Submitted:
17 February 2024
Posted:
20 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Explanation
- -
- -Anti-SARS-CoV-2 S spike (IgG), N nucleocapsid (IgG), and N nucleocapsid (IgM) antibodies were estimated by chemoluminescence microparticle immunoassay (CMIA) (Alinity | Anti-SARS-CoV-2 S and N, Abbot Laboratories, Chicago, USA) [23]. All these tests were performed at the Microbiology Service Laboratory of the University Hospital de la Plana, Vila-real.
- -
- -Cell immunity against the Wuhan and Omicron BA.2 variants of concern (VOC) were measured with flow cytometry. Functional cellular assays were based on the detection of markers of T-cell activation. Enumeration of SARS-CoV-2-S-reactive interferon-γ-producing CD4+ and CD8+ T cells in fresh heparinized peripheral whole blood was carried out by flow cytometry immunoassay for intracellular cytokine staining (BD Fastimmune, Becton Dickinson and Company-Biosciences, San Jose, CA) as previously described [21,24,25,26]. Specimens were analyzed at the Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, (Spain).
- -
- -25-hydroxy vitamin D [25(OH)D] levels by electrochemiluminescence-based assay (Elecsys vitamin D total II Roche Diagnostic, Germany) [27].This analysis was performed at the University Hospital de la Plana Clinical Laboratory Service, Vila-real.
2.2. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John Hopkins University. Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 10 February 2024).
- Auerbach, J.D.; Forsyth, A.D.; Davey, C.; Hargreaves, J.R.; Group for lessons from pandemic HIV prevention for the COVID-19 response. Living with COVID-19 and preparing for future pandemics: revisiting lessons from the HIV pandemic. Lancet HIV. 2023, 10, e62–e68. [Google Scholar] [CrossRef]
- Faghy, M.A.; Arena, R.; Babu, A.S.; Christle, J.W.; Marzolini, S.; Popovic, D.; Vermeesch, A.; Pronk, N.P.; Stoner, L.; Smith, A.; et al. Post pandemic research priorities: A consensus statement from the HL-PIVOT. Prog. Cardiovasc. Dis. 2022, 73, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021, 184, 861–880. [Google Scholar] [CrossRef] [PubMed]
- Rydyznski Moderbacher, C.; Ramirez, S.I.; Dan, J.M.; Grifoni, A.; Hastie, K.M.; Weiskopf, D.; Belanger, S.; Abbott, R.K.; Kim, C.; Choi, J.; et al. Antigen-Specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020, 183, 996–1012.e19. [Google Scholar] [CrossRef]
- Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wu, T.; Xie, H.; Li, Y.; Zhang, J.; Su, X.; Qi, H. The role of cellular immunity in the protective efficacy of the SARS-CoV-2 vaccines. Vaccines 2022, 10, 1103. [Google Scholar] [CrossRef]
- Silva, M.J.A.; Ribeiro, L.R.; Lima, K.V.B.; Lima, L.N.G.C. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front Immunol. 2022, 13, 1001198. [Google Scholar] [CrossRef]
- Sette, A.; Crotty, S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev. 2022, 310, 27–46. [Google Scholar] [CrossRef]
- Petrone, L.; Sette, A.; de Vries, R.D.; Goletti, D. The Importance of measuring SARS-CoV-2-specific T-Cell responses in an ongoing pandemic. Pathogens. 2023, 12, 862. [Google Scholar] [CrossRef]
- Graça, D.; Brglez, V.; Allouche, J.; Zorzi, K.; Fernandez, C.; Teisseyre, M.; Cremoni, M.; Benzaken, S.; Pradier, C.; Seitz-Polski, B. Both humoral and cellular immune responses to SARS-CoV-2 are essential to prevent infection: A prospective study in a working vaccinated population from Southern France. J Clin Immunol. 2023, 43, 1724–1739. [Google Scholar] [CrossRef]
- Kent, S.J.; Khoury, D.S.; Reynaldi, A.; Juno, J.A.; Wheatley, A.K.; Stadler, E.; John, Wherry. E.; Triccas, J.; Sasson, S.C.; Cromer, D.; et al. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast? Nat Rev Immunol. 2022, 22, 387–397. [Google Scholar] [CrossRef]
- Zens, K.D.; Llanas-Cornejo, D.; Menges, D.; Fehr, J.S.; Münz, C.; Puhan, M.A.; Frei, A. Longitudinal humoral and cell-mediated immune responses in a population-based cohort in Zurich, Switzerland between March and June 2022 - evidence for protection against Omicron SARS-CoV-2 infection by neutralizing antibodies and spike-specific T-cell responses. Int J Infect Dis. 2023, 133, 18–26. [Google Scholar]
- Domènech-Montoliu, S.; Pac-Sa, M.R-; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Ferrando-Rubert, S.; Ferrer-Abad, G.; Sánchez-Urbano, M.; Aparisi-Esteve, L.; Badenes-Marques, G.; et al. "Mass gathering events and COVID-19 transmission in Borriana (Spain): A retrospective cohort study". PLoS One. 2021, 16, e0256747.
- Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Ferrando-Rubert, S.; Ferrer-Abad, G.; Sánchez-Urbano, M.; Aparisi-Esteve, L.; et al. ABO blood groups and the incidence of complications in COVID-19 patients: A population-based prospective cohort study. Int J Environ Res Public Health. 2021, 18, 10039. [Google Scholar] [CrossRef]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Guerra-Murcia, O.; Pac-Sa, M.R.; Orrico-Sanchéz, A.; Gómez-Lanas, L.; Sala-Trull, D.; Domènech-Leon, C.; Del Rio-González, A.; Sánchez-Urbano, M.; et al. ABO blood groups and incidence of COVID-19 in the mass gathering events in Borriana (Spain), March 2020: A retrospective cohort study. Epidemiologia 2023, 4, 63–73. [Google Scholar] [CrossRef]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Ferrando-Rubert, S.; Ferrer-Abad, G.; Sánchez-Urbano, M.; Aparisi-Esteve.; et al. Persistence of Anti-SARS-CoV-2 antibodies six months after infection in an outbreak with five hundred COVID-19 cases in Borriana (Spain): A prospective cohort study. COVID. 2021, 1, 71–82.
- Domènech-Montoliu; S.; Puig-Barberà, J.; Badenes-Marques, G.; Gil-Fortuño, M.; Orrico-Sánchez, A.; Pac-Sa, M.R., Perez-Olaso, O.; Sala-Trull, D.; Sánchez-Urbano, M.; Arnedo-Pena, A. Long COVID prevalence and the impact of the third SARS-CoV-2 vaccine dose: A cross-sectional analysis from the third follow-up of the Borriana Cohort, Valencia, Spain (2020-2022). Vaccines 2023, 11, 1590.
- Goel, R.R.; Painter, M.M.; Apostolidis, S.A.; Mathew, D.; Meng, W.; Rosenfeld, A.M.; Lundgreen, K.A.; Reynaldi, A.; Khoury, D.S.; Pattekar, A.; et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021, 374, abm0829. [Google Scholar] [CrossRef] [PubMed]
- Almendro-Vázquez, P.; Laguna-Goya, R.; Ruiz-Ruigomez, M.; Utrero-Rico, A.; Lalueza, A.; Maestro de la Calle, G.; Delgado, P.; Perez-Ordoño, L.; Muro, E.; Vila, J.; et al. Longitudinal dynamics of SARS-CoV-2-specific cellular and humoral immunity after natural infection or BNT162b2 vaccination. PLoS Pathog. 2021, 17, e1010211. [Google Scholar] [CrossRef]
- Tormo, N.; Giménez, E.; Martínez-Navarro, M.; Albert, E.; Navalpotro, D.; Torres, I.; Gimeno, C.; Navarro, D. Performance comparison of a flow cytometry immunoassay for intracellular cytokine staining and the QuantiFERON® SARS-CoV-2 test for detection and quantification of SARS-CoV-2-Spike-reactive-IFN-γ-producing T cells after COVID-19 vaccination. Eur J Clin Microbiol Infect Dis. 2022, 41, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Montoliu S, Puig-Barberà J, Pac-Sa MR, Vidal-Utrillas P, Latorre-Poveda M, Del Rio-González A, Ferrando-Rubert S, Ferrer-Abad G, Sánchez-Urbano M, Aparisi-Esteve L,; et al. Complications post-COVID-19 and risk factors among patients after six months of a SARS-CoV-2 infection: A population-based prospective cohort study. Epidemiologia 2022, 3, 49–67.
- Narasimhan, M.; Mahimainathan, L.; Araj, E.; Clark, A.E.; Markantonis, J.; Green, A.; Xu, J.; SoRelle, J.A.; Alexis, C.; Fankhauser, K.; et al. Clinical evaluation of the Abbott Alinity SARS-CoV-2 sike-specific quantitative IgG and IgM assays among infected, recovered, and vaccinated groups. J Clin Microbiol. 2021, 59, e0038821. [Google Scholar] [CrossRef]
- Giménez, E.; Albert, E.; Torres, I.; Remigia, M.J.; Alcaraz, M.J.; Galindo, M.J.; Blasco, M.L.; Solano, C.; Forner, M.J.; Redón, J.; et al. SARS-CoV-2-reactive interferon-γ-producing CD8+ T cells in patients hospitalized with coronavirus disease 2019. J Med Virol. 2021, 93, 375–382. [Google Scholar] [CrossRef]
- Albert, E.; Burgos, J.S.; Peiró, S.; Salas, D.; Vanaclocha, H.; Giménez, E.; Limón, R.; Alcaraz, M.J.; Sánchez-Payá. J.; Díez-Domingo, J.; et al. Immunological response against SARS-CoV-2 following full-dose administration of Comirnaty® COVID-19 vaccine in nursing home residents. Clin Microbiol Infect. 2022, 28, 279–284.
- Torres, I.; Albert, E.:, Giménez, E.; Alcaraz, M.J.; Botija, P,; Amat, P.;, Remigia, M.J,; Beltrán, M.J.; Rodado, C.; Huntley, D.; et al. B- and T-cell immune responses elicited by the Comirnaty® COVID-19 vaccine in nursing-home residents. Clin. Microbiol. Infect. 2021, 27, 1672–1677. [CrossRef]
- Asif, M.; Groboske, S.E.; Leung, E.K.Y.; Yeo, K.J.; van Wijk, X.M.R. Evaluation of a new generation automated assay for 25-hydroxy vitamin D based on competitive protein binding. J Appl Lab Med 2019, 4, 247–253. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Reinfection with SARS-CoV-2: implementation of a surveillance case definition within the EU/EEA. 8 April 2021. ECDC: Stockholm, 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/reinfection-sars-cov-2-implementation-surveillance-case-definition-within-eueea. (accessed on 20 June 2022).
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liskiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: the R package 'dagitty'. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef]
- Camacho, J.; Giménez, E.; Albert, E.; Zulaica, J.; Álvarez-Rodríguez, B.; Torres, I.; Rusu, L.; Burgos, J.S.; Peiró, S.; Vanaclocha, H.; et al. Cumulative incidence of SARS-CoV-2 infection in the general population of the Valencian Community (Spain) after the surge of the Omicron BA. 1 variant. J. Med. Virol. 2023, 95, e28284. [Google Scholar] [CrossRef] [PubMed]
- Tani, Y.; Takita, M.; Kobashi, Y.; Wakui, M.; Zhao, T.; Yamamoto, C.; Saito, H.; Kawashima, M.; Sugiura, S.; Nishikawa, Y.; et al. Varying cellular immune response against SARS-CoV-2 after the booster vaccination: A cohort study from Fukushima Vaccination Community Survey, Japan. Vaccines 2023, 11, 920. [Google Scholar] [CrossRef] [PubMed]
- Havervall, S.; Ng, H, Jernbom Falk, A.; Greilert-Norin, N.; Månberg, A.; Marking, U.; Laurén, I.; Gabrielsson, L.; Salomonsson, A.C.; Aguilera, K. ; et al. Robust humoral and cellular immune responses and low risk for reinfection at least 8 months following asymptomatic to mild COVID-19. J Intern Med. 2022, 291, 72–80.
- hang, J.; Lin, H.; Ye, B.; Zhao, M.; Zhan. J.; Dong, S.; Guo, Y.; Zhao, Y.; Li, M.; Liu S,; et al. One-year sustained cellular and humoral immunities in coronavirus disease 2019 (COVID-19) convalescents. Clin. Infec.t Dis. 2022, 75, e1072–e1081. [CrossRef]
- Moore, S.C.; Kronsteiner, B.; Longet, S.; Adele, S.; Deeks, A.S.; Liu, C.; Dejnirattisai, W.; Reyes, L.S.; Meardon, N.; Faustini, S,; et al. Evolution of long-term vaccine-induced and hybrid immunity in healthcare workers after different COVID-19 vaccine regimens. Med. 2023, 4, 191–215.e9.
- Dietz, L.L.; Juhl, A.K.; Søgaard, O.S.; Reekie, J.; Nielsen, H.; Johansen, I.S.; Benfield, T.; Wiese, L.; Stærke, N.B.; Jensen, T.Ø.; et al. Impact of age and comorbidities on SARS-CoV-2 vaccine-induced T cell immunity. Commun. Med. 2023, 3, 58. [Google Scholar] [CrossRef]
- Costa, C.; Scozzari, G.; Migliore, E.; Galassi, C.; Ciccone, G.; Ricciardelli, G.; Scarmozzino, A.; Angelone, L.; Cassoni, P.; Cavallo, R.; et al. Cellular immune response to BNT162b2 mRNA COVID-19 vaccine in a large cohort of healthcare workers in a tertiary care university hospital. Vaccines 2022, 10, 1031. [Google Scholar] [CrossRef]
- De Marco, L.; D'Orso, S.; Pirronello, M.; Verdiani, A.; Termine, A.; Fabrizio, C.; Capone, A.; Sabatini, A.; Guerrera, G.; Placido, R.; et al. Assessment of T-cell reactivity to the SARS-CoV-2 Omicron variant by immunized individuals. JAMA Netw Open. 2022, 5, e2210871. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Oberhardt, V.; Luxenburger, H.; Kemming, J.; Schulien, I.; Ciminski, K.; Giese, S.; Csernalabics, B.; Lang-Meli, J.; Janowska, I.; Staniek, J.; et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021, 597, 268–273. [Google Scholar] [CrossRef] [PubMed]
- GeurtsvanKessel, C.H.; Geers, D. Schmitz, K.S.; Mykytyn, A.Z.; Lamers, M.M.; Bogers, S.; Scherbeijn, S.; Gommers, L.; Sablerolles, R.S.G.; et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol 2022, 7, eabo2202.
- Tarke, A.; Coelho, C.H.; Zhang, Z.; Dan, J.M.; Yu, E.D.; Methot, N.; Bloom, N.I.; Goodwin, B.; Phillips, E.; Mallal, S.; et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022, 185, 847–859.e11. [Google Scholar] [CrossRef]
- Mateus, J.; Dan, J.M.; Zhang, Z.; Rydyznski Moderbacher, C.; Lammers, M.; Goodwin, B.; Sette, A.; Crotty, S.; Weiskopf, D. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science. 2021, 374, eabj9853. [Google Scholar] [CrossRef]
- Cohen, K.W.; Linderman, S.L.; Moodie, Z.; Czartoski, J.; Lai, L.; Mantus, G.; Norwood, C.; Nyhoff, L.E.; Edara, V.V.; Floyd, K.; et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep. Med. 2021, 2, 100354. [Google Scholar] [CrossRef] [PubMed]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021, 371, eabf4063. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.R.; de Souza Apostolico, J.; Jacintho, L.C.; Carnevale Marin, M.L.; Vieira da Silva Júnior, R.C.; Rodrigues, H.; Santos, K.S.; Coelho, V.; Boscardin, S.B.; Kalil, J.; et al. Time-dependent contraction of the SARS-CoV-2-specific T-cell responses in convalescent individuals. J. Allergy Clin. Immunol. Glob. 2022, 1, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Giménez, E.; Albert, E.; Burgos, J.S.; Peiró, S.; Salas, D.; Vanaclocha, H.; Limón, R.; Alcaraz, M.J.; Sánchez-Payá, J.; Díez-Domingo, J.; et al. SARS-CoV-2 adaptive immunity in nursing home residents up to eight months after two doses of the Comirnaty® COVID-19 vaccine. J Infect. 2022, 84, 834–872. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Weiskopf, D,; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020, 181, 1489–1501.e15.
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O., Freedman, L.S.; Ash, N.; Alroy-Preis, S.; Huppert, A.; Milo, R. Protection and waning of natural and hybrid immunity to SARS-CoV-2. N. Engl. J. Med. 2022, 386, 2201–2212. [CrossRef]
- Wang, Z, Muecksch, F, Schaefer-Babajew, D, Finkin, S, Viant, C, Gaebler, C, Hoffmann HH, Barnes CO, Cipolla M, Ramos, V.; et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021, 595, 426–431. [CrossRef]
- Rodda, L.B.; Morawski, P.A., Pruner. K.B.; Fahning, M.L.; Howard, C.A.; Franko, N.; Logue, J.; Eggenberger, J.; Stokes, C.; Golez, I.; et al. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell. 2022, 185, 1588–1601.e14.
- Pitiriga, V.C.; Papamentzelopoulou, M.; Konstantinakou, K.E.; Theodoridou, K.; Vasileiou, I.V.; Tsakris, A. SARS-CoV-2 T cell immunity responses following natural infection and vaccination. Vaccines 2023, 11, 1186. [Google Scholar] [CrossRef]
- Primorac, D.; Brlek, P.; Pavelić, E.S.; Mešić, J.; Glavaš Weinberger, D.; Matišić, V.; Molnar, V.; Srića, S.; Zadro, R. Importance of cellular immunity and IFN-γ concentration in preventing SARS-CoV-2 infection and reinfection: A cohort study. Viruses. 2023, 15, 792. [Google Scholar] [CrossRef]
- Seekircher, L.; Bánki, Z.; Kimpel, J.; Rössler, A.; Schäfer, H.; Falkensammer, B.; Bante, D.; Forer, L.; Schönherr, S.; Shieldvacc-2 Study Group; et al. Immune response after two doses of the BNT162b2 COVID-19 vaccine and risk of SARS-CoV-2 breakthrough infection in Tyrol, Austria: An open-label, observational phase 4 trial. Lancet Microbe. 2023, 4, e612–e621. [Google Scholar] [CrossRef]
- Torres, I.; Giménez, E.; Albert, E.; Zulaica, J.; Álvarez-Rodríguez, B.; Burgos, J.S.; Peiró, S.; Limón, R.; Vanaclocha, H.; et al. SARS-CoV-2 Omicron BA.1 variant breakthrough infections in nursing home residents after a homologous third dose of the Comirnaty® COVID-19 vaccine: Looking for correlates of protection. J. Med. Virol. 2022, 94, 4216–4223. [Google Scholar] [CrossRef]
- Bertoletti, A.; Le Bert, N.; Tan, A.T. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity. 2022, 55, 1764–1778. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.J.; Pade, C.; Gibbons, J.M.; Otter, A.D.; Lin, K.M.; Muñoz Sandoval, D.; Pieper, F.P.; Butler, D.K.; Liu, S., Joy, G.; et al. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science 2022, 377, eabq1841.
- Frans, G.; Dillaerts, D.; Dehaemers, T.; Van Elslande, J.; De Leeuw, J.; Boon, L.; Maes, W.; Callewaert, N.; Calcoen, B.; Ancheva, L.; et al. Complementarity determining regions in SARS-CoV-2 hybrid immunity. Front. Immunol. 2023, 14, 1050037. [Google Scholar] [CrossRef]
- Mohn, K.G.; Bredholt, G.; Zhou, F.; Madsen, A.; Onyango, T.B.; Fjelltveit, E.B.; Jalloh, S.L.; Brokstad, K.A.; Cantoni, D.; Mayora-Neto, M.; et al. Durable T-cellular and humoral responses in SARS-CoV-2 hospitalized and community patients. PLoS One. 2022, 17, e0261979. [Google Scholar] [CrossRef] [PubMed]
- Le Bert, N.; Clapham, H.E.; Tan, A.T.; Chia, W.N.; Tham, C.Y.L.; Lim, J.M.; Kunasegaran, K.; Tan, L.W.L.; Dutertre, C.A.; Shankar, N.; et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med. 2021, 218, e20202617. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhong, M.; Hong, K.; Yang, Q.; Zhang, E.; Zhou, D.; Xia, J.; Chen, Y.Q.; Sun, M.; Zhao, B.; et al. Characteristics of T-cell responses in COVID-19 patients with prolonged SARS-CoV-2 positivity: A cohort study. Clin Transl Immunology. 2021, 10, e1259. [Google Scholar] [CrossRef] [PubMed]
- San Román, J.; Candel, F.J.; Sanz, J.C.; López, P.; Menéndez-Colino, R.; Barreiro, P.; Carretero, M.D.M.; Pérez-Abeledo, M.; Viñuela-Prieto, J.M.; Ramos, B.; et al. Humoral and cellular response after mRNA vaccination in nursing homes: influence of age and of history of COVID-19. Vaccines 2022, 10, 383. [Google Scholar] [CrossRef]
- Dourdouna, M.M.; Tatsi, E.B.; Syriopoulou, V.; Michos, A. Evaluation of T cell responses with the QuantiFERON SARS-CoV-2 assay in individuals with 3 doses of BNT162b2 vaccine, SARS-CoV-2 infection, or hybrid immunity. Diagn Microbiol Infect Dis. 2023, 106, 115948. [Google Scholar] [CrossRef]
- Johnson, S.A.; Phillips, E.; Adele, S.; Longet, S.; Malone, T.; Mason, C.; Stafford, L.; Jamsen, A.; Gardiner, S.; Deeks, A.; et al. Evaluation of QuantiFERON SARS-CoV-2 interferon-γ release assay following SARS-CoV-2 infection and vaccination. Clin Exp Immunol. 2023, 212, 249–261. [Google Scholar] [CrossRef]
- Paniskaki, K.; Konik, M.J.; Anft, M.; Meister, T.L.; Marheinecke, C.; Pfaender, S.; Jäger, J.; Krawczyk, A.; Zettler, M.; Dolff, S.; et al. Superior humoral immunity in vaccinated SARS-CoV-2 convalescence as compared to SARS-COV-2 infection or vaccination. Front Immunol. 2022, 13, 1031254. [Google Scholar] [CrossRef]
- Gatti, A.; Zizzo, G.; De Paschale, M.; Tamburello, A.; Castelnovo, L.; Faggioli, P.M.; Clerici, P.; Brando, B.; Mazzone, A. Assessing SARS-CoV-2-specific T-cell reactivity in late convalescents and vaccinees: Comparison and combination of QuantiFERON and activation-induced marker assays, and relation with antibody status. PLoS One. 2023, 18, e0285728. [Google Scholar] [CrossRef]
- Giménez, E.; Albert, E.; Zulaica, J.; Torres, I.; Rusu, L.; Moreno, A.R.; Burgos, J.S.; Peiró, S.; Salas, D.; Vanaclocha, H.; et al. Severe Acute respiratory syndrome coronavirus 2 adaptive immunity in nursing home residents following a third dose of the Comirnaty coronavirus disease 2019 vaccine. Clin Infect Dis. 2022, 75, e865–e868. [Google Scholar] [CrossRef]
- Malipiero, G.; Moratto, A.; Infantino, M.; D'Agaro, P.; Piscianz, E.; Manfredi, M.; Grossi, V.; Benvenuti, E.; Bulgaresi, M.; Benucci, M.; et al. Assessment of humoral and cellular immunity induced by the BNT162b2 SARS-CoV-2 vaccine in healthcare workers, elderly people, and immunosuppressed patients with autoimmune disease. Immunol Res. 2021, 69, 576–583. [Google Scholar] [CrossRef]
- Azamor, T.; Horbach, I.S.; Brito, E.; Cunha, D.; Melgaço, J.G.; Silva, A.M.V.D.; Tubarão, L.N.; Azevedo, A.S.; Santos, R.T.; Alves, N.D.S.; et al. Protective immunity of COVID-19 vaccination with ChAdOx1 nCoV-19 following previous SARS-CoV-2 infection: A humoral and cellular investigation. Viruses. 2022, 14, 1916. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, R.; Ott, M. SARS-CoV-2 hybrid immunity: silver bullet or silver lining? Nat Rev Immunol. 2022, 22, 591–592. [Google Scholar] [CrossRef]
- Proal, A.D. VanElzakker, M.B.; Aleman, S.; Bach, K.; Boribong, B.P.; Buggert, M.; Cherry, S.; Chertow, D.S.; Davies, H.E.; Dupont, C.L. ; et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat Immunol. 2023, 24, 1616–1627. [Google Scholar] [CrossRef]
- Augustin, M.; Heyn, F.; Ullrich, S.; Sandaradura de Silva, U.; Albert, M.C.; Linne, V.; Schlotz, M.; Schommers, P.; Pracht, E.; Horn, C.; et al. Immunological fingerprint in coronavirus disease-19 convalescents with and without post-COVID syndrome. Front Med (Lausanne). 2023, 10, 1129288. [Google Scholar] [CrossRef] [PubMed]
- Cruz, T.; Mendoza, N.; Lledó, G.M.; Perea, L.; Albacar, N.; Agustí, A.; Sellares, J.; Sibila, O.; Faner, R. Persistence of a SARS-CoV-2 T-cell response in patients with long COVID and lung sequelae after COVID-19. ERJ Open Res. 2023, 9, 00020–2023. [Google Scholar] [CrossRef]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rojas, M.; Rodríguez, Y.; Zapata, E.; Ramírez-Santana, C.; Anaya, J.M. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 Syndrome. J Infect Dis. 2022, 225, 2155–2162. [Google Scholar] [CrossRef]
- Paniskaki, K.; Konik, M.J.; Anft, M.; Heidecke, H.; Meister, T.L.; Pfaender, S.; Krawczyk, A.; Zettler, M.; Jäger, J.; Gaeckler, A.; et al. Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19. Front Microbiol. 2023, 14, 1196721. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, E.; Biamonte, F.; Palmieri, C.; Battaglia, A.M.; Sacco, A.; Biamonte, E.; Neri, G.; Antico, G.C.; Mancuso, S.; Foti, G.; et al. Severe and mild-moderate SARS-CoV-2 vaccinated patients show different frequencies of IFNγ-releasing cells: An exploratory study. PLoS One. 2023, 18, e0281444. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tang, L.; Ma, Y.; Li, Y.; Zhang, D.; Li, Q.; Mei, H.; Hu, Y. Immunological profiling of COVID-19 patients with pulmonary sequelae. mBio. 2021, 12, e0159921. [Google Scholar] [CrossRef] [PubMed]
- Santa Cruz, A.; Mendes-Frias, A.; Azarias-da-Silva, M.; André, S.; Oliveira, A.I.; Pires, O.; Mendes, M.; Oliveira, B.; Braga, M.; Lopes, J.R.; et al. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nat Commun. 2023, 14, 1772. [Google Scholar] [CrossRef]
- Trøseid, M.; Dahl, T.B.; Holter, J.C.; Kildal, A.B.; Murphy, S.L.; Yang, K.; Quiles-Jiménez, A.; Heggelund, L.; Müller, K.E.; Tveita, A.; et al. Persistent T-cell exhaustion in relation to prolonged pulmonary pathology and death after severe COVID-19: Results from two Norwegian cohort studies. J Intern Med. 2022, 292, 816–828. [Google Scholar] [CrossRef]
- Pan, Y.; Jiang, X.; Yang, L.; Chen, L.; Zeng, X.; Liu, G.; Tang, Y.; Qian, C.; Wang, X.; Cheng, F.; et al. SARS-CoV-2-specific immune response in COVID-19 convalescent individuals. Signal Transduct Target Ther. 2021, 6, 256. [Google Scholar] [CrossRef]
- Jergović, M.; Coplen, C.P.; Uhrlaub, J.L.; Beitel, S.C.; Burgess, J.L.; Lutrick, K.; Ellingson, K.D.; Watanabe, M.; Nikolich-Žugich, J. Cutting edge: T cell responses to B.1.1.529 (Omicron) SARS-CoV-2 variant induced by COVID-19 infection and/or mRNA vaccination are largely preserved. J Immunol. 2022, 208, 2461–2465. [Google Scholar] [CrossRef]
- Ravussin, A.; Robertson, A.H.; Wolf, A.S.; Blix, K.; Kjønstad, I.F.; Solum, G.; Feiring, B.; Strand, B.H.; Lund-Johansen, F.; Munthe, L.A.; et al. Determinants of humoral and cellular immune responses to three doses of mRNA SARS-CoV-2 vaccines in older adults: A longitudinal cohort study. Lancet Healthy Longev. 2023, 4, e188–e199. [Google Scholar] [CrossRef] [PubMed]
- Tut, G.; Lancaster, T.; Sylla, P.; Butler, M.S.; Kaur, N.; Spalkova, E.; Bentley, C.; Amin, U.; Jadir, A.; Hulme, S.; et al. Antibody and cellular immune responses following dual COVID-19 vaccination within infection-naive residents of long-term care facilities: An observational cohort study. Lancet Healthy Longev. 2022, 3, e461–e469. [Google Scholar] [CrossRef]
- Syrimi, N.; Sourri, F.; Giannakopoulou, M.C.; Karamanis, D.; Pantousas, A.; Georgota, P.; Rokka, E.; Vladeni, Z.; Tsiantoula, E.; Soukara, E.; et al. Humoral and cellular response and associated variables nine months following BNT162b2 vaccination in healthcare workers. J Clin Med. 2023, 12, 3172. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Dyer, A.H.; Naughton, A.; Kiersey, R.; Holden, D.; Gardiner, M.; Dowds, J.; O'Brien, K.; Bannan, C.; Nadarajan, P.; et al. Longitudinal analysis of COVID -19 patients shows age-associated T Cell changes independent of ongoing ill-health. Front Immunol. 2021, 12, 676932. [Google Scholar] [CrossRef] [PubMed]
- Sabetta, E.; Noviello, M.; Sciorati, C.; Viganò, M.; De Lorenzo, R.; Beretta, V.; Valtolina, V.; Di Resta, C.; Banfi, G.; Ferrari, D.; et al. A longitudinal analysis of humoral, T cellular response and influencing factors in a cohort of healthcare workers: Implications for personalized SARS-CoV-2 vaccination strategies. Front Immunol. 2023, 14, 1130802. [Google Scholar] [CrossRef] [PubMed]
- Gil-Manso, S.; Miguens Blanco, I.; Motyka, B.; Halpin, A.; López-Esteban, R.; Pérez-Fernández, V.A.; Carbonell, D.; López-Fernández, L.A.; West, L.; Correa-Rocha, R.; et al. ABO blood group is involved in the quality of the specific immune response anti-SARS-CoV-2. Virulence. 2022, 13, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, A.; Lesichkova, S.; Baleva, M.; Nikolova-Vlahova, M.; Kundurzhiev, T.; Kolevski, A.; Naumova, E. Durability of humoral and cell-mediated immune response after SARS-CoV-2 mRNA vaccine administration. J Med Virol. 2023, 95, e28360. [Google Scholar] [CrossRef]
- Torres, A.J.; Angelo, A.L.; Netto, E.M.; Sampaio, G.P.; Souza, D.F.; Inocêncio, L.A.; Lemos, J.A.; Brites, C. Reference range for T lymphocytes populations in blood donors from two different regions in Brazil. Braz J Infect Dis. 2009, 13, 221–5. [Google Scholar] [CrossRef] [PubMed]
- Smith, KA, Zúñiga, T.M.; Baker, F.L.; Batatinha, H.; Pedlar, C.R.; Burgess, S.C.; Gustafson, M.P.; Katsanis, E.; Simpson, R.J. COVID-19 vaccination produces exercise-responsive SARS-CoV-2-specific T-cells regardless of infection history. J Sport Health Sci 2023, S2095-2546, 00061-3.
- Barni, L.; Carrasco-Vega, E.; Olivieri, M.; Galán-Mercant, A.; Guiducci, S.; Picariello, F.; González-Sánchez, M. Does physical exercise enhance the immune response after vaccination? A systematic review for clinical indications of COVID-19 vaccine. Int J Environ Res Public Health. 2023, 20, 5183. [Google Scholar] [CrossRef]
- Simpson, R.J.; Campbell, J.P.; Gleeson, M.; Krüger, K.; Nieman, D.C.; Pyne, D.B.; Turner, J.E.; Walsh, N.P. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev. 2020, 26, 8–22. [Google Scholar]
- Wrigley Kelly, N.E.; Kenny, G.; Cassidy, F.C.; Garcia-Leon, A.A.; De Barra, C.; Mallon, P.W.G.; Hogan, A.E.; O'Shea, D. Individuals with obesity who survive SARS-CoV-2 infection have preserved antigen-specific T cell frequencies. Obesity 2022, 30, 1927–1931. [Google Scholar] [CrossRef]
- Liu, D., Yuan, X.; Gao, F.; Zhao, B.; Ding, L.; Huan, M.; Liu, C.; Jiang, L. High number and specific comorbidities could impact the immune response in COVID-19 patients. Front Immunol. 2022, 13, 899930. [CrossRef] [PubMed]
- Aygun, H. Vitamin D can reduce severity in COVID-19 through regulation of PD-L1. Naunyn Schmiedebergs Arch Pharmacol. 2022, 395, 487–494. [Google Scholar] [CrossRef]
- Vo, H.T.M.; Maestri, A.; Auerswald, H.; Sorn, S.; Lay, S.; Seng, H.; Sann, S.; Ya, N.; Pean, P.; Dussart, P.; et al. Robust and functional immune memory up to 9 months after SARS-CoV-2 infection: A Southeast Asian longitudinal cohort. Front Immunol. 2022, 13, 817905. [Google Scholar] [CrossRef] [PubMed]
- Briggs, J.; Takahashi, S.; Nayebare, P.; Cuu, G.; Rek, J.; Zedi, M.; Kizza, T.; Arinaitwe, E.; Nankabirwa, J.I.; Kamya, M.; et al. Seroprevalence of antibodies to SARS-CoV-2 in rural households in Eastern Uganda, 2020-2022. JAMA Netw Open. 2023, 6, e2255978. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.T.; Hirschhorn, L.R.; Gray, E.L.; Wallia, A.; Carnethon, M.; Zembower, T.R.; Ho, J.; DeYoung, B.J.; Zhu, A.; Rasmussen-Torvik, LJ.; et al. Serologic status and SARS-CoV-2 infection over 6 months of follow up in healthcare workers in Chicago: A cohort study. Infect Control Hosp Epidemiol. 2022, 43, 1207–1215. [Google Scholar] [CrossRef]
- Kelsey, J.L.; Whittemore, A.S.; Evans, A.S.; Douglas-Thompson, W. Methods in observational epidemiology, 2nd ed.; Oxford University Press, Inc.: New York, 1996; pp. 173–175. [Google Scholar]
- Shahbaz, S.; Xu, L.; Sligl, W.; Osman, M.; Bozorgmehr, N.; Mashhouri, S.; Redmond, D.; Perez Rosero, E.; Walker, J.; Elahi, S. The quality of SARS-CoV-2-Specific T Cell functions differs in patients with mild/moderate versus severe disease, and T Cells expressing coinhibitory receptors are highly activated. J Immunol. 2021, 207, 1099–1111. [Google Scholar] [CrossRef]
- Terahara, K.; Sato, T.; Adachi, Y.; Tonouchi, K.; Onodera, T.; Moriyama, S.; Sun, L.; Takano, T.; Nishiyama, A.; Kawana-Tachikawa, A.; et al. SARS-CoV-2-specific CD4+ T cell longevity correlates with Th17-like phenotype. iScience. 2022, 25, 104959. [Google Scholar] [CrossRef]
| Groups | Naïve | Infected SARS-CoV-2 |
Sequelae1 | Reinfection2 | ||
|---|---|---|---|---|---|---|
| Controls n=36 |
Cases n=189 |
Cases Sequelae n=77 |
Controls No sequelae n=103 |
Cases Reinfection n=78 | Controls No reinfection n=88 |
|
| Variables | ||||||
| Age±SD3 | 49.5±12.8** | 43.3±14.3 | 46.5±12.9** | 41.0±15.0 | 41.8±13.8 | 45.3±13.7 |
| Male (%) | (44.4) | (37.6) | (35.1) | (40.8) | (38.5) | (35.2) |
| Time (months)4 | 11.4±0.7 | 10.8±3.5 | 10.3±3.5 | 11.1±3.6 | 10.3±4.02 | 11.1±3.4 |
| Body mass index | 26.9±5.9 | 26.7±5.1 | 26.6±4.9 | 26.8±5.1 | 26.5±4.9 | 26.8±5.1 |
| Smoking | 16 (44.4)** | 38 (28.2) | 19 (25.0) | 15 (14.6) | 13 (16.7) | 23 (26.4) |
| Alcohol consumption | 28 (77.8) | 139 (73.9) | 58 (75.3) | 75 (73.5) | 58 (75.3) | 67 (76.1) |
| Physical exercise | 18 (50.0) | 112 (59.3) | 40 (52.0) | 66 (64.1) | 49 (62.8) | 50 (56.8) |
| Chronic Disease | 12 (33.3) | 73 (38.6) | 34 (44.2) | 35 (33.0) | 29 (37.2) | 37 (40.1) |
| Vaccinated5 | 36(100) | 183 (96.8) | 77(100) | 97(94.2) | 74(94.9) | 87(98.9) |
| mRNA6 only | 25 (69.4) | 138 (75.4) | 57 (74.0) | 74 (76.3) | 54 (73.0) | 68 (78.2) |
| mRNA+others | 11 (30.6) | 45 (24.6) | 20 (26.0) | 23 (23.7) | 20 (27.0) | 19 (21.8) |
| 3 doses (%) | 36 (100)** | 126(77.8) | 53 (68.8)* | 68 (66.0) | 44 (56.4)* | 63 (71.6) |
| 2 doses | 0 | 53 (28.0) | 24 (31.2) | 25 (24.3) | 26 (33.3) | 24 (27.7) |
| 1 doses | 0 | 4 (2.1) | 0 | 4 (3.9) | 4 (5.1) | 0 |
| 0 doses | 0 | 6 (3.2) | 0 | 6 (5.3) | 4 (5.1) | 1 (1.1) |
| Humoral immunity | ||||||
| Anti-S IgG7 AU/ml | 1986±1627 | 2072±1689 | 2080±1725 | 1892±1658 | 1620±1429** | 2433.6±1889 |
| Anti-N IgG or IgM8 | 0 (0) | 116 (61.4) | 44 (57.1) | 68 (66.0) | 56 (71.8)** | 42 (47.7) |
| Anti-N IgM | 0 | 25 (13.2) | 9 (11.7) | 16 (15.5) | 14 (18.0) | 8 (9.1) |
| Anti-N IgG | 0 | 107 (56.6) | 41 (53.3) | 62 (60.2) | 52 (66.7)** | 39 (44.3) |
| Vit D9 | 27.0±10.4 | 30.4±9.8 | 31.2±10.6 | 30.1±9.4 | 30.2±10.4 | 30.5±9.3 |
| Vit D ≥30 ng/ml | 13 (36.1) | 86 (45.5) | 41 (53.3) | 43 (41.8) | 34 (43.6) | 44 (50.0) |
| ABO blood groups | ||||||
| O | 14 (58.9) | 80 (42.3) | 28 (36.4) | 47 (45.6) | 34 (43.6) | 35 (40.0) |
| A | 18 (50.0) | 88 (46.6) | 37 (48.1) | 49 (47.6) | 36 (46.2) | 45 (51.1) |
| B | 2 (5.6) | 17 (8.0) | 10 (13.0) | 5 (4.9) | 6 (7.7) | 8 (9.1) |
| AB | 2 (5.6) | 2 (2.1) | 2 (2.6) | 2 (1.9) | 2 (2.6) | 0 |
| Controls Naïve |
Cases Infected Patients |
Patients Sequelae Cases |
Patients No sequelae Controls |
Patients Reinfection Cases |
Patients No reinfection Controls |
|
|---|---|---|---|---|---|---|
| T cell response | Frequency median and range (percentages) 1 | |||||
| CD8+ for BA.21 | 0.11% (0%-6.5%) | 0.08% (0%-13.3%) | 0.09% (0%-8.82%) | 0.07% (0%-13.3%) | 0.08% (0%-2.57%) | 0.10% (0%-13.3%) |
| CD4+ for BA.21 | 0.13% (0%-0.85%) | 0.09% (0%-2.37%) | 0.11% (0%-2.37%) | 0.07% (0%-1.67) | 0.09% (0%-2.37%) | 0.10% (0%-1.67%) |
| CD8+ for Wuhan1 | 0.10% (0%-3.56%) | 0.09% (0%-13.5%) | 0.10% (0%-3.25%) | 0.08% (0%-13.5%) | 0.07% (0%-6.90%) | 0.11% (0%-13.5%) |
| CD4+ for Wuhan1 | 0.10 (0-1.05) | 0.08% (0%-2.03%) | 0.08% (0%-1.15%) | 0.08% (0%-2.03%) | 0.07% (0%-1.47%) | 0.09% (0%-2.03%) |
| Numbers of positive (percentages) | ||||||
| CD8+ for BA.22 | 28(77.8%) | 130(68.8%) | 58(75.3%) | 67(65.0%) | 53(68.0%) | 61(69.3%) |
| CD4+ for BA.22 | 31(86.1%) | 144(76.2%) | 67(87.0%) | 69(67.0%) | 60(76.9%) | 67(76.1%) |
| CD8+ for Wuhan2 | 29(80.6%) | 136(72.0%) | 61(79.2%) | 68(66.0%) | 52(66.7%) | 66(75.0%) |
| CD4+ for Wuhan2 | 32(88.9%) | 146(77.3%) | 69(89.6%) | 72(69.9%) | 59(75.6%) | 70(79.6%) |
| CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan | |
|---|---|---|---|---|
| OR 95% CI | OR 95% CI | OR 95% CI | OR 95% CI | |
| Infected patients Cases | 0.63 (0.77-1.46) | 0.52(0.19-1.41) | 0.62 (0.25-1.50) | 0.42(0.14-1.27) |
| Naïve Controls | 1.00 | 1.00 | 1.00 | 1.00 |
| Patients with sequelae Cases | 1.64(0.85-3.17) | 3.20 (1.51-7.31) | 1.96 (0.99-3.89) | 3.71(1.60-8.64) |
| Patients without-sequelae Controls | 1.00 | 1.00 | 1.00 | 1.00 |
| Patients reinfection Cases | 0.93(0.49-1.81) | 1.01(0.51-2.15) | 0.67(0.34-1.31) | 0.80(0.38-1.66) |
| Patients no-reinfectionControls | 1.00 | 1.00 | 1.00 | 1.00 |
| Groups | CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan |
|---|---|---|---|---|
| % positive | % positive | % positive | % positive | |
| Infected Patients Cases | 68.8% | 76.2% | 72.0% | 77.3% |
| Naïve Controls | 77.8% | 86.1% | 80.6% | 88.9% |
| aOR1 (96% CI) | 0.81(0.32-2.08) | 0.39(0.13-1.19) | 1.01(0.37-2.77) | 0.45(0.14-1.49) |
| p-value | 0.668 | 0.097 | 0.982 | 0.191 |
| Patients with sequelae Cases | 75.3% | 87.0% | 79.2% | 89.6% |
| Patients without sequelae Controls | 65.1% | 67.0% | 66.0% | 69.9% |
| aOR (95% CI) | 1.24(0.59-2.62) | 4.20 (1.76-10.0) | 2.33(1.03-5.30) | 3.90 (1.50-9.52) |
| p-value | 0.569 | 0.001 | 0.043 | 0.004 |
| Patients reinfection Cases | 67.0% | 76.0% | 66.7% | 75.6% |
| Patients no-reinfection Controls | 69.3% | 76.1 | 75.0% | 79.6% |
| aOR (95% CI) | 0.94 (0.44-1.47) | 0.80 (0.36-1.78) | 0.84(0.38-1.89) | 0.80 (0.35-1.85) |
| p-value | 0.860 | 0.584 | 0.659 | 0.602 |
| CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan | |
|---|---|---|---|---|
| Variables | OR 95% CI | OR 95% CI | OR 95% CI | OR 95% CI |
| Age | 1.03 (1.0-1.05) | 1.01(0.93-1.03) | 1.01(0.98-1.03) | 1.01(0.98-1.03) |
| Male (%) | 1.09(0.60-1.96) | 0.84(0.44-1.58) | 1.24(0.67-2.29) | 0.81(0.42-1.57) |
| Time (months)1 | 0.89(0.81-0.98) | 0.95(0.86-1.05) | 1.05(0.95-1.15) | 1.07(0.97-1.18) |
| Body mass index (kg) | 1.02(0.96-1.08) | 1.08(1.01-1.15) | 1.04(0.98-1.10) | 1.02(0.95-1.09) |
| Smoking | 0.81(0.49-1.81) | 0.67(0.33-1.36) | 0.83(0.42-1.63) | 0.69(0.34-1.41) |
| Alcohol consumption | 0.99(0.51-1.92) | 1.04(0.57-2.13) | 1.98(1.04-3.79) | 1.04(0.50-2.19) |
| Physical exercise | 0.72(0.41-1.31) | 0.87(0.45-1.65) | 0.78(0.13-1.43) | 0.50(0.25-0.99) |
| Chronic Disease | 1.64(0.89-3.02) | 1.23(0.63-2.39) | 1.07(0.57-1.97) | 1.78(0.88-3.60) |
| Vaccine anti-SARS-CoV-2 | ||||
| mRNA homologous vaccine | 1.39(0.72-2.67) | 0.96(0.46-2.01) | 1.05(0.53-2.10) | 0.80(0.36-1.73) |
| 3 doses versus 0,1,2 vaccine | 1.88(1.02-3.48) | 1.13(0.57-2.26) | 1.42(0.75-2.69) | 0.74(0.35-1.57) |
| Number vaccine doses | 1.70(1.12-2.60) | 1.15(0.73-1.82) | 1.41(0.92-2.15) | 1.10(0.68-1.38) |
| Humoral immunity | ||||
| Anti-S IgG AU/ml | 1.00(0.99-1.00) | 1.00(0.94-1.10) | 1.00(0.99-1.00) | 1.01(0.94-1.10) |
| Anti-N IgM or IgG | 1.04(0.54-1.85) | 1.08(0.58-2.03) | 1.19(0.66-2.15) | 0.92(0.48-1.75) |
| Anti-N IgM | 5.54(1.27-24.2) | 1.16(0.41-3.27) | 2.04(0.67-6.21) | 2.07(0.59-7.22) |
| Anti-N IgG | 0.83(0.47-1.48) | 0.88(0.47-1.65) | 1.05(0.58-1.90) | 0.53(0.44-1.59) |
| Vitamin D | 1.00(0.97-1.03) | 0.99(0.96-1.02) | 0.99(0.96-1.03) | 0.94(0.97-1.03) |
| Vitamin D ≥30 ng/ml | 0.88(0.49-1.56) | 0.90(0.48-1.69) | 0.95(0.62-1.71) | 1.20(0.62-2.39) |
| ABO blood groups | ||||
| O | 0.65(0.36-1.15) | 0.80(0.43-1.51) | 0.63(0.35-1.15) | 0.69(0.36-1.32) |
| A | 1.36(0.76-2.42) | 1.05(0.56-1.99) | 2.41(1.29-4.49) | 1.26(0.66-2.41) |
| B | 1.21(0.42-3.49) | 1.57(0.44-5.64) | 0.37(0.14-0.95) | 0.99(0.31-3.13) |
| AB | 2.16(0.24-18.8) | 1.44(0.16-12.6) | 0.72(0.13-4.04) | NC2 |
| CD8+ for BA.2 | CD4+ for BA.2 | CD8+for Wuhan | CD4+for Wuhan | |
|---|---|---|---|---|
| Variables | aOR 95% CI | aOR 95% CI | aOR 95% CI | aOR 95% CI |
| Age1 | 1.03(1.01-1.05) | 1.01(0.99-1.03) | 1.01(0.99-1.03) | 1.01(0.98-1.03) |
| Male2 (%) | 1.01(0.53-1.91) | 0.80(0.41-1.56) | 1.13(0.59-2.18) | 0.68(0.26-2.86) |
| Time 3(months) | 0.89(0.81-0.99) | 0.96(0.87-1.06) | 1.07(0.97-1.19) | 1.0(0.98-1.21) |
| Body mass index 4 (kg) | 0.99(0.94-1.05) | 1.07(0.99-1.15) | 1.02(0.96-1.09) | 1.01(0.94-1.08) |
| Smoking5 | 0.76(0.38-1.51) | 0.63(0.31-1.30) | 0.82(0.40-1.72) | 0.73(0.34-1.57) |
| Alcohol consumption6 | 1.18(0.59-2.36) | 1.15(0.55-2.40) | 2.18(1.20-4.33) | 1.03(0.52-2.42) |
| Physical exercise7 | 0.66(0.36-1.22) | 0.83(0.44-1.60) | 0.77(0.41-1.41) | 0.44(0.21-0.99) |
| Chronic Disease8 | 1.03(0.52-2.07) | 0.90(0.43-1.90) | 0.87(0.42-1.76) | 1.72(0.78-3.79) |
| Vaccine anti-SARS-CoV-2 | ||||
| mRNA homologous vaccine9 | 1.55(0.77-3.11) | 1.04(0.48-2.26) | 0.92(0.44-1.92) | 0.82(0.36-1.87) |
| 3 doses versus9 0,1,2 vaccine | 1.24(0.60-2.56) | 0.87(0.39-1.93) | 1.93(0.92-4.05) | 0.74(0.35-1.69) |
| Number vaccine doses9 | 1.34(0.83-2.17) | 0.99(0.58-1.68) | 1.85(1.13-3.03) | 1.19(0.68-1.38) |
| Humoral immunity | ||||
| Anti-S IgG10 AU/ml | 1.00(0.99-1.00) | 1.00(0.99-1.00) | 1.00(0.99-1.00) | 1.01(0.99-1.00) |
| Anti-N10 | 1.42(0.74-2.73) | 1.31(0.57-2.21) | 1.06(0.54-2.09) | 0.93(0.46-1.89) |
| Anti-N IgM10 | 5.51(1.92-25.5) | 1.01(0.35-2.96) | 2.31(0.71-7.48) | 1.98(0.54-7.28) |
| Anti-N IgG10 | 1.13(0.59-2.17) | 0.89(0.44-1.80) | 0.92(0.47-1.83) | 0.85(0.42-1.73) |
| Vitamin D11 | 1.01(0.97-1.04) | 1.01(0.97-1.04) | 1.01(0.97-1.04) | 1.01(0.98-1.05) |
| Vitamin D >29 ng/ml11 | 1.07(0.56-2.04) | 1.20(0.60-2.40) | 0.95(0.43-1.86) | 1.30(0.64-2.68) |
| ABO blood groups | ||||
| O12 | 0.71(0.39-1.24) | 0.83(0.44-1.58) | 0.61(0.33-1.12) | 0.65(0.34-1.26) |
| A12 | 1.14(0.68-2.25) | 1.01(0.54-1.92) | 2.61(1.37-4.96) | 1.36(0.70-2.64) |
| B12 | 1.29(0.43-3.84) | 1.64(0.45-5.89) | 0.34(0.13-0.89) | 0.92(0.29-2.66) |
| AB12 | 1.72(0.19-15.8) | 1.37(0.15-12.2) | 0.68(0.11-3.89) | NC13 |
| Group | CD8+for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan | ||||
|---|---|---|---|---|---|---|---|---|
| rs | p-value | rs | p-value | rs | p-value | rs | p-value | |
| Naïve group | -0.04 | 0.812 | 0.014 | 0.934 | -0.133 | 0.438 | 0.224 | 0.188 |
| Infected patients | 0.14 | 0.055 | 0.134 | 0.065 | 0.138 | 0.059 | 0.198 | 0.006 |
| Patients with sequelae | 0.182 | 0.112 | 0.116 | 0.317 | 0.233 | 0.042 | 0.184 | 0.108 |
| Patients without sequelae | 0.143 | 0.151 | 0.068 | 0.493 | 0.093 | 0.348 | 0.214 | 0.030 |
| Patients reinfection | 0.121 | 0.293 | 0.142 | 0.216 | 0.129 | 0.280 | 0.218 | 0.055 |
| Patients no reinfection | 0.129 | 0.232 | 0.163 | 0.130 | 0.112 | 0.300 | 0.157 | 0.144 |
| Total sample | 0.122 | 0.068 | 0.118 | 0.078 | 0.103 | 0.124 | 0.203 | 0.002 |
| Groups | CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan |
|---|---|---|---|---|
| % positive | % positive | % positive | % positive | |
| Infected patients Cases | 46.6% | 48.7% | 49.1% | 45.5% |
| Naïve Controls | 52.8% | 61.1% | 50.0% | 53.8% |
| aOR1 (96% CI) | 0.74(0.34-1.43) | 0.55(0.24-1.24) | 1.16(0.53-2.55) | 0.73(0.33-1.61) |
| p-value | 0.438 | 0.150 | 0.717 | 0.436 |
| Patients with sequelae Cases | 49.4% | 55.8% | 50.7% | 46.8.% |
| Patients without-sequelae Controls | 45.6% | 41.8% | 47.6% | 44.7% |
| aOR (95% CI) | 0.99(0.52-1.92) | 1.96 (1.00-3.85) | 1.05(0.55-2.02) | 1.16 (0.60-2.26) |
| p-value | 0.495 | 0.050 | 0.875 | 0.657 |
| Patients reinfection Cases | 44.9% | 47.4.0% | 43.6% | 43.6% |
| Patients no-reinfection Controls | 51.1% | 50.0% | 51.1% | 50.0% |
| aOR (95% CI) | 0.69 (0.35-1.38) | 0.81 (0.41-1.63) | 0.82(0.42-1.61) | 0.78( (0.40-1.54) |
| p-value | 0.292 | 0.565 | 0.568 | 0.471 |
| CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan | |
|---|---|---|---|---|
| Variables | aOR 95% CI | aOR 95% CI | aOR 95% CI | aOR 95% CI |
| Age1 | 1.01(0.99-1.03) | 1.01(0.99-1.03) | 0.99(0.97-1.01) | 0.98(0.97-1.01) |
| Male2 (%) | 1.18(0.67-2.08) | 1.14(0.65-1.99) | 1.06(0.11-1.86) | 1.02(0.59-1.80) |
| Time 3(months) | 0.90(0.83-0.99) | 1.01(0.93-1.10) | 0.98(0.91-1.07) | 1.06(0.97-1.15) |
| Body mass index 4 (kg) | 0.99(0.94-1.05) | 0.96(0.91-1.01) | 0.99(0.94-1.04) | 0.96(0.91-1.01) |
| Smoking5 | 0.67(0.35-1.26) | 0.53(0.28-1.01) | 0.83(0.45-1.57) | 0.94(0.50-1.76) |
| Alcohol consumption6 | 1.06(0.57-1.58) | 1.53(0.82-2.85) | 1.60(0.86-3.00) | 0.90(0.42-1.68) |
| Physical exercise7 | 0.71(0.41-1.23) | 0.83(0.48-1.43) | 0.89(0.42-1.53) | 0.84(0.49-1.43) |
| Chronic Disease8 | 1.13(0.62-2.07) | 0.90(0.43-1.90) | 0.87(0.42-1.76) | 1.72(0.78-3.79) |
| Vaccine anti-SARS-CoV-2 | ||||
| mRNA homologous vaccine9 | 1.38(0.73-2.61) | 1.33(0.70-2.50) | 1.20(0.64-2.25) | 0.87(0.47-1.64) |
| 3 doses versus9 :0,1,2 vaccine | 0.96(0.50-1.85) | 0.74(0.38-1.92) | 1.75(0.91-3.38) | 0.87(0.46-1.67) |
| Number vaccine doses9 | 1.16(0.73-1.83) | 1.11(0.71-1.73) | 1.72(1.05-2.82) | 1.18(0.76-1.86) |
| Humoral immunity | ||||
| Anti-S IgG10 AU/ml | 1.01(0.99-1.01) | 1.01(1.00-1.01) | 1.00(0.99-1.00) | 1.01(1.0-1.01) |
| Anti-N10 | 1.16(0.66-2.06) | 1.63(0.91-2.89) | 0.92(0.52-1.62) | 1.15(0.65-2.04) |
| Anti-N IgM10 | 2.88(1.11-7.43) | 2.10(0.84-5.27) | 2.31(0.85-5.31) | 2.27(0.93-5.57) |
| Anti-N IgG10 | 0.88(0.50-1.57) | 1,24(0.70-2.19) | 0.83(0.47-1.98) | 1.08(0.61-1.91) |
| Vitamin D11 | 1.02(0.99-1.06) | 0.99(0.96-1.02) | 1.01(0.97-1.04) | 1.01(0.98-1.05) |
| Vitamin D >29 ng/ml11 | 1.19(0.67-2.12) | 0.73(0.41-1.30) | 0.74(0.42-1.86) | 0.87(0.49-1.55) |
| ABO blood groups | ||||
| O12 | 0.76(0.44-1.31) | 0.77(0.45-1.32) | 0.90(0.53-1.54) | 0.76(0.44-1.31) |
| A12 | 1.62(0.94-2.77) | 1.37(0.81-2.34) | 1.50(0.88-2.56) | 1.72(1.00-2.95) |
| B12 | 0.66(0.25-2.76) | 1.64(0.25-1.74) | 0.45(0.16-1.23) | 0.26(0.08-0.82) |
| AB12 | 0.43(0.07-2.52) | 1.37(0.32-10.26) | 0.50(0.09-2.83) | 2.66(0.46-15.21) |
| Variables | Positive cellular immune response >0.0% |
Positive cellular immune response ≥0.10% |
|---|---|---|
| aOR 95% CI | aOR 95% CI | |
| Age (years) | 1.03 (1.01-1.05) CD8+ BA.2 | NS1 |
| Time (months) | 0.89 (0.81-0.99) CD8+BA.2 | 0.90(0.83-0.99) CD8+BA.2 |
| Alcohol consumption | 2.18 (1.20-4.33) CD8+ Wuhan | NS1 |
| Physical exercise | 0.44(0.21-0.99) CD4+Wuhan | NS1 |
| Number vaccine doses | 1.85(1.13-3.03) CD8+Wuhan | 1.72(1.05-2.82) CD8+ Wuhan |
| Anti-S IgG AU/ml | NS1 | 1.01(1.00-1.01) CD4+BA.2; CD4+Wuhan |
| Anti-N IgM | 5.51(1.92-25.5) CD8+BA.2 | 2.88(1.11-7.43) CD8+BA.2 |
| A blood group | 2.41(1.29-4.49) CD8+Wuhan | 1.72(1.00-2.95) CD4+Wuhan |
| B blood group | 0.37(0.14-0.95) CD8+Wuhan | 0.26(0.08-0.82) CD4+Wuhan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
