Submitted:
17 February 2024
Posted:
20 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Dynamic and Strength Calculations of the Modernized Wagon Model 61-4179 TVZ
3. Materials and Methods
3.1. Mechanical and Mathematical Modeling of the Stress-Strain State of the Wagon Body of Model 61-4179 TVZ


4. Results and Discussion
4.1. Calculation of Indicators of Dynamic Qualities of a Modernized Wagon Model 61-4179 TVZ




| No wagon on board | With wagon on board 1 version | With wagon on board 2-version |
| Mass - 57000.000 kg Center of mass (0.000, 0.000, 0.982) Moment of inertia (75600.1, 1984724.0, 1980614.0) |
Mass - 60000.000 kg Center of mass (0.594, 0.000, 1.083) Moment of inertia (139514.4, 2329749.0, 2303352.0) |
Mass - 60000.000 kg Center of mass (0.468, 0.000, 1.083) Moment of inertia (139514.4, 2235318.0, 2208920.0) |
| Conditions for completing Path - Path traveled since the start of the simulation……..……….………. Numerical method ……………………………………. Error ……………………………………………….…… Results recording step ………………………….….…. Calculation of Jacobian matrices ……………….…… List of variables ………………………………….……. Speed …………………………………………………... Path model ……………………………..……………… Creep force model ……………………………………. |
≥600 PARK 1E-6 0.005 yes yes 60 km/h Massless path FASTSIM |
|





| Assessment of wagon progress | Vertical dynamics coefficient of the wagon |
| Excellent Good Satisfactory Permissible Unsuitable |
0,1 0,15 0,20 0,35 0,70 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgements
Conflicts of Interest
References
- Musayev, J.; Abilkaiyr, Zh.; Kaiym, T.; Alpeisov, A.; Alimbetov, A.; Zhauyt, A. The interaction of the freight car and way taking into account deformation of assembled rails and sleepers. Vibroengineering Procedia. 2016, 8, 269-274.
- Musayev, J.; Solonenko, V.; Mahmetova, N.; Kvashnin, M.; Zhauyt, A.; Buzauova, T. Modeling of dynamic characteristics of freight car with optimized parameters of wedge-type shock absorber. Journal of Vibroengineering. 2017, 19, 2, 1197-1213. [CrossRef]
- Fomin, O.; Lovska, A.; Gerlici, J.; Fomina, Y.; Dižo, J.; Blatnický, M. The Dynamic and Strength Analysis of an Articulated Covered Wagon with the Circular Pipe Design. Symmetry 2021, 13, 1398, 1-20. [CrossRef]
- Varvaka, P.M. Finite Element Method; Higher School: Kiev, Ukraine, 1981. (In Russian).
- GOST 33211-2014. Freight Wagons. In Requirements for Durability and Dynamic Qualities; FGUP “STANDARTINFORM”: Moscow, Russia, 2016. (In Russian).
- Boronenko, Y.P.; Belgorodtseva, T.M.; Kukushkina, N.A. The choice of design solutions for articulated freight wagons for 1520 mm track gauge. Transp. Russ. Fed. 2013, 3, 3–9. (In Russian).
- Boronenko, Y.P.; Belgorodtseva, T.M.; Vasiliev, S.G.; Smirnov, N.V. Innovative solution—120-foot articulated flat wagon for transportation of three 40-foot large-tonnage containers. Transp. Russ. Fed. 2009, 5, 56–59. (In Russian).
- Bogomaz, G.I.; Mekhov, D.D.; Pilipchenko, O.P.; Chernomashentseva, Y.G. Loading of tank containers located on a railway flat wagon when impact into an automatic coupler. Dyn. Control Motion Mech. Syst. 1992, 1, 87–95. (In Russian).
- Zamecnik, J.; Jagelcak, J. Evaluation of wagon impact tests by various measuring equipment and influence of impacts on cargo stability. Communications 2015, 4, 21–27. [CrossRef]
- Fomin, O. Modern requirements to carrying systems of railway general-purpose gondola cars. Sci. Tech. J. Metall. Min. Ind. 2014, 5, 31–43.
- Fomin, O.V. Increase of the freight wagons ideality degree and prognostication of their evolution stages. Sci. Bull. Natl. Min.Univ. 2015, 2, 68–76.
- Fomin, O.; Lovska, A. Improvements in passenger car body for higher stability of train ferry. Eng. Sci. Technol. Int. J. 2020, 23, 1455–1465. [CrossRef]
- Lovska, A.; Fomin, O. A new fastener to ensure the reliability of a passenger coach car body on a railway ferry. Acta Polytech. 2020, 60, 478–485. [CrossRef]
- Articulated Wagon as a Way to Improve Transport Efficiency. Available online: https://www.uniwagon.com/multimedia/media_about_us/sochlenennyj-vagon-kak-sposob-povysit-effektivnost-perevozok/ (accessed on 18 July 2021). (In Russian).
- Xu, L.; Chen, X.; Li, X.; He, X. Development of a railway wagon-track interaction model: Case studies on excited tracks. Mech.Syst. Signal Process. 2018, 100, 877–898. [CrossRef]
- Fomin, O.; Gorbunov, M.; Lovska, A.; Gerlici, J.; Kravchenko, K. Dynamics and Strength of Circular Tube Open Wagons with Aluminum Foam Filled Center Sills. Materials 2021, 14, 1915, 1-12. [CrossRef]
- Universal Mechanism FEM. Available online: https://www.universalmechanism.com/en/plugins/catalogue/index.php?id=6.
- Musayev, J.; Zhauyt, A.; Ismagulova, S.; Yussupova, S. Theory and Practice of Determining the Dynamic Performance of Traction Rolling Stock. Appl. Sci. 2023, 13, 12455, 1-28. [CrossRef]
- Nikolaev, V.; Musayev, J.; Zhauyt, A.; Makhanova, A.; Mukatanova, Zh.; Kabylkarim, A.; Kozhakmetov, E. Method for determining area of parametric resonances of wheelset of railway vehicle. 22th International Scientific Conference Engineering for rural development, 24-26.05.2023, Jelgava, Latvia, 2023, 22, 29-37.
- Musayev, J.; Zhauyt, A.; Bahtiyar, B.; Kibitova, R.; Kazhet, K.; Kussyov, A.; Kabylkarim, A. Analysis of dynamic instability of the wheel set of a railway vehicle using the method of generalized hill determinants. Vibroengineering procedia, 2022, 41, 186-190. [CrossRef]
- Karassayeva, A.; Adilkhanov, Y.; Sekerova, Sh.; Japayev, S.; Zhauyt, A.; Zhunisbekov, S.; Tergemes. K. Analysis of dynamic properties and movement safety of bogies with diagonal links and rubber-metal vibration absorber between the rubbing elements of freight cars. Journal of Machine Engineering, 2021, 21, 3, 124-143. [CrossRef]
- Solonenko, V.; Mahmetova, N.; Musayev, J.; Kvashnin, M.; Alpeisov, A.; Zhauyt, A. Some aspects of the experimental assessment of dynamic behavior of the railway track. Journal of theoretical and applied mechanics, 2017, 55, 2, 421-432. [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
