Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Enhanced Reduction of Ferredoxin in PGR5-deficient mutant of Arabidopsis thaliana Stimulated Ferredoxin-dependent Cyclic Electron Flow around Photosystem I

Version 1 : Received: 9 January 2024 / Approved: 17 January 2024 / Online: 17 January 2024 (10:10:41 CET)

A peer-reviewed article of this Preprint also exists.

Maekawa, S.; Ohnishi, M.; Wada, S.; Ifuku, K.; Miyake, C. Enhanced Reduction of Ferredoxin in PGR5-Deficient Mutant of Arabidopsis thaliana Stimulated Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I. Int. J. Mol. Sci. 2024, 25, 2677. Maekawa, S.; Ohnishi, M.; Wada, S.; Ifuku, K.; Miyake, C. Enhanced Reduction of Ferredoxin in PGR5-Deficient Mutant of Arabidopsis thaliana Stimulated Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I. Int. J. Mol. Sci. 2024, 25, 2677.

Abstract

The molecular entity that catalyzes ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (PSI) (Fd-CEF) remains unknown. To elucidate the in vivo molecular mechanism of Fd-CEF, the evaluation of Fd reduction‒oxidation kinetics is a good indicator of Fd-CEF activity. Recent research showed that the expression of Fd-CEF activity requires the oxidation of plastoquinone, and furthermore, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In the present research, the effect of reduced Fd on Fd-CEF activity was analyzed by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed to be the mediator of Fd-CEF, and pgr5hope1 showed the same CO2 assimilation rate and the same reduction‒oxidation level of PQ as WT, but P700 oxidation with Fd was highly reduced, unlike WT. As expected, the activity of Fd-CEF was enhanced in pgr5hope1 compared to the wild type, and its activity was also enhanced with the oxidation of PQ by the increase in the CO2 assimilation rate. The present in vivo research clearly shows that the expression of Fd-CEF activity requires reduced Fd in addition to oxidized PQ, and PGR5 does not catalyze Fd-CEF.

Keywords

cyclic electron flow; ferredoxin; NADH dehydrogenase; pgr5; photosynthesis; photosystem I

Subject

Biology and Life Sciences, Plant Sciences

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.