Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Exploring the Influence of Morphology on Bipolaron-Polaron Ratios and Conductivity in Polypyrrole in the Presence of Surfactants

Version 1 : Received: 13 February 2024 / Approved: 13 February 2024 / Online: 13 February 2024 (12:45:33 CET)

A peer-reviewed article of this Preprint also exists.

Samwang, T.; Watanabe, N.M.; Okamoto, Y.; Umakoshi, H. Exploring the Influence of Morphology on Bipolaron–Polaron Ratios and Conductivity in Polypyrrole in the Presence of Surfactants. Molecules 2024, 29, 1197. Samwang, T.; Watanabe, N.M.; Okamoto, Y.; Umakoshi, H. Exploring the Influence of Morphology on Bipolaron–Polaron Ratios and Conductivity in Polypyrrole in the Presence of Surfactants. Molecules 2024, 29, 1197.

Abstract

This research aims to deepen the understanding of the relationship between conductivity and morphology in polypyrrole (PPy) via a comparison of the bipolaron to polaron ratios with a focus on the C-H deformation area. PPy samples were synthesized with different surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and tween 80 (TW). The study revealed that SDS significantly altered the bipolaron and polaron in C-H deformation region and showed higher conductivity than other surfactants. Notably, the morphological shifts to a sheet-like structure when using ammonium sulfate (APS) contrasted with the particle-like form observed with ferric chloride (FeCl3). These results showed that if the oxidant changed, the bi-polaron and polaron ratios in C-H deformation were unrelated to PPy morphology. However, this work showed a consistent relationship between SDS use, the bipolaron and polaron ratios in the C-H deformation, and the conductivity properties. Moreover, the natural positive charge of PPy and negatively charged SDS molecules may lead to an electrostatic interaction between PPy and SDS. This work assumes that this interaction might cause the transformation of polaron to bipolaron in the C-H deformation region, resulting in improved conductivity of PPy. This work offers more support for the future investigation of PPy characteristics.

Keywords

polypyrrole; surfactant; sodium dodecyl sulfate; bipolaron and polaron ratio; C-H deformation; Raman spectra

Subject

Engineering, Chemical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.