Submitted:
02 January 2024
Posted:
03 January 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Data exploration
2.2. Effort data distribution
2.3. Statistical analysis
3. Results
3.1. CPUE-at-age distribution
3.2. Model results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Núñez Riboni, I.; Akimova, A.; Sell, A. F. Effect of data spatial scale on the performance of fish habitat models. Fish and Fisheries, 2021, 22(5), 955-973. [CrossRef]
- Zhou, X.; Ma, S.; Cai, Y.; Yu, J.; Chen, Z.; Fan, J. The Influence of Spatial and Temporal Scales on Fisheries Modeling-An Example of Sthenoteuthis oualaniensis in the Nansha Islands, South China Sea. Journal of Marine Science and Engineering, 2022, 10(12), 1840. [CrossRef]
- Moura, T.; Chaves, C.; Figueiredo, I.; Mendes, H.; Moreno, A.; Silva, C.; Vasconcelos, R. P.; Azevedo, M. Assessing spatio-temporal changes in marine communities along the Portuguese continental shelf and upper slope based on 25 years of bottom trawl surveys. Marine Environmental Research, 2020, 160, 105044. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.; Azevedo, M.; Gomes, M. C. Demersal assemblages off Portugal: mapping, seasonal, and temporal patterns. Fisheries Research, 2005, 75(1-3), 120-137.
- Gomes, M. C.; Serrão, E.; Borges, M. F. Spatial patterns of groundfish assemblages on the continental shelf of Portugal. ICES Journal of Marine Science, 2001, 58(3), 633-647.
- Whitehead, P. J. P.; Bauchot, M. L.; Hureau, J.C.; Nielsen, J.; Tortonese, E. Fishes of the North-eastern Atlantic and the Mediterranean, 1986, Vol. 2. UNESCO.
- Abaunza, P.; Santos, M.B.; Murta, A.G.; Cimmaruta, R.; Cariani, A.; Tinti, F.; Deflorio, M. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fish. Res., 2008, 89, 196–209. [Google Scholar] [CrossRef]
- Murta, A. G.; Abaunza, P.; Cardador, F.; Sánchez, F. Ontogenic migrations of horse mackerel along the Iberian coast. Fisheries Research, 2008, 89(2), 186-195. [CrossRef]
- ICES. Report of the Benchmark Workshop on Pelagic Stocks (WKPELA), 6–10 February 2017, Lisbon, Portugal. ICES CM 2017/ACOM:35. 294 pp.
- Relvas, P.; Barton, E. D.; Dubert, J.; Oliveira, P. B.; Peliz, A.; Da Silva, J. C. B.; Santos, A. M. P. Physical oceanography of the western Iberia ecosystem: latest views and challenges. Progress in Oceanography, 2007, 74(2-3): 149-173.
- MM. Reavaliação do Estado Ambiental e Definição de Metas: Parte D, Subdivisão do Continente. Estratégia Marinha, Relatório do 2º ciclo. Ministério do Mar, República Portuguesa, 2020. 458 p.
- Murta, A.G.; Borges, M.F. Factors affecting the abundance distribution of horse mackerel Trachurus trachurus (Linnaeus, 1758) in Portuguese waters. ICES CM 1994/H:20.
- Borges, M.F.; Gordo, L.S. Spatial distribution by season and some biological parameters of horse mackerel (Trachurus trachurus L.) in the Portuguese continental waters (Division IXa).1991. ICES CM 1991/H:54.
- EC. Commission Regulation (EC) No. 1489/97 of 29 July 1997 laying down detailed rules for the application of Council Regulation (EEC) No. 2847/93 as regards satellite-based vessel monitoring systems. Official Journal of the European Union, 1997, L202: 18–23.
- EC. Commission Regulation (EC) No. 2244/2003 of 18 December 2003 laying down detailed provisions regarding satellite based vessel monitoring systems. Official Journal of the European Union, 2003, L333: 17–27.
- Gerritsen, H.; Lordan, C. Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES Journal of Marine Science, 2010,68(1), 245–252. [CrossRef]
- Bastardie, F.; Nielsen, J. R.; Ulrich, C.; Egekvist, J.; Degel, H. Detailed mapping of fishing effort and landings by coupling fishing logbooks with satellite-recorded vessel geo-location. Fisheries Research, 2010, 106(1), 41–53. [CrossRef]
- Palmer, M. C.; Wigley, S. E. Using Positional Data from Vessel Monitoring Systems to Validate the Logbook-Reported Area Fished and the Stock Allocation of Commercial Fisheries Landings. North American Journal of Fisheries Management, 2009, 29(4), 928–942. [CrossRef]
- Chang, S.; Yuan, T. Deriving high-resolution spatiotemporal fishing effort of large-scale longline fishery from vessel monitoring system (VMS) data and validated by observer data. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71(9), 1363–1370. [CrossRef]
- Bez, N.; Walker, E.; Gaertner, D.; Rivoirard, J.; Gaspar, P. Fishing activity of tuna purse seiners estimated from vessel monitoring system (VMS) data. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68(11), 1998–2010. [CrossRef]
- Watson, J. T.; Haynie, A. C.; Sullivan, P. J.; Perruso, L.; O’Farrell, S.; Sanchirico, J. N.; Mueter, F. J. Vessel monitoring systems (VMS) reveal an increase in fishing efficiency following regulatory changes in a demersal longline fishery. Fisheries Research, 2018, 207, 85–94. [Google Scholar] [CrossRef]
- Enguehard, R. A.; Devillers, R.; Hoeber, O. Comparing interactive and automated mapping systems for supporting fisheries enforcement activities—a case study on vessel monitoring systems (VMS). Journal of Coastal Conservation, 2012, 17(1), 105–119. [CrossRef]
- Lee, J.; South, A.; Jennings, S. Developing reliable, repeatable and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES Journal of Marine Science, 2010, 67: 1260–1271.
- Azevedo, M.; Silva, C. A framework to investigate fishery dynamics and species size and age spatio-temporal distribution patterns based on daily resolution data: a case study using Northeast Atlantic horse mackerel. ICES Journal of Marine Science, 2020, 77: 2933 – 2944. [CrossRef]
- EC. Council Regulation (EC) No. 2406/96 of 23 December 1996 laying down common marketing standards for certain fishery products. Official Journal of the European Union, 1996, L334: 1–15.
- ICES. Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA). ICES Scientific Reports, 2022. 4:51. 518 pp. [CrossRef]
- Azevedo, M.; Silva, C.; Vølstad, J. H. Onshore biological sampling of landings by species and size category within auction sites can be more efficient than trip-based concurrent sampling. ICES Journal of Marine Science, 2021, 78: 2757-2773. [CrossRef]
- Afonso-Dias, M.; Pinto, C. Análise da Distribuição Espacial do Esforço e Rendimentos de Pesca das Frotas Portuguesas de Arrasto Costeiro. Projecto GeoPesca. Relatório Final Projecto MARE 22-05-01-00025, 2008. http://w3.ualg.pt/madias/geopesca/GeoPescasRelatorioFinal08.pdf8.
- ICES. Workshop on Age reading of Horse Mackerel, Mediterranean Horse Mackerel and Blue Jack Mackerel (Trachurus trachurus, T. mediterraneus and T. picturatus) (WKARHOM3), 5–9 November 2018, Livorno, Italy. ICES CM 2018/EOSG:28. 186pp. [CrossRef]
- Panfili, J.; Troadec, H.; Pontual, H. D.; Wright, P. J. Manual of fish sclerochronology. Brest, France: Ifremer-lRD coedition, 2002, 464p.
- Williams, T.; Bedford, B. C. The use of otoliths for age determination. In: Bagenal, T. B. (ed.), Ageing of fish: Proceedings of an International Symposium at University of Reading, 19–20 July, 1973. Unwin Brothers, Surrey, England, 1974, pp. 114–123.
- Maunder, M. N.; Thorson, J. T.; Xu, H.; Oliveros, Ramos, R.; Hoyle, S.; Tremblay-Boyer, L.; Lee, H. H.; Kai, M.; Chang, S., Kitakado, T.; Albertsen, C. M.; Lennert Cody, C. E.; Aires da Silva, A.; Piner, K. R. The need for spatio-temporal modeling to determine catch-per-unit effort based indices of abundance and associated composition data for inclusion in stock assessment models. Fisheries Research, 2020, 229, 105594. [CrossRef]
- Thorson, J. T.; Barnett, L. A. K. Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES Journal of Marine Science, 2017, 74(5), 1311–1321. [CrossRef]
- ICES. Report on the Assessment of a Long-term Management Strategy for Southern Horse Mackerel (hom27.9a), 15–16 February 2018. Manuela Azevedo, Hugo Mendes, Gersom Costas, Ernesto Jardim, Iago Mosqueira, Finlay Scott (Authors.) ICES CM 2018/ACOM:42. 36 pp.
- Rindorf, A.; Lewy, P. Analyses of length and age distributions using continuation-ratio logits. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(6), 1141–1152. [CrossRef]
- Agresti, A. Categorical data analysis. In Wiley series in probability and statistics, 2002. [CrossRef]
- Kvist, T.; Gislason, H.; Thyregod, P. Using continuation-ratio logits to analyze the variation of the age composition of fish catches. Journal of Applied Statistics, 2000, 27(3), 303–319. [CrossRef]
- Wood, S. N. Generalized Additive Models: An Introduction with R, Second Edition. 2017. [CrossRef]
- Yee, T. W. Vector Generalized Linear and Additive Models: with an implementation in R. New York, USA. Springer Series in Statistics, 2015. ISBN 978-1-4939-2818-7.
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2023. URL https://www.R-project.org/.
- Bivand, R.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R. Use R! Series, 2nd edition. Springer, NY. 2013. ISBN 978-1-4614-7618-4 (eBook). https://asdar-book.org/.
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, 2016. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
- Cabral, H. N.; Murta, A. The diet of blue whiting, hake, horse mackerel and mackerel off Portugal. Journal of Applied Ichthyology, 2002, 18: 14–23.
- Villamor, B.; Abaunza, P.; Lucio, P.; Porteiro, C. Distribution and age structure of mackerel (Scomber scombrus, L.) and horse mackerel (Trachurus trachurus, L.) in the northern coast of Spain, 1989-1994. Scientia Marina, 1997, 61(3), 345–366. http://www.icm.csic.es/scimar/pdf/61/sm61n3345.pdf.
- Gonçalves, P.; Costa, A. M.; Murta, A. G. Estimates of batch fecundity and spawning fraction for the southern stock of horse mackerel (Trachurus trachurus) in ICES Division IXa. Ices Journal of Marine Science, 2009, 66(4), 617–622. [CrossRef]
- Hočevar, S.; Hutchings, J. A.; Kuparinen, A. Multiple-batch spawning: a risk-spreading strategy disarmed by highly intensive size-selective fishing rate. Proceedings of the Royal Society B: Biological Sciences, 2022, 289(1981). [CrossRef]
- Chust, G.; Taboada, F. G.; Álvarez, P.; Ibaibarriaga, L. Species acclimatization pathways: Latitudinal shifts and timing adjustments to track ocean warming. Ecological Indicators, 2023, 146, 109752. [Google Scholar] [CrossRef]
- Lavín, A., Moreno-Ventas, X., De Zárate, V. O., Abaunza, P., & Cabanas, J. M. O. (2007). Environmental variability in the North Atlantic and Iberian waters and its influence on horse mackerel (Trachurus trachurus) and albacore (Thunnus alalunga) dynamics. Ices Journal of Marine Science, 64(3), 425–438. [CrossRef]
- Santos, A.M.P. , Borges, M.F., Groom, S. 2001. Sardine and horse mackerel recruitment and upwelling off Portugal. ICES Journal of Marine Science, 58: 589–596.






| Type | Time | Space | Basis |
|---|---|---|---|
| Catch-at-length (number) | Trip | 0.05o x 0.05o | Landings (weight) by trip recorded at auction by size-category * length-weight relationship |
| Catch-at-age (number) | Trip | 0.05o x 0.05o | Catch-at-length by trip * semester Age-Length Keys |
| Effort (hours trawling * kW) | Daily | 0.05o x 0.05o | VMS data (time by trawling fishing positions) * vessel power information (from EU Fleet Register) |
| Depth (meters) | 0.05o x 0.05o | Satellite Global Topography |
| Year | Number of vessels | Total number of trips | Total trawl hours | Average engine power (kW) | Average depth (m) |
|---|---|---|---|---|---|
| 2010 | 38 | 4352 | 53683.1 | 538.9 | 97.6 |
| 2011 | 35 | 3842 | 52479.5 | 529.1 | 99 |
| 2012 | 37 | 4412 | 54449.0 | 529.3 | 107.5 |
| 2013 | 34 | 4093 | 46158.2 | 523.8 | 114.1 |
| 2014 | 36 | 4279 | 53240.3 | 526.8 | 119 |
| 2015 | 43 | 4537 | 59361.8 | 519.6 | 111.8 |
| 2016 | 43 | 4778 | 52682.5 | 516.7 | 114.4 |
| 2017 | 39 | 4577 | 61092.6 | 515.3 | 110.9 |
| 2018 | 42 | 4511 | 64709.4 | 514.1 | 102.3 |
| 2019 | 43 | 4721 | 65473.4 | 495.5 | 94.9 |
| 2020 | 42 | 4736 | 68020.0 | 465.1 | 100.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
