scholar] [CrossRef] [PubMed]
- Finkel, R. S.; Mercuri, E.; Darras, B. T.; Connolly, A. M.; Kuntz, N. L.; Kirschner, J.; Chiriboga, C. A.; Saito, K.; Servais, L.; Tizzano, E.; Topaloglu, H.; Tulinius, M.; Montes, J.; Glanzman, A. M.; Bishop, K.; Zhong, Z. J.; Gheuens, S.; Bennett, C. F.; Schneider, E.; Farwell, W.; De Vivo, D. C.; ENDEAR Study Group. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017, 377(18), 1723–1732. [Google Scholar] [CrossRef]
- Mercuri, E.; Darras, B. T.; Chiriboga, C. A.; Day, J. W.; Campbell, C.; Connolly, A. M.; Iannaccone, S. T.; Kirschner, J.; Kuntz, N. L.; Saito, K.; Shieh, P. B.; Tulinius, M.; Mazzone, E. S.; Montes, J.; Bishop, K. M.; Yang, Q.; Foster, R.; Gheuens, S.; Bennett, C. F.; Farwell, W.; Schneider, E.; De Vivo, D. C.; Finkel, R. S.; CHERISH Study Group. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N Engl J Med 2018, 378(7), 625–635. [Google Scholar] [CrossRef]
- Xu, L.; Irony, I.; Bryan, W. W.; Dunn, B. Development of Gene Therapies—Lessons from Nusinersen. Gene Ther 2017, 24(9), 527–528. [Google Scholar] [CrossRef]
- Hua, Y.; Sahashi, K.; Rigo, F.; Hung, G.; Horev, G.; Bennett, C. F.; Krainer, A. R. Peripheral SMN Restoration Is Essential for Long-Term Rescue of a Severe Spinal Muscular Atrophy Mouse Model. Nature 2011, 478(7367), 123–126. [Google Scholar] [CrossRef] [PubMed]
- Mead, R. J.; Shan, N.; Reiser, H. J.; Marshall, F.; Shaw, P. J. Amyotrophic Lateral Sclerosis: A Neurodegenerative Disorder Poised for Successful Therapeutic Translation. Nat Rev Drug Discov 2023, 22(3), 185–212. [Google Scholar] [CrossRef]
- Talbott, E. O.; Malek, A. M.; Lacomis, D. The Epidemiology of Amyotrophic Lateral Sclerosis. In Handbook of Clinical Neurology; Elsevier, 2016; Vol. 138, pp 225–238. [CrossRef]
- Hinchcliffe, M.; Smith, A. Riluzole: Real-World Evidence Supports Significant Extension of Median Survival Times in Patients with Amyotrophic Lateral Sclerosis. Degener Neurol Neuromuscul Dis 2017, 7, 61–70. [Google Scholar] [CrossRef]
- Masrori, P.; Van Damme, P. Amyotrophic Lateral Sclerosis: A Clinical Review. Eur J Neurol 2020, 27(10), 1918–1929. [Google Scholar] [CrossRef]
- Mejzini, R.; Flynn, L. L.; Pitout, I. L.; Fletcher, S.; Wilton, S. D.; Akkari, P. A. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci 2019, 13, 1310. [Google Scholar] [CrossRef]
- Renton, A. E.; Chiò, A.; Traynor, B. J. State of Play in Amyotrophic Lateral Sclerosis Genetics. Nat Neurosci 2014, 17(1), 17–23. [Google Scholar] [CrossRef]
- van Rheenen, W.; van der Spek, R. A. A.; Bakker, M. K.; van Vugt, J. J. F. A.; Hop, P. J.; Zwamborn, R. A. J.; de Klein, N.; Westra, H.-J.; Bakker, O. B.; Deelen, P.; Shireby, G.; Hannon, E.; Moisse, M.; Baird, D.; Restuadi, R.; Dolzhenko, E.; Dekker, A. M.; Gawor, K.; Westeneng, H.-J.; Tazelaar, G. H. P.; van Eijk, K. R.; Kooyman, M.; Byrne, R. P.; Doherty, M.; Heverin, M.; Al Khleifat, A.; Iacoangeli, A.; Shatunov, A.; Ticozzi, N.; Cooper-Knock, J.; Smith, B. N.; Gromicho, M.; Chandran, S.; Pal, S.; Morrison, K. E.; Shaw, P. J.; Hardy, J.; Orrell, R. W.; Sendtner, M.; Meyer, T.; Başak, N.; van der Kooi, A. J.; Ratti, A.; Fogh, I.; Gellera, C.; Lauria, G.; Corti, S.; Cereda, C.; Sproviero, D.; D’Alfonso, S.; Sorarù, G.; Siciliano, G.; Filosto, M.; Padovani, A.; Chiò, A.; Calvo, A.; Moglia, C.; Brunetti, M.; Canosa, A.; Grassano, M.; Beghi, E.; Pupillo, E.; Logroscino, G.; Nefussy, B.; Osmanovic, A.; Nordin, A.; Lerner, Y.; Zabari, M.; Gotkine, M.; Baloh, R. H.; Bell, S.; Vourc’h, P.; Corcia, P.; Couratier, P.; Millecamps, S.; Meininger, V.; Salachas, F.; Mora Pardina, J. S.; Assialioui, A.; Rojas-García, R.; Dion, P. A.; Ross, J. P.; Ludolph, A. C.; Weishaupt, J. H.; Brenner, D.; Freischmidt, A.; Bensimon, G.; Brice, A.; Durr, A.; Payan, C. A. M.; Saker-Delye, S.; Wood, N. W.; Topp, S.; Rademakers, R.; Tittmann, L.; Lieb, W.; Franke, A.; Ripke, S.; Braun, A.; Kraft, J.; Whiteman, D. C.; Olsen, C. M.; Uitterlinden, A. G.; Hofman, A.; Rietschel, M.; Cichon, S.; Nöthen, M. M.; Amouyel, P.; SLALOM Consortium; PARALS Consortium; SLAGEN Consortium; SLAP Consortium; Traynor, B. J.; Singleton, A. B.; Mitne Neto, M.; Cauchi, R. J.; Ophoff, R. A.; Wiedau-Pazos, M.; Lomen-Hoerth, C.; van Deerlin, V. M.; Grosskreutz, J.; Roediger, A.; Gaur, N.; Jörk, A.; Barthel, T.; Theele, E.; Ilse, B.; Stubendorff, B.; Witte, O. W.; Steinbach, R.; Hübner, C. A.; Graff, C.; Brylev, L.; Fominykh, V.; Demeshonok, V.; Ataulina, A.; Rogelj, B.; Koritnik, B.; Zidar, J.; Ravnik-Glavač, M.; Glavač, D.; Stević, Z.; Drory, V.; Povedano, M.; Blair, I. P.; Kiernan, M. C.; Benyamin, B.; Henderson, R. D.; Furlong, S.; Mathers, S.; McCombe, P. A.; Needham, M.; Ngo, S. T.; Nicholson, G. A.; Pamphlett, R.; Rowe, D. B.; Steyn, F. J.; Williams, K. L.; Mather, K. A.; Sachdev, P. S.; Henders, A. K.; Wallace, L.; de Carvalho, M.; Pinto, S.; Petri, S.; Weber, M.; Rouleau, G. A.; Silani, V.; Curtis, C. J.; Breen, G.; Glass, J. D.; Brown, R. H.; Landers, J. E.; Shaw, C. E.; Andersen, P. M.; Groen, E. J. N.; van Es, M. A.; Pasterkamp, R. J.; Fan, D.; Garton, F. C.; McRae, A. F.; Davey Smith, G.; Gaunt, T. R.; Eberle, M. A.; Mill, J.; McLaughlin, R. L.; Hardiman, O.; Kenna, K. P.; Wray, N. R.; Tsai, E.; Runz, H.; Franke, L.; Al-Chalabi, A.; Van Damme, P.; van den Berg, L. H.; Veldink, J. H. Common and Rare Variant Association Analyses in Amyotrophic Lateral Sclerosis Identify 15 Risk Loci with Distinct Genetic Architectures and Neuron-Specific Biology. Nat Genet 2021, 53(12), 1636–1648. [Google Scholar] [CrossRef]
- Taylor, J. P.; Brown, R. H.; Cleveland, D. W. Decoding ALS: From Genes to Mechanism. Nature 2016, 539(7628), 197–206. [Google Scholar] [CrossRef]
- Rosen, D. R.; Siddique, T.; Patterson, D.; Figlewicz, D. A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J. P.; Deng, H. X. Mutations in Cu/Zn Superoxide Dismutase Gene Are Associated with Familial Amyotrophic Lateral Sclerosis. Nature 1993, 362(6415), 59–62. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-F.; Wu, Z.-Y. Genotype-Phenotype Correlations of Amyotrophic Lateral Sclerosis. Transl Neurodegener 2016, 5(1), 3. [Google Scholar] [CrossRef] [PubMed]
- Bruijn, L. I.; Miller, T. M.; Cleveland, D. W. Unraveling the Mechanisms Involved in Motor Neuron Degeneration in ALS. Annu Rev Neurosci 2004, 27, 723–749. [Google Scholar] [CrossRef]
- Bruijn, L. I.; Cleveland, D. W. Mechanisms of Selective Motor Neuron Death in ALS: Insights from Transgenic Mouse Models of Motor Neuron Disease. Neuropathol Appl Neurobiol 1996, 22(5), 373–387. [Google Scholar] [CrossRef] [PubMed]
- Foust, K. D.; Salazar, D. L.; Likhite, S.; Ferraiuolo, L.; Ditsworth, D.; Ilieva, H.; Meyer, K.; Schmelzer, L.; Braun, L.; Cleveland, D. W.; Kaspar, B. K. Therapeutic AAV9-Mediated Suppression of Mutant SOD1 Slows Disease Progression and Extends Survival in Models of Inherited ALS. Mol Ther 2013, 21(12), 2148–2159. [Google Scholar] [CrossRef]
- Raoul, C.; Abbas-Terki, T.; Bensadoun, J.-C.; Guillot, S.; Haase, G.; Szulc, J.; Henderson, C. E.; Aebischer, P. Lentiviral-Mediated Silencing of SOD1 through RNA Interference Retards Disease Onset and Progression in a Mouse Model of ALS. Nat Med 2005, 11(4), 423–428. [Google Scholar] [CrossRef] [PubMed]
- Miller, T. M.; Pestronk, A.; David, W.; Rothstein, J.; Simpson, E.; Appel, S. H.; Andres, P. L.; Mahoney, K.; Allred, P.; Alexander, K.; Ostrow, L. W.; Schoenfeld, D.; Macklin, E. A.; Norris, D. A.; Manousakis, G.; Crisp, M.; Smith, R.; Bennett, C. F.; Bishop, K. M.; Cudkowicz, M. E. An Antisense Oligonucleotide against SOD1 Delivered Intrathecally for Patients with SOD1 Familial Amyotrophic Lateral Sclerosis: A Phase 1, Randomised, First-in-Man Study. Lancet Neurol 2013, 12(5), 435–442. [Google Scholar] [CrossRef] [PubMed]
- Heckler, I.; Venkataraman, I. Phosphorylated Neurofilament Heavy Chain: A Potential Diagnostic Biomarker in Amyotrophic Lateral Sclerosis. J Neurophysiol 2022, 127(3), 737–745. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.; Cudkowicz, M.; Shaw, P. J.; Andersen, P. M.; Atassi, N.; Bucelli, R. C.; Genge, A.; Glass, J.; Ladha, S.; Ludolph, A. L.; Maragakis, N. J.; McDermott, C. J.; Pestronk, A.; Ravits, J.; Salachas, F.; Trudell, R.; Van Damme, P.; Zinman, L.; Bennett, C. F.; Lane, R.; Sandrock, A.; Runz, H.; Graham, D.; Houshyar, H.; McCampbell, A.; Nestorov, I.; Chang, I.; McNeill, M.; Fanning, L.; Fradette, S.; Ferguson, T. A. Phase 1-2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 2020, 383(2), 109–119. [Google Scholar] [CrossRef]
- Miller, T. M.; Cudkowicz, M. E.; Genge, A.; Shaw, P. J.; Sobue, G.; Bucelli, R. C.; Chiò, A.; Van Damme, P.; Ludolph, A. C.; Glass, J. D.; Andrews, J. A.; Babu, S.; Benatar, M.; McDermott, C. J.; Cochrane, T.; Chary, S.; Chew, S.; Zhu, H.; Wu, F.; Nestorov, I.; Graham, D.; Sun, P.; McNeill, M.; Fanning, L.; Ferguson, T. A.; Fradette, S.; VALOR and OLE Working Group. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 2022, 387(12), 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Wiesenfarth, M.; Dorst, J.; Brenner, D.; Elmas, Z.; Parlak, Ö.; Uzelac, Z.; Kandler, K.; Mayer, K.; Weiland, U.; Herrmann, C.; Schuster, J.; Freischmidt, A.; Müller, K.; Siebert, R.; Bachhuber, F.; Simak, T.; Günther, K.; Fröhlich, E.; Knehr, A.; Regensburger, M.; German, A.; Petri, S.; Grosskreutz, J.; Klopstock, T.; Reilich, P.; Schöberl, F.; Hagenacker, T.; Weyen, U.; Günther, R.; Vidovic, M.; Jentsch, M.; Haarmeier, T.; Weydt, P.; Valkadinov, I.; Hesebeck-Brinckmann, J.; Conrad, J.; Weishaupt, J. H.; Schumann, P.; Körtvélyessy, P.; Meyer, T.; Ruf, W. P.; Witzel, S.; Senel, M.; Tumani, H.; Ludolph, A. C. Effects of Tofersen Treatment in Patients with SOD1-ALS in a “Real-World” Setting - a 12-Month Multicenter Cohort Study from the German Early Access Program. EClinicalMedicine 2024, 69, 102495. [Google Scholar] [CrossRef] [PubMed]
- Benatar, M.; Wuu, J.; Andersen, P. M.; Bucelli, R. C.; Andrews, J. A.; Otto, M.; Farahany, N. A.; Harrington, E. A.; Chen, W.; Mitchell, A. A.; Ferguson, T.; Chew, S.; Gedney, L.; Oakley, S.; Heo, J.; Chary, S.; Fanning, L.; Graham, D.; Sun, P.; Liu, Y.; Wong, J.; Fradette, S. Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: The ATLAS Study. Neurotherapeutics 2022, 19(4), 1248–1258. [Google Scholar] [CrossRef]
- Majounie, E.; Renton, A. E.; Mok, K.; Dopper, E. G. P.; Waite, A.; Rollinson, S.; Chiò, A.; Restagno, G.; Nicolaou, N.; Simon-Sanchez, J.; van Swieten, J. C.; Abramzon, Y.; Johnson, J. O.; Sendtner, M.; Pamphlett, R.; Orrell, R. W.; Mead, S.; Sidle, K. C.; Houlden, H.; Rohrer, J. D.; Morrison, K. E.; Pall, H.; Talbot, K.; Ansorge, O.; Chromosome 9-ALS/FTD Consortium; French research network on FTLD/FTLD/ALS; ITALSGEN Consortium; Hernandez, D. G.; Arepalli, S.; Sabatelli, M.; Mora, G.; Corbo, M.; Giannini, F.; Calvo, A.; Englund, E.; Borghero, G.; Floris, G. L.; Remes, A. M.; Laaksovirta, H.; McCluskey, L.; Trojanowski, J. Q.; Van Deerlin, V. M.; Schellenberg, G. D.; Nalls, M. A.; Drory, V. E.; Lu, C. -S.; Yeh, T. -H.; Ishiura, H.; Takahashi, Y.; Tsuji, S.; Le Ber, I.; Brice, A.; Drepper, C.; Williams, N.; Kirby, J.; Shaw, P.; Hardy, J.; Tienari, P. J.; Heutink, P.; Morris, H. R.; Pickering-Brown, S.; Traynor, B. J. Frequency of the C9orf72 Hexanucleotide Repeat Expansion in Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: A Cross-Sectional Study. Lancet Neurol 2012, 11(4), 323–330. [Google Scholar] [CrossRef]
- Renton, A. E.; Majounie, E.; Waite, A.; Simón-Sánchez, J.; Rollinson, S.; Gibbs, J. R.; Schymick, J. C.; Laaksovirta, H.; van Swieten, J. C.; Myllykangas, L.; Kalimo, H.; Paetau, A.; Abramzon, Y.; Remes, A. M.; Kaganovich, A.; Scholz, S. W.; Duckworth, J.; Ding, J.; Harmer, D. W.; Hernandez, D. G.; Johnson, J. O.; Mok, K.; Ryten, M.; Trabzuni, D.; Guerreiro, R. J.; Orrell, R. W.; Neal, J.; Murray, A.; Pearson, J.; Jansen, I. E.; Sondervan, D.; Seelaar, H.; Blake, D.; Young, K.; Halliwell, N.; Callister, J. B.; Toulson, G.; Richardson, A.; Gerhard, A.; Snowden, J.; Mann, D.; Neary, D.; Nalls, M. A.; Peuralinna, T.; Jansson, L.; Isoviita, V.-M.; Kaivorinne, A.-L.; Hölttä-Vuori, M.; Ikonen, E.; Sulkava, R.; Benatar, M.; Wuu, J.; Chiò, A.; Restagno, G.; Borghero, G.; Sabatelli, M.; ITALSGEN Consortium; Heckerman, D.; Rogaeva, E.; Zinman, L.; Rothstein, J. D.; Sendtner, M.; Drepper, C.; Eichler, E. E.; Alkan, C.; Abdullaev, Z.; Pack, S. D.; Dutra, A.; Pak, E.; Hardy, J.; Singleton, A.; Williams, N. M.; Heutink, P.; Pickering-Brown, S.; Morris, H. R.; Tienari, P. J.; Traynor, B. J. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 2011, 72(2), 257–268. [Google Scholar] [CrossRef]
- DeJesus-Hernandez, M.; Mackenzie, I. R.; Boeve, B. F.; Boxer, A. L.; Baker, M.; Rutherford, N. J.; Nicholson, A. M.; Finch, N. A.; Flynn, H.; Adamson, J.; Kouri, N.; Wojtas, A.; Sengdy, P.; Hsiung, G.-Y. R.; Karydas, A.; Seeley, W. W.; Josephs, K. A.; Coppola, G.; Geschwind, D. H.; Wszolek, Z. K.; Feldman, H.; Knopman, D. S.; Petersen, R. C.; Miller, B. L.; Dickson, D. W.; Boylan, K. B.; Graff-Radford, N. R.; Rademakers, R. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72(2), 245–256. [Google Scholar] [CrossRef]
- Haeusler, A. R.; Donnelly, C. J.; Rothstein, J. D. The Expanding Biology of the C9orf72 Nucleotide Repeat Expansion in Neurodegenerative Disease. Nat Rev Neurosci 2016, 17(6), 383–395. [Google Scholar] [CrossRef]
- Lee, Y.-B.; Chen, H.-J.; Peres, J. N.; Gomez-Deza, J.; Attig, J.; Stalekar, M.; Troakes, C.; Nishimura, A. L.; Scotter, E. L.; Vance, C.; Adachi, Y.; Sardone, V.; Miller, J. W.; Smith, B. N.; Gallo, J.-M.; Ule, J.; Hirth, F.; Rogelj, B.; Houart, C.; Shaw, C. E. Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic. Cell Rep 2013, 5(5), 1178–1186. [Google Scholar] [CrossRef]
- Rossi, S.; Serrano, A.; Gerbino, V.; Giorgi, A.; Di Francesco, L.; Nencini, M.; Bozzo, F.; Schininà, M. E.; Bagni, C.; Cestra, G.; Carrì, M. T.; Achsel, T.; Cozzolino, M. Nuclear Accumulation of mRNAs Underlies G4C2-Repeat-Induced Translational Repression in a Cellular Model of C9orf72 ALS. J Cell Sci 2015, 128(9), 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- May, S.; Hornburg, D.; Schludi, M. H.; Arzberger, T.; Rentzsch, K.; Schwenk, B. M.; Grässer, F. A.; Mori, K.; Kremmer, E.; Banzhaf-Strathmann, J.; Mann, M.; Meissner, F.; Edbauer, D. C9orf72 FTLD/ALS-Associated Gly-Ala Dipeptide Repeat Proteins Cause Neuronal Toxicity and Unc119 Sequestration. Acta Neuropathol 2014, 128(4), 485–503. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Jansen-West, K.; Xu, Y.-F.; Gendron, T. F.; Bieniek, K. F.; Lin, W.-L.; Sasaguri, H.; Caulfield, T.; Hubbard, J.; Daughrity, L.; Chew, J.; Belzil, V. V.; Prudencio, M.; Stankowski, J. N.; Castanedes-Casey, M.; Whitelaw, E.; Ash, P. E. A.; DeTure, M.; Rademakers, R.; Boylan, K. B.; Dickson, D. W.; Petrucelli, L. Aggregation-Prone c9FTD/ALS Poly (GA) RAN-Translated Proteins Cause Neurotoxicity by Inducing ER Stress. Acta Neuropathol 2014, 128(4), 505–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Gendron, T. F.; Ebbert, M. T. W.; O’Raw, A. D.; Yue, M.; Jansen-West, K.; Zhang, X.; Prudencio, M.; Chew, J.; Cook, C. N.; Daughrity, L. M.; Tong, J.; Song, Y.; Pickles, S. R.; Castanedes-Casey, M.; Kurti, A.; Rademakers, R.; Oskarsson, B.; Dickson, D. W.; Hu, W.; Gitler, A. D.; Fryer, J. D.; Petrucelli, L. Poly (GR) Impairs Protein Translation and Stress Granule Dynamics in C9orf72-Associated Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Nat Med 2018, 24(8), 1136–1142. [Google Scholar] [CrossRef]
- O’Rourke, J. G.; Bogdanik, L.; Yáñez, A.; Lall, D.; Wolf, A. J.; Muhammad, A. K. M. G.; Ho, R.; Carmona, S.; Vit, J. P.; Zarrow, J.; Kim, K. J.; Bell, S.; Harms, M. B.; Miller, T. M.; Dangler, C. A.; Underhill, D. M.; Goodridge, H. S.; Lutz, C. M.; Baloh, R. H. C9orf72 Is Required for Proper Macrophage and Microglial Function in Mice. Science 2016, 351(6279), 1324–1329. [Google Scholar] [CrossRef] [PubMed]
- Burberry, A.; Suzuki, N.; Wang, J.-Y.; Moccia, R.; Mordes, D. A.; Stewart, M. H.; Suzuki-Uematsu, S.; Ghosh, S.; Singh, A.; Merkle, F. T.; Koszka, K.; Li, Q.-Z.; Zon, L.; Rossi, D. J.; Trowbridge, J. J.; Notarangelo, L. D.; Eggan, K. Loss-of-Function Mutations in the C9ORF72 Mouse Ortholog Cause Fatal Autoimmune Disease. Sci Transl Med 2016, 8(347), 347ra93. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, C. J.; Zhang, P.-W.; Pham, J. T.; Haeusler, A. R.; Mistry, N. A.; Vidensky, S.; Daley, E. L.; Poth, E. M.; Hoover, B.; Fines, D. M.; Maragakis, N.; Tienari, P. J.; Petrucelli, L.; Traynor, B. J.; Wang, J.; Rigo, F.; Bennett, C. F.; Blackshaw, S.; Sattler, R.; Rothstein, J. D. RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron 2013, 80(2), 415–428. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, Q.; Gendron, T. F.; Saberi, S.; McAlonis-Downes, M.; Seelman, A.; Stauffer, J. E.; Jafar-Nejad, P.; Drenner, K.; Schulte, D.; Chun, S.; Sun, S.; Ling, S.-C.; Myers, B.; Engelhardt, J.; Katz, M.; Baughn, M.; Platoshyn, O.; Marsala, M.; Watt, A.; Heyser, C. J.; Ard, M. C.; De Muynck, L.; Daughrity, L. M.; Swing, D. A.; Tessarollo, L.; Jung, C. J.; Delpoux, A.; Utzschneider, D. T.; Hedrick, S. M.; de Jong, P. J.; Edbauer, D.; Van Damme, P.; Petrucelli, L.; Shaw, C. E.; Bennett, C. F.; Da Cruz, S.; Ravits, J.; Rigo, F.; Cleveland, D. W.; Lagier-Tourenne, C. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron 2016, 90(3), 535–550. [Google Scholar] [CrossRef]
- Cammack, A. J.; Atassi, N.; Hyman, T.; van den Berg, L. H.; Harms, M.; Baloh, R. H.; Brown, R. H.; van Es, M. A.; Veldink, J. H.; de Vries, B. S.; Rothstein, J. D.; Drain, C.; Jockel-Balsarotti, J.; Malcolm, A.; Boodram, S.; Salter, A.; Wightman, N.; Yu, H.; Sherman, A. V.; Esparza, T. J.; McKenna-Yasek, D.; Owegi, M. A.; Douthwright, C.; Alzheimer’s Disease Neuroimaging Initiative; McCampbell, A.; Ferguson, T.; Cruchaga, C.; Cudkowicz, M.; Miller, T. M. Prospective Natural History Study of C9orf72 ALS Clinical Characteristics and Biomarkers. Neurology 2019, 93(17), e1605–e1617. [Google Scholar] [CrossRef]
- Tran, H.; Moazami, M. P.; Yang, H.; McKenna-Yasek, D.; Douthwright, C. L.; Pinto, C.; Metterville, J.; Shin, M.; Sanil, N.; Dooley, C.; Puri, A.; Weiss, A.; Wightman, N.; Gray-Edwards, H.; Marosfoi, M.; King, R. M.; Kenderdine, T.; Fabris, D.; Bowser, R.; Watts, J. K.; Brown, R. H. Suppression of Mutant C9orf72 Expression by a Potent Mixed Backbone Antisense Oligonucleotide. Nat Med 2022, 28(1), 117–124. [Google Scholar] [CrossRef]
- Boros, B. D.; Schoch, K. M.; Kreple, C. J.; Miller, T. M. Antisense Oligonucleotides for the Study and Treatment of ALS. Neurotherapeutics 2022, 19(4), 1145–1158. [Google Scholar] [CrossRef]
- Liu, Y.; Dodart, J.-C.; Tran, H.; Berkovitch, S.; Braun, M.; Byrne, M.; Durbin, A. F.; Hu, X. S.; Iwamoto, N.; Jang, H. G.; Kandasamy, P.; Liu, F.; Longo, K.; Ruschel, J.; Shelke, J.; Yang, H.; Yin, Y.; Donner, A.; Zhong, Z.; Vargeese, C.; Brown, R. H. Variant-Selective Stereopure Oligonucleotides Protect against Pathologies Associated with C9orf72-Repeat Expansion in Preclinical Models. Nat Commun 2021, 12(1), 847. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Andreucci, A.; Iwamoto, N.; Yin, Y.; Yang, H.; Liu, F.; Bulychev, A.; Hu, X. S.; Lin, X.; Lamore, S.; Patil, S.; Mohapatra, S.; Purcell-Estabrook, E.; Taborn, K.; Dale, E.; Vargeese, C. Preclinical Evaluation of WVE-004, Aninvestigational Stereopure Oligonucleotide Forthe Treatment of C9orf72-Associated ALS or FTD. Mol Ther Nucleic Acids 2022, 28, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Ratti, A.; Buratti, E. Physiological Functions and Pathobiology of TDP-43 and FUS/TLS Proteins. J Neurochem 2016, 138 Suppl 1, 95–111. [Google Scholar] [CrossRef]
- Vance, C.; Scotter, E. L.; Nishimura, A. L.; Troakes, C.; Mitchell, J. C.; Kathe, C.; Urwin, H.; Manser, C.; Miller, C. C.; Hortobágyi, T.; Dragunow, M.; Rogelj, B.; Shaw, C. E. ALS Mutant FUS Disrupts Nuclear Localization and Sequesters Wild-Type FUS within Cytoplasmic Stress Granules. Hum Mol Genet 2013, 22(13), 2676–2688. [Google Scholar] [CrossRef]
- Mitchell, J. C.; McGoldrick, P.; Vance, C.; Hortobagyi, T.; Sreedharan, J.; Rogelj, B.; Tudor, E. L.; Smith, B. N.; Klasen, C.; Miller, C. C. J.; Cooper, J. D.; Greensmith, L.; Shaw, C. E. Overexpression of Human Wild-Type FUS Causes Progressive Motor Neuron Degeneration in an Age- and Dose-Dependent Fashion. Acta Neuropathol 2013, 125(2), 273–288. [Google Scholar] [CrossRef]
- Korobeynikov, V. A.; Lyashchenko, A. K.; Blanco-Redondo, B.; Jafar-Nejad, P.; Shneider, N. A. Antisense Oligonucleotide Silencing of FUS Expression as a Therapeutic Approach in Amyotrophic Lateral Sclerosis. Nat Med 2022, 28(1), 104–116. [Google Scholar] [CrossRef]
- Highley, J. R.; Kirby, J.; Jansweijer, J. A.; Webb, P. S.; Hewamadduma, C. A.; Heath, P. R.; Higginbottom, A.; Raman, R.; Ferraiuolo, L.; Cooper-Knock, J.; McDermott, C. J.; Wharton, S. B.; Shaw, P. J.; Ince, P. G. Loss of Nuclear TDP -43 in Amyotrophic Lateral Sclerosis ( ALS ) Causes Altered Expression of Splicing Machinery and Widespread Dysregulation of RNA Splicing in Motor Neurones. Neuropathology Appl Neurobio 2014, 40(6), 670–685. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Xu, R. The Pathogenic Mechanism of TAR DNA-Binding Protein 43 (TDP-43) in Amyotrophic Lateral Sclerosis. Neural Regen Res 2024, 19(4), 800–806. [Google Scholar] [CrossRef] [PubMed]
- Lagier-Tourenne, C.; Polymenidou, M.; Hutt, K. R.; Vu, A. Q.; Baughn, M.; Huelga, S. C.; Clutario, K. M.; Ling, S.-C.; Liang, T. Y.; Mazur, C.; Wancewicz, E.; Kim, A. S.; Watt, A.; Freier, S.; Hicks, G. G.; Donohue, J. P.; Shiue, L.; Bennett, C. F.; Ravits, J.; Cleveland, D. W.; Yeo, G. W. Divergent Roles of ALS-Linked Proteins FUS/TLS and TDP-43 Intersect in Processing Long Pre-mRNAs. Nat Neurosci 2012, 15(11), 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Polymenidou, M.; Lagier-Tourenne, C.; Hutt, K. R.; Huelga, S. C.; Moran, J.; Liang, T. Y.; Ling, S.-C.; Sun, E.; Wancewicz, E.; Mazur, C.; Kordasiewicz, H.; Sedaghat, Y.; Donohue, J. P.; Shiue, L.; Bennett, C. F.; Yeo, G. W.; Cleveland, D. W. Long Pre-mRNA Depletion and RNA Missplicing Contribute to Neuronal Vulnerability from Loss of TDP-43. Nat Neurosci 2011, 14(4), 459–468. [Google Scholar] [CrossRef] [PubMed]
- Tsao, W.; Jeong, Y. H.; Lin, S.; Ling, J.; Price, D. L.; Chiang, P.-M.; Wong, P. C. Rodent Models of TDP-43: Recent Advances. Brain Research 2012, 1462, 26–39. [Google Scholar] [CrossRef]
- Igaz, L. M.; Kwong, L. K.; Lee, E. B.; Chen-Plotkin, A.; Swanson, E.; Unger, T.; Malunda, J.; Xu, Y.; Winton, M. J.; Trojanowski, J. Q.; Lee, V. M.-Y. Dysregulation of the ALS-Associated Gene TDP-43 Leads to Neuronal Death and Degeneration in Mice. J Clin Invest 2011, 121(2), 726–738. [Google Scholar] [CrossRef]
- Klim, J. R.; Williams, L. A.; Limone, F.; Guerra San Juan, I.; Davis-Dusenbery, B. N.; Mordes, D. A.; Burberry, A.; Steinbaugh, M. J.; Gamage, K. K.; Kirchner, R.; Moccia, R.; Cassel, S. H.; Chen, K.; Wainger, B. J.; Woolf, C. J.; Eggan, K. ALS-Implicated Protein TDP-43 Sustains Levels of STMN2, a Mediator of Motor Neuron Growth and Repair. Nat Neurosci 2019, 22(2), 167–179. [Google Scholar] [CrossRef]
- Krus, K. L.; Strickland, A.; Yamada, Y.; Devault, L.; Schmidt, R. E.; Bloom, A. J.; Milbrandt, J.; DiAntonio, A. Loss of Stathmin-2, a Hallmark of TDP-43-Associated ALS, Causes Motor Neuropathy. Cell Reports 2022, 39(13), 111001. [Google Scholar] [CrossRef]
- Baughn, M. W.; Melamed, Z.; López-Erauskin, J.; Beccari, M. S.; Ling, K.; Zuberi, A.; Presa, M.; Gonzalo-Gil, E.; Maimon, R.; Vazquez-Sanchez, S.; Chaturvedi, S.; Bravo-Hernández, M.; Taupin, V.; Moore, S.; Artates, J. W.; Acks, E.; Ndayambaje, I. S.; Agra De Almeida Quadros, A. R.; Jafar-nejad, P.; Rigo, F.; Bennett, C. F.; Lutz, C.; Lagier-Tourenne, C.; Cleveland, D. W. Mechanism of STMN2 Cryptic Splice-Polyadenylation and Its Correction for TDP-43 Proteinopathies. Science 2023, 379(6637), 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Scoles, D. R.; Meera, P.; Schneider, M. D.; Paul, S.; Dansithong, W.; Figueroa, K. P.; Hung, G.; Rigo, F.; Bennett, C. F.; Otis, T. S.; Pulst, S. M. Antisense Oligonucleotide Therapy for Spinocerebellar Ataxia Type 2. Nature 2017, 544(7650), 362–366. [Google Scholar] [CrossRef] [PubMed]
- Becker, L. A.; Huang, B.; Bieri, G.; Ma, R.; Knowles, D. A.; Jafar-Nejad, P.; Messing, J.; Kim, H. J.; Soriano, A.; Auburger, G.; Pulst, S. M.; Taylor, J. P.; Rigo, F.; Gitler, A. D. Therapeutic Reduction of Ataxin-2 Extends Lifespan and Reduces Pathology in TDP-43 Mice. Nature 2017, 544(7650), 367–371. [Google Scholar] [CrossRef]
- Van Damme, P.; Veldink, J. H.; van Blitterswijk, M.; Corveleyn, A.; van Vught, P. W. J.; Thijs, V.; Dubois, B.; Matthijs, G.; van den Berg, L. H.; Robberecht, W. Expanded ATXN2 CAG Repeat Size in ALS Identifies Genetic Overlap between ALS and SCA2. Neurology 2011, 76(24), 2066–2072. [Google Scholar] [CrossRef]
- Kennedy, W. R.; Alter, M.; Sung, J. H. Progressive Proximal Spinal and Bulbar Muscular Atrophy of Late Onset: A Sex-linked Recessive Trait. Neurology 1968, 18(7), 671–671. [Google Scholar] [CrossRef] [PubMed]
- Banno, H.; Katsuno, M.; Suzuki, K.; Tanaka, F.; Sobue, G. Pathogenesis and Molecular Targeted Therapy of Spinal and Bulbar Muscular Atrophy (SBMA). Cell Tissue Res 2012, 349(1), 313–320. [Google Scholar] [CrossRef]
- Guidetti, D.; Sabadini, R.; Ferlini, A.; Torrente, I. Epidemiological Survey of X-Linked Bulbar and Spinal Muscular Atrophy, or Kennedy Disease, in the Province of Reggio Emilia, Italy. Eur J Epidemiol 2001, 17(6), 587–591. [Google Scholar] [CrossRef]
- Rhodes, L. E.; Freeman, B. K.; Auh, S.; Kokkinis, A. D.; La Pean, A.; Chen, C.; Lehky, T. J.; Shrader, J. A.; Levy, E. W.; Harris-Love, M.; Di Prospero, N. A.; Fischbeck, K. H. Clinical Features of Spinal and Bulbar Muscular Atrophy. Brain 2009, 132 Pt 12, 3242–3251. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rhodes, L. E.; Kokkinis, A. D.; White, M. J.; Watts, C. A.; Auh, S.; Jeffries, N. O.; Shrader, J. A.; Lehky, T. J.; Li, L.; Ryder, J. E.; Levy, E. W.; Solomon, B. I.; Harris-Love, M. O.; La Pean, A.; Schindler, A. B.; Chen, C.; Di Prospero, N. A.; Fischbeck, K. H. Efficacy and Safety of Dutasteride in Patients with Spinal and Bulbar Muscular Atrophy: A Randomised Placebo-Controlled Trial. Lancet Neurol 2011, 10(2), 140–147. [Google Scholar] [CrossRef] [PubMed]
- La Spada, A. R.; Wilson, E. M.; Lubahn, D. B.; Harding, A. E.; Fischbeck, K. H. Androgen Receptor Gene Mutations in X-Linked Spinal and Bulbar Muscular Atrophy. Nature 1991, 352(6330), 77–79. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Abe, K.; Aoki, M.; Yasuo, K.; Itoyama, Y.; Shoji, M.; Ikeda, Y.; Iizuka, T.; Ikeda, M.; Shizuka, M.; Mizushima, K.; Hirai, S. Mitotic and Meiotic Stability of the CAG Repeat in the X-Linked Spinal and Bulbar Muscular Atrophy Gene. Clin Genet 1996, 50(3), 133–137. [Google Scholar] [CrossRef] [PubMed]
- Craig, T. J.; Henley, J. M. Fighting Polyglutamine Disease by Wrestling with SUMO. J. Clin. Invest. 2015, 125(2), 498–500. [Google Scholar] [CrossRef] [PubMed]
- Grunseich, C.; Fischbeck, K. H. Molecular Pathogenesis of Spinal Bulbar Muscular Atrophy (Kennedy’s Disease) and Avenues for Treatment. Current Opinion in Neurology 2020, 33(5), 629–634. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, A. P.; Yu, Z.; Murray, S.; Peralta, R.; Low, A.; Guo, S.; Yu, X. X.; Cortes, C. J.; Bennett, C. F.; Monia, B. P.; La Spada, A. R.; Hung, G. Peripheral Androgen Receptor Gene Suppression Rescues Disease in Mouse Models of Spinal and Bulbar Muscular Atrophy. Cell Reports 2014, 7(3), 774–784. [Google Scholar] [CrossRef]
- Sahashi, K.; Katsuno, M.; Hung, G.; Adachi, H.; Kondo, N.; Nakatsuji, H.; Tohnai, G.; Iida, M.; Bennett, C. F.; Sobue, G. Silencing Neuronal Mutant Androgen Receptor in a Mouse Model of Spinal and Bulbar Muscular Atrophy. Hum. Mol. Genet. 2015, 24(21), 5985–5994. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, J.; Wang, Q.; Yan, L.; Wang, L.; Xing, Z.; Wang, C.; Zhang, J.; Dong, L. Delivering Antisense Oligonucleotides across the Blood-Brain Barrier by Tumor Cell-Derived Small Apoptotic Bodies. Advanced Science 2021, 8(13), 2004929. [Google Scholar] [CrossRef]
- Sun, Y.; Kong, J.; Ge, X.; Mao, M.; Yu, H.; Wang, Y. An Antisense Oligonucleotide-Loaded Blood–Brain Barrier Penetrable Nanoparticle Mediating Recruitment of Endogenous Neural Stem Cells for the Treatment of Parkinson’s Disease. ACS Nano 2023, 17(5), 4414–4432. [Google Scholar] [CrossRef] [PubMed]
- Sattler, R.; Traynor, B. J.; Robertson, J.; Van Den Bosch, L.; Barmada, S. J.; Svendsen, C. N.; Disney, M. D.; Gendron, T. F.; Wong, P. C.; Turner, M. R.; Boxer, A.; Babu, S.; Benatar, M.; Kurnellas, M.; Rohrer, J. D.; Donnelly, C. J.; Bustos, L. M.; Van Keuren-Jensen, K.; Dacks, P. A.; Sabbagh, M. N.; Attendees of the inaugural C9ORF72 FTD/ALS Summit; Alessandrini, F.; Andrews, J. A.; Bakkar, N.; Berry, J. D.; Boeve, B. F.; Bowser, R.; Burke, A. D.; Cridebring, D.; Cummings, J. L.; Ejebe, K. G.; Gittings, L. M.; Gao, F.-B.; Haeusler, A. R.; Ichida, J. K.; Jafar-Nejad, P.; Kinney, J. W.; Ladha, S. S.; Lewcock, J. W.; Linerud, J. L.; Medina, D. X.; Niehoff, D. L.; Nilsson, M.; Nilsson, P.; Penner, C.; Rothstein, J. D.; Satlin, A.; Scannevin, R. H.; Shefner, J. M.; Shin, H. R.; Staffaroni, A. M.; Sun, S.; Thakur, N. M.; Vieira, F. G. Roadmap for C9ORF72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis: Report on the C9ORF72 FTD/ALS Summit. Neurol Ther 2023, 12 (6), 1821–1843. [CrossRef]
- Van Daele, S. H.; Masrori, P.; Van Damme, P.; Van Den Bosch, L. The Sense of Antisense Therapies in ALS. Trends in Molecular Medicine 2024, S1471491423002836. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, J.; Gendron, T. F.; McAlonis-Downes, M.; Jiang, L.; Taylor, A.; Diaz Garcia, S.; Ghosh Dastidar, S.; Rodriguez, M. J.; King, P.; Zhang, Y.; La Spada, A. R.; Xu, H.; Petrucelli, L.; Ravits, J.; Da Cruz, S.; Lagier-Tourenne, C.; Cleveland, D. W. Reduced C9ORF72 Function Exacerbates Gain of Toxicity from ALS/FTD-Causing Repeat Expansion in C9orf72. Nat Neurosci 2020, 23(5), 615–624. [Google Scholar] [CrossRef]
- Backwell, L.; Marsh, J. A. Diverse Molecular Mechanisms Underlying Pathogenic Protein Mutations: Beyond the Loss-of-Function Paradigm. Annu. Rev. Genom. Hum. Genet. 2022, 23(1), 475–498. [Google Scholar] [CrossRef] [PubMed]
- 124). Lauffer, M. C.; Van Roon-Mom, W.; Aartsma-Rus, A.; N = 1 Collaborative. Possibilities and Limitations of Antisense Oligonucleotide Therapies for the Treatment of Monogenic Disorders. Commun Med 2024, 4(1), 6. [Google Scholar] [CrossRef]
- Hauser, S.; Helm, J.; Kraft, M.; Korneck, M.; Hübener-Schmid, J.; Schöls, L. Allele-Specific Targeting of Mutant Ataxin-3 by Antisense Oligonucleotides in SCA3-iPSC-Derived Neurons. Mol Ther Nucleic Acids 2022, 27, 99–108. [Google Scholar] [CrossRef]
- Skotte, N. H.; Southwell, A. L.; Østergaard, M. E.; Carroll, J. B.; Warby, S. C.; Doty, C. N.; Petoukhov, E.; Vaid, K.; Kordasiewicz, H.; Watt, A. T.; Freier, S. M.; Hung, G.; Seth, P. P.; Bennett, C. F.; Swayze, E. E.; Hayden, M. R. Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients. PLoS ONE 2014, 9(9), e107434. [Google Scholar] [CrossRef]
- Farrimond, L.; Talbot, K. A Case of SOD1 Deficiency: Implications for Clinical Trials. Brain 2022, 145(3), 805–806. [Google Scholar] [CrossRef] [PubMed]
- Linares, G. R.; Li, Y.; Chang, W.-H.; Rubin-Sigler, J.; Mendonca, S.; Hong, S.; Eoh, Y.; Guo, W.; Huang, Y.-H.; Chang, J.; Tu, S.; Dorjsuren, N.; Santana, M.; Hung, S.-T.; Yu, J.; Perez, J.; Chickering, M.; Cheng, T.-Y.; Huang, C.-C.; Lee, S.-J. J.; Deng, H.-J.; Bach, K.-T.; Gray, K.; Subramanyam, V.; Rosenfeld, J.; Alworth, S. V.; Goodarzi, H.; Ichida, J. K. SYF2 Suppression Mitigates Neurodegeneration in Models of Diverse Forms of ALS. Cell Stem Cell. [CrossRef]
- Dangouloff, T.; Vrščaj, E.; Servais, L.; Osredkar, D.; Adoukonou, T.; Aryani, O.; Barisic, N.; Bashiri, F.; Bastaki, L.; Benitto, A.; Omran, T. B.; Bernert, G.; Bertini, E.; Borde, P.; Born, P.; Boustani, R.-M.; Butoianu, N.; Castiglioni, C.; Catibusic, F.; Chan, S.; Chien, Y. H.; Christodoulou, K.; Dejsuphong, D.; Farrar, M.; Filip, D.; Goemans, N.; Guinhouya, K.; Haberlova, J.; Hadzsiev, K.; Hovhannesyan, K.; Isohanni, P.; Radovic, N. I.; Jacquier, D.; Jalloh, A.; Jedrzejowska, M.; Kandawasvika, G.; Kaputu, C.; Kawatu, N.; Kernohan, K.; Kirschner, J.; Klink, B.; Kodsy, S.; Kouame-Assouan, A.-E.; Kravljanac, R.; Kreile, M.; Litvinenko, I.; McMillan, H.; Mesa, S.; Mohamed, I.; Kanzoska, L. M.; Nevo, Y.; Nguefack, S.; Nkole, K.; O’Grady, G.; O’Rourke, D.; Oskoui, M.; Piazzon, F.; Poddighe, D.; Prasauskiene, A.; Prieto, J.; Rasmussen, M.; Razafindrasata, S.; Saha, N.; Saito, K.; Sakadi, F.; Sangare, M.; Schroth, M.; Shalkevich, L.; Shatillo, A.; Suthar, R.; Szabo, L.; Tatishvili, N.; Tazir, M.; Tizzano, E.; Topaloglu, H.; Tulinius, M.; Van Der Pol, L.; Vazquez, G.; Vlodavets, D.; Wanigasinghe, J.; Wilmshurst, J.; Xiong, H.; Zafeiriou, D.; Zamba, E. Newborn Screening Programs for Spinal Muscular Atrophy Worldwide: Where We Stand and Where to Go. Neuromuscular Disorders 2021, 31(6), 574–582. [Google Scholar] [CrossRef] [PubMed]



| Name of modification | Type of modification | Advantages | Disadvantages |
|---|---|---|---|
| Single-stranded phosphorothioate | Replacement of one of the non-bridging oxygen atoms in the phosphate backbone with a sulfur atom | Improved nuclease resistance in plasma, tissues, and cells | Citotoxicity when delivered at high concentrations due to non-specific binding with certain proteins |
| 2'-O-Methoxyethyl (2'-MOE)-modification | Modifications at the 2′ position of the sugar moiety | Enhanced nuclease resistance, lower cell toxicity and increased binding affinity | Impaired RNase H cleavage of the complementary RNA |
| 2′-MOE gapmers | A central core of phosphorothioate-modified DNA is flanked by 2′-MOE modified RNA bases | Induce RNase H cleavage, increased binding affinity to the target, mitigate non-specific cleavage | |
| 2'-O-[2-(methylthio)ethyl] or 2'-O-MTE modification | Modifications at the 2′ position of the sugar moiety | Improved binding to human serum albumin, high binding affinity to target RNA | Limited resistance to exonuclease degradation |
| Phosphoryl guanidine backbone modification | phosphoryl guanidine modification of the phosphate group at internucleotidic positions | Increased nuclease resistance, enhanced affinity and selectivity to target sites, enhances exon skipping | Reduced cellular uptake |
| Mixed-backbone oligonucleotides (MBOs) | alternative phosphorothioate and phosphodiester linkages in the 2′-O-methylribonucleosides | Improved affinity to RNA, RNase H activation, better pharmacological and pharmacokinetic properties | |
| Locked NucleicAacids LNA | ribose ring is chemically constrained by a methylene bridge connecting the 2'-oxygen and the 4'-carbon of the ribose, creating a "locked" structure | increased binding affinity, enzymatic stability | Increased liver toxicity |
| Year | Results | Ref. |
|---|---|---|
| 2006 | Identification of the ISS-N1 sequence within SMN2 intron 7 Synthesis of the first complementary ASO |
[47] |
| 2008 | Synthesis of ASO 10-27 with high affinity to ISS-N1 First preclinical studies on a SMA mouse model |
[46] |
| 2010-2011 | Improved SMN protein expression following administration of ASO 10-27 by intrathecal or intracerebroventricular injection in SMA mice Ameliorated disease phenotype No increase in lifespan of mice |
[14] |
| 2011 | Amelioration of peripheral symptoms after subcutaneous injection of ASO 10-27 in SMA mice Improved lifespan by more than 25-fold |
[52] |
| 2011 | Adequate distribution at the level of the spinal cord after intrathecal injection in non-human primates No significant side effects. |
[14] |
| Phase | Type of study | SMA type | n° of patients | Administration (doses) | Clinical outcomes | Ref. |
|---|---|---|---|---|---|---|
| I (NCT01494701) (NCT01780246) |
open-label | 2 / 3 | 28 | Intrathecal bolus injection (1, 3, 6, 9 mg) |
Improved HFMSE scores in the 9 mg groups post-dose | [48] |
| II (NCT01839656) |
open-label | 1 | 20 | Intrathecal injection (6 mg and 12 mg equivalents) |
Increased improvement in HINE-2 and CHOP-INTEND test assessments | [12] |
| III (ENDEAR NCT02193074) |
double-blind, randomized, and sham-controlled | 1 | 121 | Intrathecal injection (12 mg equivalents) |
Higher percentage of motor-milestone response and higher percentage of CHOP-INTEND response compared to control group | [49] |
| III (CHERISH NCT02292537) |
double-blinded, multicenter and sham-controlled | later-onset SMA (2-12 years) |
126 | Intrathecal injection (12 mg) |
Significant improvement in motor function compared to control group (increase from baseline to month 15 in the HFMSE score of at least 3 points) | [50] |
| II (NURTURE NCT02386553) |
open-label | 1 / 2 presymptomatic |
25 | Intrathecal injection | underway |
| Year | Results | Ref. |
|---|---|---|
| 2006 | ASO 333611 produced a dose-dependent reduction of SOD1 mRNA and protein in SOD1G93A rats, delayed disease onset and prolonged survival by 37% after the onset. The reduction in SOD1 expression was well tolerated. |
[16] |
| 2018 | BIIB067 was more potent than ASO 333611 in inhibiting SOD1 mRNA expression in cultured cells and in transgenic rodents. BIIB067 administration to transgenic SOD1G93A rodents before disease onset significantly prolonged survival, slowed motor impairment and reduced neuromuscular damage. ASO therapy reduced serum levels of pNFH. |
[19] |
| Phase | Type of study | n° of patients | Administration (doses] | Clinical outcome | Ref. | |
|---|---|---|---|---|---|---|
| I (NCT01041222) ASO 333611 |
double-blind, placebo-controlled | 22 | a single course (12 h slow intrathecal infusion] of a low dose (0.15 to 3 mg) | No drug-related safety issues. No reduction of SOD1 protein levels in CSF |
[67] | |
| I/II (VALOR NCT02623699) BIIB067 (Tofersen) |
randomized, double-blind, placebo-controlled trial |
50 | Intrathecal injection (20, 40, 60, or 100 mg) |
Tofersen was generally well tolerated and safe. The highest concentration was the most effective in reducing CSF SOD1 levels. And slowed decline in ALSFRS-R |
[69] | |
| III (VALOR NCT02623699) BIIB067 (Tofersen) |
randomized, double-blind, placebo-controlled trial |
108 | Intrathecal injection (100 mg) |
Reduction of CSF SOD1 and plasma neurofilament light chain levels after 28 weeks of treatment. Clinical endpoints were not reached. several secondary and exploratory endpoints supported favourable clinical and biomarker trends, particularly in the fast-progressing group |
[70] | |
| III (NCT03070119) BIIB067 (Tofersen) |
longterm, open-label extension |
138 | Intrathecal injection (100 mg) |
The aim is to assess long-term safety and tolerability of tofersen | [70] | |
| III (ATLAS NCT04856982) BIIB067 (Tofersen) |
Presymptomatic carrier | 150 expected (2021-2027) | In case of increse in NfL, the participant will be randomised to receive either 100 mg tofersen or placebo | The aim is to assess the effectiveness of tofersen in pre-symptomatic adult carriers of SOD1 mutations with elevated neurofilament levels |
[72] | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
