Submitted:
04 January 2024
Posted:
04 January 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Geography and mining and smelting history of the study area
2.2. Soil sampling and element analysis
2.3. Element analysis
2.4. Geochemical normalization
2.5. Empirical cumulative distribution function
2.6. Software for data processing
3. Results
3.1. PTEs concentration in soils
| amphibolites | basaltoids | metagranitoids | metapelites | peat | fluvial sediments |
granitoids | volcanic | all rocks | FOREGS | ||
| Fláje Area | As TOP | 418 | 63 | 104 | 72 | 46 | x | 34 | 54 | 62 | 7 |
| As BOT | 134 | 62 | 92 | 54 | 16 | x | 27 | 47 | 52 | 6 | |
| Cu TOP | 27 | 19 | 20 | 23 | 36 | x | 17 | 13 | 20 | 13 | |
| Cu BOT | 25 | 19 | 16 | 23 | 24 | x | 16 | 10 | 19 | 14 | |
| Pb TOP | 157 | 168 | 173 | 165 | 218 | x | 110 | 155 | 141 | 23 | |
| PB BOT | 113 | 126 | 117 | 112 | 109 | x | 84 | 119 | 109 | 17 | |
| Zn TOP | 84 | 98 | 72 | 98 | 81 | x | 61 | 53 | 72 | 52 | |
| Zn BOT | 83 | 97 | 65 | 90 | 83 | x | 66 | 47 | 77 | 47 | |
| UCC | |||||||||||
| Kovářská Area | As TOP | 74 | 101 | 43 | 59 | 58 | 57 | x | x | 58 | 4.8 |
| As BOT | 47 | 89 | 19 | 40 | 36 | 28 | x | x | 36 | ||
| Cu TOP | 28 | 28 | 12 | 26 | 29 | 25 | x | x | 25 | 28 | |
| Cu BOT | 30 | 23 | 11 | 23 | 25 | 16 | x | x | 22 | ||
| Pb TOP | 114 | 205 | 94 | 94 | 135 | 100 | x | x | 96 | 17 | |
| Pb BOT | 64 | 155 | 51 | 52 | 47 | 47 | x | x | 52 | ||
| Zn TOP | 174 | 170 | 43 | 130 | 73 | 137 | x | x | 116 | 67 | |
| Zn BOT | 207 | 152 | 49 | 105 | 67 | 93 | x | x | 98 | ||


3.2. Geochemical maps




3.3. Comparison of PTE concentrations in TOP and BOT using ECDF
3.4. Quantification of diffuse contamination by ECDF of entire data series
3.5. Quantification of diffuse contamination using TOP and BOT pairs
4. Discussion
4.1. Impact of soil-forming substrate on PTE concentrations
4.2. Use of ECDF and geochemical maps for distinguishing diffuse and point contamination
4.3. Realistic estimates of diffuse contamination contribution
4.4. Diffuse contribution from soils and peats and outlines of future work
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Ander, E.L.; Johnson, C.C.; Cave, M.R.; et al. Methodology for the determination of normal background concentrations of contaminants in English soil. Sci. Tot. Environ. 2013, 454–455, 604–618. [Google Scholar] [CrossRef]
- Vácha, R.; Skála, J.; Čechmánková, J.; et al. Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. J Soils Sed. 2015, 15, 1813–1824. [Google Scholar] [CrossRef]
- Reimann, C.; Fabian, K.; Flem, B.; Andersson, M.; Filzmoser, P.; Englmaier, P. Geosphere-biosphere circulation of chemical elements in soil and plant systems from a 100 km transect from southern central Norway. Sci. Tot. Environ. 2018. [Google Scholar] [CrossRef]
- Gosar, M.; Šajn, R.; Bavec, Š.; et al. Geochemical background and threshold for 47 chemical elements in Slovenian topsoil. Geologija 2019, 62, 5–57. [Google Scholar] [CrossRef]
- Pasieczna, A.; Konon, A.; Nadłonek, W. Sources of anthropogenic contamination of soil in the Upper Silesian Agglomeration (southern Poland). Geol Q 2020, 64, 988–1003. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Stathopoulou, E. Availability of geogenic heavy metals in soils of Thiva town (central Greece). Environ Monitoring and Assessment 2013, 185, 9603–9618. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Teng, Y.; Wan, H. PCB contamination in soils of the Pearl River Delta, South China: Levels, sources, and potential risks. Environ. Sci. Pollut. Res. 2013, 20, 5150–5159. [Google Scholar] [CrossRef]
- Amorosi, A.; Guermandi, M.; Marchi, N.; Sammartino, I. Fingerprinting sedimentary and soil units by their natural metal contents: A new approach to assess metal contamination. Sci Total Environ 2014, 500–501, 361–372. [Google Scholar] [CrossRef]
- dos Santos, L.M.R.; Gloaguen, T.V.; de Souza Fadigas, F.; et al. Metal accumulation in soils derived from volcano-sedimentary rocks, Rio Itapicuru Greenstone Belt, northeastern Brazil. Sci. Tot. Env. 2017, 601–602, 1762–1774. [Google Scholar] [CrossRef]
- Gosar, M.; Šajn, R.; Bavec, Š.; et al. Geochemical background and threshold for 47 chemical elements in Slovenian topsoil. Geologija 2019, 62, 5–57. [Google Scholar] [CrossRef]
- Zhang, L.; McKinley, J.; Cooper, M.; Peng, M.; Wang, Q.; Song, Y.; Cheng, H. A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China. J. of Geochem. Explor. 2020, 217, 106557. [Google Scholar] [CrossRef]
- Bohdálková, L.; Bohdálek, P.; Břízová, E.; Pacherová, P.; Kuběna, A.A. Atmospheric metal pollution records in the Kovářská Bog (Czech Republic) as an indicator of anthropogenic activities over the last three millennia. Science of The Total Environment 2018, 633, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Tolksdorf, J.F.; Kaiser, K.; Petr, L.; Herbig, C.; Kočár, P.; Heinrich, S.; Wilke, F.D.H.; Theuerkauf, M.; Fülling, A.; Schubert, M.; Schröder, F.; Křivánek, R.; Schulz, L.; Bonhage, A.; Hemker, C. Past human impact in a mountain forest: geoarchaeology of a medieval glass production and charcoal hearth site in the Erzgebirge, Germany. Reg. Environ. Change 2020, 20, 71. [Google Scholar] [CrossRef]
- Tarvainen, T.; Reichel, S.; Müller, I.; Jordan, I.; Hube, D.; et al. Arsenic in agro-ecosystems under anthropogenic pressure in Germany and France compared to a geogenic As region in Finland. J of Geochem. Expl. 2020, 217, 106606. [Google Scholar] [CrossRef]
- Beier, T.; Opp, C.; Hahn, J.; Zitzer, N. Sink and Source Functions for Metal(loid)s in Sediments and Soils of Two Water Reservoirs of the Ore Mountains, Saxony, Germany. Appl. Sci. 2022, 12, 6354. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. The principles of distribution of chemical elements in minerals and rocks. J Chem Soc London 1937, 655–673. [Google Scholar]
- Fabian, K.; Reimann, C.; de Caritat, P. Quantifying diffuse contamination: method and application to Pb in soil. Environ. Sci. Technol. 2017, 51, 6719–6726. [Google Scholar] [CrossRef] [PubMed]
- Matys Grygar, T.; Elznicová, J.; Tůmová, Š.; Kylich, T.; Skála, J.; Hron, K.; Álvarez Vázquez, M.Á. Moving from geochemical to contamination maps using incomplete chemical information from long-term high-density monitoring of Czech agricultural soils. Environ. Earth Sci. 2023, 82, 6. [Google Scholar] [CrossRef]
- Baize, D.; Sterckeman, T. Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Sci. Total Environ. 2001, 264, 127–139. [Google Scholar] [CrossRef]
- Wang, H.; Yilihamu, Q.; Yuan, M.; Bai, H.; Xu, H.; Wu, J. Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: A comparison of regression and random forest. Ecol. Indicators 2020, 119, 106801. [Google Scholar] [CrossRef]
- Boente, C.; Baragaño, D.; García-González, N.; Forján, R.; Colina, A.; Gallego, J.R. A holistic methodology to study geochemical and geomorphological control of the distribution of potentially toxic elements in soil. Catena 2022, 208. [Google Scholar] [CrossRef]
- Ribeiro, M. T., and Guestrin, C. "Why Should I Trust You?" Explaining the Predictions of Any Classifier. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 1135–1144.
- Zhao, Z.; Qiao, K.; Liu, Y.; et al. Geochemical Data Mining by Integrated Multivariate Component Data Analysis: The Heilongjiang Duobaoshan Area (China) Case Study. Minerals 2022, 12, 1035. [Google Scholar] [CrossRef]
- Sarti, G.; Sammartino, I.; Amorosi, A. Geochemical anomalies of potentially hazardous elements reflect catchment geology: An example from the Tyrrhenian coast of Italy. Sci. Total Environ. 2020, 714, 136870. [Google Scholar] [CrossRef]
- Lienard, A.; Colinet, G. Assessment of vertical contamination of Cd, Pb, and Zn in soils around a former ore smelter in Wallonia, Belgium. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Reimann, C.; Fabian, K.; Birke, M.; et al. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl Geochem 2018, 88, 730–740. [Google Scholar] [CrossRef]
- Spahić, M.P.; Sakan, S.; Cvetković, Ž.; et al. Assessment of contamination, environmental risk, and origin of heavy metals in soils surrounding industrial facilities in Vojvodina, Serbia. Environ Monit Assess. 2018. [Google Scholar] [CrossRef]
- Sinclair, A.J. Applications of Probability Graphs in Mineral Exploration. Special Volume No. 4, The Association of Exploration Geochemists. Richmond Printers 1976, Richmond, Canada.
- Reimann, C.; Fabian, K.; Flem, B. Cadmium enrichment in topsoil: Separating diffuse contamination from biosphere-circulation signals. Sci. Tot. Environ. 2019, 651, 1344–1355. [Google Scholar] [CrossRef]
- Reimann, C.; Fabian, K.; Flem, B.; Englmaier, P. The large-scale distribution of Cu and Zn in sub- and topsoil: Separating topsoil bioaccumulation and natural matrix effects from diffuse and regional contamination. Sci. Tot. Environ. 2019, 655, 730–740. [Google Scholar] [CrossRef]
- Flem, B.; Acosta-Gongora, P.; Andersson, M.; Finne, T.E.; Minde, Å. Organic soil geochemistry in southern Trøndelag, QC – report. [dataset] Geological Survey of Norway 2021. Report no: 2021.006.
- Giandon, P. Soil Contamination by Diffuse Inputs. 2015. ISBN 978-94-017-9498-5. [CrossRef]
- Vilímek, V. and Raška, P. The Krušné Hory Mts. The Longest Mountain Range of the Czech Republic. Geomorphological Landscapes 2016. [CrossRef]
- UNESCO World Heritage site. Montanregion.cz. Available from: http://www.montanregion.cz/cs/montanregion.html. Accessed 20 October 2023.
- Kaiser, K.; Theuerkauf, M.; Hieke, F. Holocene forest and land-use history of the Erzgebirge, central Europe: a review of palynological data. E&G Quaternary Sci. J. 2023, 72, 127–161. [Google Scholar] [CrossRef]
- Tolksdorf, J.F.; Kaiser, K.; Petr, L.; Herbig, C.; Kočár, P.; Heinrich, S.; Wilke, F.D.H.; Theuerkauf, M.; Fülling, A.; Schubert, M.; Schröder, F.; Křivánek, R.; Schulz, L.; Bonhage, A.; Hemker, C. Past human impact in a mountain forest: geoarchaeology of a medieval glass production and charcoal hearth site in the Erzgebirge, Germany. Reg. Environ. Change 2020, 20, 71. [Google Scholar] [CrossRef]
- Kafka, J. Rudné a uranové hornictví České republiky [Ore and Uranium Mining in the Czech Republic]. DIAMO, Czech Republic, 2003, 80-86331-67-9, pp. 647.
- Cílová, Z.; Woitsch, J. Potash e a key raw material of glass batch for Bohemian glasses from 14th -17th centuries? J Archaeo. Sci. 2012, 39, 371–380. [Google Scholar] [CrossRef]
- Černá, E.; Frýda, F. Sklo vrcholného středověku – současný stav a perspektivy studia historických (Glass of the High Middle Ages - current state and perspectives of historical studies Technologies). Archaeologia historica 2000, 35, 355–357. [Google Scholar]
- Botula, Y.D.; Nemes, A.; Van Ranst, E.; Mafuka, P.; De Pue, J.; Cornelis, W.M. Hierarchical pedotransfer functions to predict bulk density of highly weathered soils in Central Africa. Soil Sci. Society of America 2015, 79, 476–486. [Google Scholar] [CrossRef]
- Geological map 1: 50 000, In: Geological map 1: 50,000 [online]. Praha: Czech Geological Survey, Available from: https://mapy.geology.cz/geocr50/. Accessed 10 October 2023.
- Adamec, S.; Tůmová, Š.; Hošek, M.; Lučić, M.; Matys Grygar, T., under review. Pitfalls of distinguishing anthropogenic and geogenic reasons for risk elements in soils around coal-fired power plant: from case study in NW Czech Republic to general recommendations. Journal of Soils and Sed. [CrossRef]
- Álvarez-Vázquez, M.Á.; Hošek, M.; Elznicová, J.; et al. Separation of geochemical signals in fluvial sediments: new approaches to grain-size control and anthropogenic contamination. Appl. Geochem. 2020. [Google Scholar] [CrossRef]
- Sterckeman, T.; Douay, F.; Baize, D.; Fourrier, H.; et al. Trace elements in soils developed in sedimentary materials from Northern France. Geoderma 2006, 136, 912–929. [Google Scholar] [CrossRef]
- Bábek, O.; Grygar, T.M.; Faměra, M.; et al. Geochemical background in polluted river sediments: How to separate the effects of sediment provenance and grain size with statistical rigour? Catena 2015, 135, 240–253. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Matys Grygar, T.; Popelka, J. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J Geochem. Explor. 2016, 170, 39–57. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. In: Muir, Alex (Ed.), Geochemistry. 1954. Clarendon Press.
- Reimann, C.; Filzmoser, P.; Garrett, RG.; Dutter, R. Statistical data analysis explained. Applied environmental statistics with R. John Wiley & Sons 2008, Chichester. ISBN 978-0-470-98581-6.
- Reimann, C.; Fabian, K. Quantifying diffuse contamination: Comparing silver and mercury in organogenic and minerogenic soil. Sci. Tot. Environ. 2022, 832, 155065. [Google Scholar] [CrossRef]
- Flem, B.; Reimann, C.; Fabian, K. Excess Cr and Ni in top soil: Comparing the effect of geology, diffuse contamination, and biogenic influence. Sci Tot. Env. 2022, 843. [Google Scholar] [CrossRef]
- Rudnick, RL.; Gao, S. Treatise on Geochemistry: Composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) The Crust, Treatise on Geochem. 2003, 3. Elsevier-Pergamon, Oxford, pp 1–64.
- Salminen, R.; Batista, M.J.; Bidovec, M.; et al. Geochemical Atlas of Europe. Part 1 – Background Information, Methodology and Maps. Geological Survey of Finland 2005, Espoo. [dataset]. ISBN 951-690-921-3.
- Ministry of Environment; Decree No. 153/2016 Coll. Vyhláška č. 153/2016 Sb. ze dne 9. května 2016 o stanovení podrobností ochrany kvality zemědělské půdy a o změně vyhlášky č. 13/1994 Sb., kterou se upravují některé podrobnosti ochrany zemědělského půdního fondu (in Czech).
- Reimann, C.; Garret, R.G. Geochemical background—concept and reality. Sci. Tot. Environ. 2005, 350, 12–27. [Google Scholar] [CrossRef]
- O’Shea, B.; Stransky, M.; Leitheiser, S.; Brock, P.; Marvinney, R.; Zheng, Y. Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States. Sci. Total Environ. 2015. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, S.B. Trace element risk assessment: essentiality vs. toxicity. Regul. Toxic. And Pharmacol. 2003, 38, 232–242. [Google Scholar] [CrossRef]
- Wang, X.; Han, Z.; Wang, W.; Zhang, B.; Wu, H.; Nie, L.; et al. Continental-scale geochemical survey of lead (Pb) in mainland China's pedosphere: Concentration, spatial distribution and influences. Appl. Geochem. 2018, 100, 55–63. [Google Scholar] [CrossRef]
- Salminen, R.; Gregorauskiene, V. Considerations regarding the definition of a geochemical baseline of heavy metals in the overburden in areas differing in basic geology. Appl. Geochem. 2000, 15, 647–653. [Google Scholar] [CrossRef]
- Bravo, S.; García-Ordiales, E.; García-Navarro, F.J.; et al. Geochemical distribution of major and trace elements in agricultural soils of Castilla-La Mancha (central Spain): finding criteria for baselines and delimiting regional anomalies. Environ. Sci. Pollut. Res. 2023, 26, 3100–3114. [Google Scholar] [CrossRef]
- Matys Grygar, T.; Faměra, M.; Hošek, M.; Elznicová, J.; et al. Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination. Environ. Sci. and Poll. Res. 2021, 28, 51183–51198. [Google Scholar] [CrossRef]
- Shotyk, W. Comment on “The biosphere: A homogeniser of Pb-isotope signals” by C. Reimann, B. Flem, A. Arnoldussen, P. Englmaier, T.E. Finne, F. Koller and Ø. Nordgulen. Applied Geochemistry 2008, 23, 2514–2518. [Google Scholar] [CrossRef]
- Density of materials. SImetric (2004). Available from: https://www.simetric.co.uk/si_materials.htm. Accessed 10 December 2023.
- Shotyk, W.; Kempter, H.; Krachler, M.; Zaccone, C. Stable (206Pb, 207Pb, 208Pb) and radioactive (210Pb) lead isotopes in 1 year of growth of sphagnum moss from four ombrotrophic bogs in southern Germany: geochemical significance and environmental implications. Geochim. Cosmochim. Acta 2015, 163, 101–125. [Google Scholar] [CrossRef]
- Veron, A.; Novak, M.; Brizova, E.; Stepanova, M. Environmental imprints of climate changes and anthropogenic activities in the Ore Mountains of Bohemia (Central Europe) since 13 cal. kyr BP. The Holocene 2014, 24, 919–931. [Google Scholar] [CrossRef]
- Windroses at air pollution stations, Praha: Czech Hydrometeorological Institute, Available from: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2021_enh/pollution_wrose/wrose_UKRUA_GB.html. Accessed 18 December 2023.







| Kovářská | Fláje | ||||
| LCS | Estimated diffuse contamination | LCS | Estimated diffuse contamination | ||
| As/Fe | 1.52 | 1.12 | As/Fe | 1.48 | 1.42 |
| Pb/Ti | 1.64 | 16.5 | Pb/Ti | 1.34 | 16.2 |
| Element | Kovářská Area | Fláje Area |
| As | 15 | 14 |
| Cu | 1.5 | 0.7 |
| Pb | 35 | 42 |
| Zn | 1.7 | -0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
