Submitted:
16 January 2024
Posted:
18 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Cannabis sativa
2.1. Cannabinoids
2.1.1. Phytocannabinoids
2.1.2. Synthetic Cannabinoids
2.1.3. Endocannabinoids
2.2. The Endocannabinoid System
2.2.1. The Endocannabinoid System of the Skin
2.2.2. Therapeutic Potential of Cannabinoids in Dermatology
3. Acne vulgaris
3.1. Pathogenesis
3.2. Current Treatments for Acne
3.2.1. Topical Therapy
3.2.1.1. Retinoids
3.2.1.2. Antimicrobials
3.2.2. Systemic Therapy
3.2.2.1. Oral antibiotics
3.2.2.2. Hormonal therapies
3.2.2.3. Isotretinoin
3.3. Cannabinoids as Therapeutic Agents for Acne Treatment – A New Alternative
3.3.1. Preclinical Findings on the Effect of Cannabinoids in Acne
3.3.2. Clinical Trials with Cannabinoids
3.4. Legislation on Cannabis-Derived Ingredients Use
3.5. Available Therapeutics
4. Conclusions
References
- Martins, A.M.; Gomes, A.L.; Boas, I.V.; Marto, J.; Ribeiro, H.M. Cannabis-Based Products for the Treatment of Skin Inflammatory Diseases: A Timely Review. Pharmaceuticals. 2022, 15. [Google Scholar] [CrossRef] [PubMed]
- Hourfane, S.; Mechqoq, H.; Bekkali, A.Y.; Rocha, J.M.; El Aouad, N. A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. Plants. 2023, 12, 1245. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Merlin, M. Cannabis: Evolution and Ethnobotany; University of California Press: Berkeley, CA, USA, 2016. [Google Scholar]
- Gedik, G.; Avinc, O. Hemp fiber as a sustainable raw material source for textile industry: Can we use its potential for more eco-friendly production? In Sustainability in the Textile and Apparel Industries; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–109. [Google Scholar] [CrossRef]
- Gomez, F.P.; Hu, J.; Clarke, M.A. Cannabis as a Feedstock for the Production of Chemicals, Fuels, and Materials: A Review of Relevant Studies To Date. Energy Fuels 2021, 35, 5538–5557. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef] [PubMed]
- Eichenfield, D.Z.; Sprague, J.; Eichenfield, L.F. Management of Acne Vulgaris: A Review. JAMA 2021, 326, 2055–2067. [Google Scholar] [CrossRef]
- Heng, A.H.S.; Chew, F.T. Systematic review of the epidemiology of acne vulgaris. Sci. Rep. 2020, 10, 5754. [Google Scholar] [CrossRef]
- Samuels, D.V.; Rosenthal, R.; Lin, R.; Chaudhari, S.; Natsuaki, M.N. Acne vulgaris and risk of depression and anxiety: A meta-analytic review. J. Am. Acad. Dermatol. 2020, 83, 532–541. [Google Scholar] [CrossRef]
- Leung, A.K.; Barankin, B.; Lam, J.M.; Leong, K.F.; Hon, K.L. Dermatology: How to manage acne vulgaris. Drugs Context 2021, 10, 1–18. [Google Scholar] [CrossRef]
- Lehmann, H.P.; Robinson, K.A.; Andrews, J.S.; Holloway, V.; Goodman, S.N. Acne therapy: A methodologic review. J. Am. Acad. Dermatol. 2002, 47, 231–240. [Google Scholar] [CrossRef]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; et al. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol [Internet]. 2018, 227, 300–315. [Google Scholar] [CrossRef]
- Stevens, C.J.; Murphy, C.; Roberts, R.; Lucas, L.; Silva, F.; Fuller, D.Q. Between China and South Asia: a middle Asian corridor of crop dispersal and agricultural innovation in the bronze age. Holocene 2016, 26, 1541–1555. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.E.; Li, X.; Zhao, Y.X.; Ferguson, D.K.; Hueber, F.; Bera, S.; Wang, Y.F.; Zhao, L.C.; Liu, C.J.; Li, C.S. A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J. Ethnopharmacol. 2006, 108, 414–422. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, N.A.; Romão, W. Cannabis – A state of the art about the millenary plant: Part I. Forensic Chem. 2023, 32. [Google Scholar] [CrossRef]
- Lal, S.; Shekher, A.; Puneet; Narula, A.S.; Abrahamse, H.; Gupta, S.C. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol Res [Internet]. 2021, 163, 105302. [Google Scholar] [CrossRef] [PubMed]
- Sivesind, T.E.; Maghfour, J.; Rietcheck, H.; Kamel, K.; Malik, A.S.; Dellavalle, R.P. Cannabinoids for the Treatment of Dermatologic Conditions. JID Innov [Internet]. 2022, 2, 100095. [Google Scholar] [CrossRef] [PubMed]
- Eagelston, L.R.M.; Yazd, N.K.K.; Patel, R.R.; Flaten, H.K.; Dunnick, C.A.; Dellavalle, R.P. Cannabinoids in dermatology: A scoping review. Dermatol Online J. 2018, 24. [Google Scholar] [CrossRef]
- Conceição, D.M.A. d. L. Aplicações Terapêuticas da Canábis e Canabinoides. Universidade de Lisboa; 2021.
- Salami, S.A.; Martinelli, F.; Giovino, A.; Bachari, A.; Arad, N.; Mantri, N. It Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets. Molecules. 2020, 25, 1–24. [Google Scholar] [CrossRef]
- Touw, M. The religious and medicinal uses of Cannabis in China, India and Tibet. J Psychoactive Drugs. 1981, 13, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Zuardi, A.W. History of cannabis as a medicine: A review. Rev Bras Psiquiatr. 2006, 28, 153–157. [Google Scholar] [CrossRef]
- Li, H.L. The origin and use of cannabis in eastern asia linguistic-cultural implications. Econ Bot. 1974, 28, 293–301. [Google Scholar] [CrossRef]
- Helcman, M.; Karel, Š. Biological activity of Cannabis compounds: a modern approach to the therapy of multiple diseases. Phytochemistry Reviews. 2022, 0123456789, 429–470. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. Prog. Chem. Org. Nat. Prod. 2017, 103, 1–36. [CrossRef]
- Bruni, N.; Della Pepa, C.; Oliaro-Bosso, S.; Pessione, E.; Gastaldi, D.; Dosio, F. Cannabinoid delivery systems for pain and inflammation treatment. Molecules 2018, 23, 2478. [Google Scholar] [CrossRef]
- Small, E. Cannabis: A Complete Guide, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants 2019, 9, 21. [Google Scholar] [CrossRef]
- Oláh, A.; Bíró, T. Targeting Cutaneous cannabinoid signaling in inflammation—A “high”-way to heal? EBioMedicine 2017, 16, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.N.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J.F. The biosynthesis of the cannabinoids. J. Cannabis Res. 2021, 3, 7. [Google Scholar] [CrossRef]
- Taura, F.; Sirikantaramas, S.; Shoyama, Y.; Yoshikai, K.; Shoyama, Y.; Morimoto, S. Cannabidiolic-acid synthase, the chemotypedetermining enzyme in the fiber-type Cannabis sativa. FEBS Lett. 2007, 581, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Taura, F.; Morimoto, S.; Shoyama, Y. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 1996, 271, 17411–17416. [Google Scholar] [CrossRef]
- Kupczyk, P.; Reich, A.; Szepietowski, J.C. Cannabinoid system in the skin—A possible target for future therapies in dermatology. Exp. Dermatol. 2009, 18, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Baswan, S.M.; Klosner, A.E.; Glynn, K.; Rajgopal, A.; Malik, K.; Yim, S.; Stern, N. Therapeutic potential of cannabidiol (CBD) for skin health and disorders. Clin. Cosmet. Investig. Dermatol. 2020, 13, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Cintosun, A.; Lara-Corrales, I.; Pope, E. Mechanisms of cannabinoids and potential applicability to skin diseases. Clin. Drug Investig. 2020, 40, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Rosado, T.; Soares, S.; Simão, A.Y.; Caramelo, D.; Luís, Â.; Fernández, N.; Barroso, M.; Gallardo, E.; Duarte, A.P. Cannabis, and its secondary metabolites: Their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines 2019, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Trusler, A.R.; Clark, A.K.; Sivamani, R.K.; Shi, V.Y. The endocannabinoid system and its role in eczematous dermatoses. Dermatitis 2017, 28, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Chiurchiù, V.; Rapino, C.; Talamonti, E.; Leuti, A.; Lanuti, M.; Gueniche, A.; Jourdain, R.; Breton, L.; Maccarrone, M. Anandamide suppresses proinflammatory T cell responses in vitro through type-1 cannabinoid receptor-mediated mTOR inhibition in human keratinocytes. J. Immunol. 2016, 197, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990, 346, 561–564. [Google Scholar] [CrossRef]
- Moro, O.; Lameh, J.; Högger, P.; Sadee, W. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. Journal of Biological Chemistry 1993, 268, 22273–22276. [Google Scholar] [CrossRef]
- Nikan, M.; Nabavi, S.M.; Manayi, A. Ligands for cannabinoid receptors, promising anticancer agents. Life Sci. 2016, 146, 124–130. [Google Scholar] [CrossRef]
- Basu, S.; Dittel, B.N. Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol Res. 2011, 51, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, B.; Costa, M.; Almada, M.; Soares, A.; Correia-da-Silva, G.; Teixeira, N. O Sistema Endocanabinóide – uma perspetiva terapêutica. Acta Farm Port. 2013, 2, 37–44. [Google Scholar]
- Osei-Hyiaman, D.; DePetrillo, M.; Pacher, P.; Liu, J.; Radaeva, S.; Batkai, S.; et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest. 2005, 115, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Maresz, K.; Pryce, G.; Ponomarev, E.D.; Marsicano, G.; Croxford, J.L.; Shriver, L.P.; et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB (1) on neurons and CB (2) on autoreactive T cells. Nat Med. 2007, 13, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, T.; Lin, M.J.; Dubin, D.; Khorasani, H. The potential role of cannabinoids in dermatology. J. Dermatolog. Treat. 2020, 31, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Cintosun, A.; Lara-Corrales, I.; Pope, E. Mechanisms of cannabinoids and potential applicability to skin diseases. Clin. Drug Investig. 2020, 40, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Ständer, S.; Schmelz, M.; Metze, D.; Luger, T.; Rukwied, R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J. Dermatol. Sci. 2005, 38, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Ramer, R.; Hinz, B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells. 2022, 11, 4102. [Google Scholar] [CrossRef]
- Fujii, N.; Kenny, G.P.; Amano, T.; Honda, Y.; Kondo, N.; Nishiyasu, T. Evidence for TRPV4 channel induced skin vasodilatation through NOS, COX, and KCa channel mechanisms with no effect on sweat rate in humans. Eur. J. Pharmacol. 2019, 858, 172462. [Google Scholar] [CrossRef] [PubMed]
- Borbíró, I.; Lisztes, E.; Tóth, B.I.; Czifra, G.; Oláh, A.; Szöllosi, A.G.; Szentandrássy, N.; Nánási, P.P.; Péter, Z.; Paus, R.; et al. Activation of transient receptor potential vanilloid-3 inhibits human hair growth. J. Investig. Dermatol. 2011, 131, 1605–1614. [Google Scholar] [CrossRef]
- Billoni, N.; Buan, B.; Gautier, B.; Collin, C.; Gaillard, O.; Mahé, Y.F.; Bernard, B.A. Expression of peroxisome proliferator activated receptors (PPARs) in human hair follicles and PPAR alpha involvement in hair growth. Acta Derm. Venereol. 2000, 80, 329–334. [Google Scholar] [CrossRef]
- Westergaard, M.; Henningsen, J.; Svendsen, M.L.; Johansen, C.; Jensen, U.B.; Schrøder, H.D.; Kratchmarova, I.; Berge, R.K.; Iversen, L.; Bolund, L.; et al. Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid. J. Investig. Dermatol. 2001, 116, 702–712. [Google Scholar] [CrossRef]
- Schmuth, M.; Moosbrugger-Martinz, V.; Blunder, S.; Dubrac, S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim. Biophys. Acta 2014, 1841, 463–473. [Google Scholar] [CrossRef]
- Bíró, T.; Tóth, B.I.; Haskó, G.; Paus, R.; Pacher, P. The endocannabinoid system of the skin in health and disease: Novel perspectives and therapeutic opportunities. Trends Pharmacol. Sci. 2009, 30, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Millán, E.; García, V.; Appendino, G.; Demesa, J. The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol [Internet]. 2018, 157, 122–133. [Google Scholar] [CrossRef]
- Kasatkina, L.A.; Rittchen, S.; Sturm, E.M. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci. 2021, 22, 5431. [Google Scholar] [CrossRef]
- Rahaman, O.; Ganguly, D. Endocannabinoids in immune regulation and immunopathologies. Immunology. 2021, 164, 242–252. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Melck, D.; Bisogno, T.; Di Marzo, V. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chem. Phys. Lipids. 2000, 108, 191–209. [Google Scholar] [CrossRef]
- Kaplan, B.L.; Ouyang, Y.; Herring, A.; Yea, S.S.; Razdan, R.; Kaminski, N.E. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2′-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide. Toxicol. Appl. Pharmacol. 2005, 205, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Rockwell, C.E.; Kaminski, N.E. A cyclooxygenase metabolite of anandamide causes inhibition of interleukin-2 secretion in murine splenocytes. J. Pharmacol. Exp. Ther. 2004, 311, 683–690. [Google Scholar] [CrossRef]
- Tóth, K.F.; Ádám, D.; Bíró, T.; Oláh, A. Cannabinoid signaling in the skin: Therapeutic potential of the “C(ut)annabinoid” system. Molecules 2019, 24, 918. [Google Scholar] [CrossRef]
- Nickles, M.A.; Lio, P.A. Cannabinoids in dermatology: Hope or hype? Cannabis Cannabinoid Res. 2020, 5, 279–282. [Google Scholar] [CrossRef]
- Heng, A.H.S.; Chew, F.T. Systematic review of the epidemiology of acne vulgaris. Scientific Reports. 2020, 10, 5754. [Google Scholar] [CrossRef] [PubMed]
- Bhate, K.; Williams, H.C. Epidemiology of acne vulgaris. Br J Dermatol. 168, 474–485. [CrossRef] [PubMed]
- Janani, S.; Sureshkumar, R. A Comprehensive Review on Acne, its Pathogenesis, Treatment, In-Vitro and In-Vivo Models for Induction and Evaluation Methods. Int J Pharm Sci 2019, 10, 3155–3177. [Google Scholar] [CrossRef]
- Šniepienė, G.; Jankauskienė, R. ACNE PREVALENCE, AWARENESS AND PERCEPTION AMONG YOUNG POPULATION. Proceedings of CBU in Medicine and Pharmacy 2020, 1, 103–109. [Google Scholar] [CrossRef]
- Toyoda, M.; Morohashi, M. Pathogenesis of acne. Med Electron Microsc. 2001, 34, 29–40. [Google Scholar] [CrossRef]
- Peyravian, N.; Deo, S.; Daunert, S.; Jimenez, J.J. The Anti-Inflammatory Effects of Cannabidiol (CBD) on Acne. J Inflamm Res. 2022, 15, 2795–2801. [Google Scholar] [CrossRef] [PubMed]
- Dapkevicius, I.; Romualdo, V.; Marques, A.C.; Lopes, C.M.; Amaral, M.H. Acne Vulgaris Topical Therapies: Application of Probiotics as a New Prevention Strategy. Cosmetics 2023, 10, 77. [Google Scholar] [CrossRef]
- Suva, M. A Brief Review on Acne Vulgaris: Pathogenesis, Diagnosis and Treatment. Research & Reviews: Journal of Pharmacology. 2015, 4, 1–12. [Google Scholar]
- Zaenglein, A.L. Acne Vulgaris. N Engl J Med. 2018, 379, 1343–1352. [Google Scholar] [CrossRef]
- Tuchayi, S.M.; Makrantonaki, E.; Ganceviciene, R.; Dessinioti, C.; Feldman, S.R.; Zouboulis, C.C. Acne vulgaris. Nat Publ Gr [Internet]. 2015, 1, 1–20. [Google Scholar] [CrossRef]
- Lambrechts, I.A.; Canha M.N.D.; Lall, N. Exploiting Medicinal Plants as Possible Treatments for Acne Vulgaris [Internet]. Medicinal Plants for Holistic Health and Well-Being. Elsevier Inc.; 2018. 117–143. [CrossRef]
- Group, W.; Zaenglein, A.L.; Pathy, A.L. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol [Internet]. 2016, 74, 945–973.e33. [Google Scholar] [CrossRef]
- Sultana, T. Evaluation of Severity in Patients of Acne Vulgaris by Global Acne Grading System in Bangladesh. Clinical Pathology & Research Journal. 2017, 1. [Google Scholar] [CrossRef]
- Strauss, J.S.; Krowchuk, D.P.; Leyden, J.J.; et al. Guidelines of care for acne vulgaris management. J Am Acad Dermatol 2007, 56, 651–663. [Google Scholar] [CrossRef]
- Gollnick, H.; Cunliffe, W.; Berson, D.; et al. Management of acne: a report from a global alliance to improve outcomes in acne. J Am Acad Dermatol 2003, 49 (Suppl. 1), S1–S37. [Google Scholar] [CrossRef]
- Kraft, J.; Freiman, A. Management of acne. CMAJ. 2011, 183, E430–E435. [Google Scholar] [CrossRef]
- Leyden, J.; Jonathan, L.S. Why Topical Retinoids Are Mainstay of Therapy for Acne. Dermatol Ther (Heidelb). 2017, 7, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.E.; Bergstresser, P.R.; Whiting, D.A.; et al. Topical clindamycin therapy for acne vulgaris. Arch Dermatol. 1981, 117, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.L.; Belknap, B.S. Topical erythromycin solution in acne. J Am Acad Dermatol. 1980, 3, 478–482. [Google Scholar] [CrossRef]
- Lesher, J.L.; Chalker, D.K.; Smith, J.G.; et al. An evaluation of a 2% erythromycin ointment in the topical therapy of acne vulgaris. J Am Acad Dermatol. 1985, 12, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Crumley, A.F. Topical erythromycin vs blank vehicle in a multiclinic acne study. Arch Dermatol. 1981, 117, 551–553. [Google Scholar] [CrossRef]
- Samuelson, J.S. An accurate photographic method for grading acne: initial use in a double-blind clinical comparison of minocycline and tetracycline. J Am Acad Dermatol 1985, 12, 461–467. [Google Scholar] [CrossRef]
- Cohen, G.; Jakus, J.; Baroud, S.; Gvirtz, R.; Rozenblat, S. Development of an Effective Acne Treatment Based on CBD and Herbal Extracts: Preliminary In Vitro, Ex Vivo, and Clinical Evaluation. Evid Based Complement Alternat Med. 2023, 2023, 4474255. [Google Scholar] [CrossRef]
- Zaenglein, A.L. Acne Vulgaris. N Engl J Med. 2018, 379, 1343–1352. [Google Scholar] [CrossRef]
- Habeshian, K.A.; Cohen, B.A. Current issues in the treatment of acne vulgaris. Pediatrics. 2020, 145 (Suppl. 2), S225–S230. [Google Scholar] [CrossRef]
- Moradi Tuchayi, S.; Alexander, T.; Nadkarni, A.; et al. Interventions to increase adherence to acne treatment. Patient Prefer Adherence. 2016, 10, 2091–2096. [Google Scholar] [CrossRef]
- Oláh, A.; Tóth, B.I.; Borbíró, I.; Sugawara, K.; Szöllõsi, A.G.; Czifra, G.; Pál, B.; Ambrus, L.; Kloepper, J.; Camera, E.; Ludovici, M.; Picardo, M.; Voets, T.; Zouboulis, C.C.; Paus, R.; Bíró, T. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J Clin Invest. 2014, 124, 3713–3724. [Google Scholar] [CrossRef] [PubMed]
- Tóth, B.I.; et al. Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology. J Invest Dermatol. 2009, 129, 329–339. [Google Scholar] [CrossRef]
- Shi, H.; Halvorsen, Y.D.; Ellis, P.N.; Wilkison, W.O.; Zemel, M.B. Role of intracellular calcium in human adipocyte differentiation. Physiol Genomics. 2000, 3, 75–82. [Google Scholar] [CrossRef]
- Zhang, L.L.; et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res. 2007, 100, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Oláh, A.; Ambrus, L.; Nicolussi, S.; Gertsch, J.; Tubak, V.; Kemény, L.; Soeberdt, M.; Abels, C.; Bíró, T. Inhibition of fatty acid amide hydrolase exerts cutaneous anti-inflammatory effects both in vitro and in vivo. Exp. Dermatol. 2016, 25, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Tubaro, A.; Giangaspero, A.; Sosa, S.; Negri, R.; Grassi, G.; Casano, S.; et al. Fitoterapia Comparative topical anti-in fl ammatory activity of cannabinoids and cannabivarins. Fitoterapia [Internet]. 2010, 81, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Lee, M.Y. The ameliorative effect of hemp seed hexane extracts on the Propionibacterium acnes-induced inflammation and lipogenesis in sebocytes. PLoS One. 2018, 13, e0202933. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Jin, S.; Fan, X.; Cao, K.; Liu, Y.; Wang, X.; Ma, Y.; Xiang, L. Cannabidiol Inhibits Inflammation Induced by Cutibacterium acnes-Derived Extracellular Vesicles via Activation of CB2 Receptor in Keratinocytes. J Inflamm Res. 2022, 15, 4573–4583. [Google Scholar] [CrossRef]
- Perez, E.; Fernandez, J.R.; Fitzgerald, C.; Rouzard, K.; Tamura, M.; Savile, C. In Vitro and Clinical Evaluation of Cannabigerol (CBG) Produced via Yeast Biosynthesis: A Cannabinoid with a Broad Range of Anti-Inflammatory and Skin Health-Boosting Properties. Molecules. 2022, 27, 491. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; et al. The antimicrobial potential of cannabidiol. Commun Biol [Internet]. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Akhtar, N. The safety and efficacy of 3% Cannabis seeds extract cream for reduction of human cheek skin sebum and erythema content. Pak. J. Pharm. Sci. 2015, 28, 1389–1395. [Google Scholar]
- Botanix Pharmaceuticals. ASX/Media Release: BTX 1503 Acne Phase 2 Study Results Presentation; Botanix Pharmaceuticals: Philadelphia, PA, USA; Syndey, Australia, 2019. [Google Scholar]
- Huestis, M.A. Pharmacokinetics and metabolism of the plant cannabinoids, ∆9-tetrahydrocannibinol, cannabidiol and cannabinol. In Cannabinoids; Pertwee, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 657–690. [Google Scholar] [CrossRef]
- Grotenhermen, F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. [Google Scholar] [CrossRef]
- Lucas, C.J.; Galettis, P.; Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef]
- Pacifici, R.; Marchei, E.; Salvatore, F.; Guandalini, L.; Busardò, F.P.; Pichini, S. Evaluation of long-term stability of cannabinoids in standardized preparations of cannabis flowering tops and cannabis oil by ultra-high-performance liquid chromatography tandem mass spectrometry. Clin. Chem. Lab. Med. 2018, 56, 94–96. [Google Scholar] [CrossRef]
- Bruni, N.; Della Pepa, C.; Oliaro-Bosso, S.; Pessione, E.; Gastaldi, D.; Dosio, F. Cannabinoid delivery systems for pain and inflammation treatment. Molecules 2018, 23, 2478. [Google Scholar] [CrossRef]
- EMCDDA. Cannabis Legislation in Europe. An Overview; European Monitoring Centre for Drugs and Drug Addiction: Lisbon, Portugal, 2018; pp. 1–32. Available online: https://www.emcdda.europa.eu/system/files/publications/4135/TD0217210ENN.pdf (accessed on 8 August 2023).
- UNODC. The International Drug Control Conventions; United Nations Office on Drugs and Crime: New York, NY, USA, 2013; pp. 1–168. Available online: https://www.unodc.org/documents/commissions/CND/Int_Drug_Control_Conventions/Ebook/The_International_Drug_Control_Conventions_E.pdf (accessed on 8 August 2023).
- EMCDDA. Developments in the European Cannabis Market; European Monitoring Centre for Drugs and Drug Addiction: Lisbon, Portugal, 2019; pp. 1–19. Available online: https://www.emcdda.europa.eu/publications/emcdda-papers/developments-in the-european-cannabis-market_en (accessed on 8 August 2023).
- WHO. The WHO Expert Committee on Drug Dependence (ECDD); World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/groups/who-expert-committee-on-drug-dependence (accessed on 8 August 2023).
- WHO. Cannabidiol (CBD) Critical Review Report; WHO-ECDD: Geneva, Switzerland, 2018; Available online: https://www.who.int/medicines/access/controlled-substances/CannabidiolCriticalReview.pdf (accessed on 8 August 2023).
- Brunetti, P.; Lo Faro, A.F.; Pirani, F.; Berretta, P.; Pacifici, R.; Pichini, S.; Busardò, F.P. Pharmacology and legal status of cannabidiol. Ann Ist Super Sanita. 2020, 56, 285–291. [Google Scholar] [CrossRef]
- Coelho, M.P.; Duarte, P.; Calado, M.; Almeida, A.J.; Reis, C.P.; Gaspar, M.M. The current role of cannabis and cannabinoids in health: A comprehensive review of their therapeutic potential. Life Sci. 2023, 329, 121838. [Google Scholar] [CrossRef]
| Cannabinoid Type | Members of class |
| Phytocannabinoids | Δ (9)-tetrahydrocannabinol (THC) Cannabidiol (CBD) Cannabidiolicacid (CBDA) Cannabigerol (CBG) Cannabichromene (CBC) Cannabinol (CBN) Cannabidivarin (CBDV) Cannabigerovarin (CBGV) Δ (9)-tetrahydrocannabivarin (THCV) Tetrahydrocannibinolic acid (THCA) |
| Synthetic cannabinoids | WIN-55,212-2 JWH-133 (R)-methanandamide (MET) CP 55,940 Dronabinol Nabilone |
| Endocannabinoids | 2-arachidonoylglycerol (2-AG) Anandamide (AEA) N-arachadonoyl dopamine Homo linoleoyl ethanolamide (HEA) Docosa tetraenyl ethanolamide (DEA) Virodhamine Noladin ether |
| Treatment options | ||
| Severity - clinical findings | First line | Second line |
|
Mild Comedonal |
Topical retinoid | Alternative topical retinoid Salicylic acid washes |
|
Papular/pustular |
Topical retinoid Topical antimicrobial:
|
Alternative topical retinoid plus, alternative topical antimicrobial Salicylic acid washes |
|
Moderate Papular/pustular |
Oral antibiotics:
|
Alternative oral antibiotic Alternative topical retinoid Benzoyl peroxide |
| Nodular | Oral antibiotic Topical retinoid ± benzoyl peroxide |
Oral isotretinoin Alternative oral antibiotic Alternative topical retinoid Benzoyl peroxide |
| Severe | Oral isotretinoin | High-dose oral antibiotic Topical retinoid (also maintenance therapy) Benzoyl peroxide |
| Brand Name | Active Ingredient | Description | Indications | Dosage Forms | Countries Approved |
| Sativex® | Nabiximols | Plant based: THC/CBD (~1:1) | Spasticity and symptomatic relief of neuropathic pain in multiple sclerosis | Oro-mucosal spray | UK, Norway, other EU countries, Canada |
| Marinol® Syndros® |
Dronabinol | Synthetic THC | Treatment of nausea and vomiting due to chemotherapy, anorexia due to AIDS | Gelatine capsules (Marinol®), oral solution (Syndros®) | USA, EU countries, Canada, others |
| Cesamet® Canemes® | Nabilone | Synthetic cannabinoid similar to THC | Treatment of nausea and vomiting due to chemotherapy in cancer patients; chronic pain management | Capsules | USA, Canada, some EU countries |
| Epidyolex® (EU) Epidiolex® (USA) |
CBD | Purified CBD | Seizures associated with Lennox–Gastaut syndrome and Dravet syndrome | Oral solution | EU, USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
