Submitted:
01 January 2024
Posted:
03 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Dynamic Dark Energy and Its Role in Cosmology
1.2. Interactions with Dark Matter and Baryonic Matter
2. Dynamic Dark Energy and Cosmic Components
2.1. Theoretical Framework of Interactions
2.1.1. Gravitational Interactions
2.1.2. Non-Gravitational Couplings
2.2. Observational Signatures of Interactions
2.2.1. Variation in Fundamental Constants
2.2.2. Anomalous Behavior of Dark Matter
2.2.3. Effects on Large-Scale Structure
2.3. Conclusion
3. Impact on Early Universe and Cosmic Inflation
3.1. Dynamic Dark Energy and Inflation
3.1.1. Modifications to Inflationary Dynamics
3.1.2. Implications for Primordial Fluctuations
3.2. Role During the Recombination Era
3.2.1. Effects on Recombination Dynamics
3.2.2. Implications for the Cosmic Microwave Background
3.3. Conclusion
4. Effects on Cosmological Perturbations
4.1. Dynamic Dark Energy and Perturbation Theory
4.1.1. Perturbation Equations with Dynamic Dark Energy
4.2. Impact on Cosmic Microwave Background
4.2.1. Altered Acoustic Oscillations
4.2.2. Integrated Sachs-Wolfe Effect
4.3. Influence on Large-Scale Structure Formation
4.3.1. Growth Rate of Structures
4.3.2. Galaxy Cluster Abundance
4.4. Conclusion
5. Conclusion
5.1. Summary of Key Findings
- The interaction between dynamic dark energy and other cosmic components, such as dark matter and baryonic matter, could lead to observable deviations in galactic rotation curves, the distribution of galaxy clusters, and variations in fundamental constants.
- Dynamic dark energy models have the potential to alter the dynamics of the early universe, including the inflationary period and the recombination era, with observable effects in the CMB and the formation of early structures.
- The impact of dynamic dark energy on cosmological perturbations could provide unique signatures in the CMB and the large-scale structure, offering new avenues to test these models against observational data.
5.2. Broader Impact and Implications
- By providing potential solutions to long-standing cosmological puzzles like the Hubble tension and offering novel insights into cosmic evolution, dynamic dark energy models contribute to a more nuanced understanding of the cosmos.
- The interplay between dynamic dark energy and fundamental physics opens new frontiers for research, potentially bridging gaps between cosmology and high-energy physics.
5.3. Future Research Recommendations
- Enhanced theoretical models that incorporate the latest observational data and provide more precise predictions for the effects of dynamic dark energy.
- Focused observational campaigns utilizing next-generation telescopes and surveys, such as the James Webb Space Telescope, Euclid, and the Vera C. Rubin Observatory, to gather data on the CMB, galaxy clustering, and large-scale structure.
- Development of novel data analysis techniques and cross-correlation studies to maximize the scientific yield from these observations.
5.4. Observational Strategies
- Precision measurements of the CMB, including its temperature and polarization anisotropies, to detect the imprints of dynamic dark energy on the early universe.
- Large-scale structure surveys to observe the influence of dynamic dark energy on the growth rate of structures and the distribution of galaxy clusters.
- Deep field observations to study the evolution of galaxies and cosmic structures in different epochs, providing insights into the role of dynamic dark energy across cosmic time.
References
- Adam G. Riess, e.a. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- S. Perlmutter, e.a. Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Collaboration, P. Planck 2020 results. VI. Cosmological parameters. Astronomy & Astrophysics 2020, 641, A6. [Google Scholar]
- Peebles, P.J.E. Physical Cosmology; Princeton University Press: Princeton, NJ, 2003. [Google Scholar]
- Sahni, V.; Starobinsky, A. The Case for a Positive Cosmological Λ-term. International Journal of Modern Physics D 2000, 9, 373–444. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological Constant. Living Reviews in Relativity 2001, 4, 1. [Google Scholar] [CrossRef]
- Edmund, J.; Copeland, M.S.; Tsujikawa, S. Dynamics of Dark Energy. International Journal of Modern Physics D 2006, 15, 1753–1936. [Google Scholar]
- Robert, R.; Caldwell, R.D.; Steinhardt, P.J. Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters 1998, 80, 1582–1585. [Google Scholar]
- Paul, J.; Steinhardt, L.W.; Zlatev, I. Cosmological Tracking Solutions. Physical Review D 1999, 59, 123504. [Google Scholar]
- Ratra, B.; Peebles, P.J.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Physical Review D 1988, 37, 3406–3427. [Google Scholar] [CrossRef]
- Ivaylo Zlatev, L.W.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Physical Review Letters 1999, 82, 896–899. [Google Scholar] [CrossRef]
- Wetterich, C. Cosmology and the Fate of Dilatation Symmetry. Nuclear Physics B 1988, 302, 668–696. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A Review. Classical and Quantum Gravity 2013, 30, 214003. [Google Scholar] [CrossRef]
- Amendola, L. Coupled Quintessence. Physical Review D 2000, 62, 043511. [Google Scholar] [CrossRef]
- Farrar, G.R.; Peebles, P.J.E. Interacting Dark Matter and Dark Energy. The Astrophysical Journal 2004, 604, 1–11. [Google Scholar] [CrossRef]
- Limin Wang, R.D.; Steinhardt, P.J. Cosmological Perturbations in Late-Time Phase Transitions. The Astrophysical Journal 2000, 536, 505–516. [Google Scholar]
- Rahul Dave, R.S.; Steinhardt, P.J. Cosmological Perturbations in Late-Time Phase Transitions. Physical Review D 2002, 66, 043503. [Google Scholar]
- Klaus Dolag, e.a. Numerical study of halo concentrations in dark-energy cosmologies. Astronomy & Astrophysics 2004, 416, 853–864. [Google Scholar]
- Gianfranco Bertone, D.H.; Silk, J. Particle Dark Matter: Evidence, Candidates and Constraints. Physics Reports 2005, 405, 279–390. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M. The Physics of Cosmic Acceleration. Annual Review of Nuclear and Particle Science 2009, 59, 397–429. [Google Scholar] [CrossRef]
- Tsujikawa, S. Dark Energy: Investigation and Modeling. Lectures in Physics 2010, 800, 99–145. [Google Scholar]
- Piero S. Corasaniti, e.a. Model-Independent Dark Energy Equation of State Reconstruction from Supernovae. Physical Review D 2004, 70, 083006. [Google Scholar]
- Rachel Bean, S.H.H.; Melchiorri, A. Early Universe Constraints on a Primordial Scaling Field. Physical Review D 2008, 64, 103508. [Google Scholar]
- Joshua, A.; Frieman, M.S.T.; Huterer, D. Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics 2008, 46, 385–432. [Google Scholar]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Physical Review D 2010, 81, 127301. [Google Scholar] [CrossRef]
- Carroll, S.M. Quintessence and the Rest of the World. Physical Review Letters 1998, 81, 3067–3070. [Google Scholar] [CrossRef]
- Thibault Damour, e.a. Dark Matter, Time-Varying G, and a Dilaton Field. Physical Review Letters 1990, 64, 123–126. [Google Scholar] [CrossRef]
- Uzan, J.P. The Fundamental Constants and Their Variation: Observational Status and Theoretical Motivations. Reviews of Modern Physics 2003, 75, 403–455. [Google Scholar] [CrossRef]
- Chiba, T. Quintessence, the Gravitational Constant, and Gravity. Physical Review D 2000, 60, 083508. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The Cosmological Constant and Dark Energy. Reviews of Modern Physics 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Nicola Bartolo, S.M.; Riotto, A. Non-Gaussianity from Inflation: Theory and Observations. Physics Reports 2004, 402, 103–266. [Google Scholar] [CrossRef]
- Perrotta, F.; Baccigalupi, C. Coupled Quintessence. Physical Review D 2002, 65, 123505. [Google Scholar] [CrossRef]
- Keith A. Olive, e.a. The Cosmological Constant. Physics Reports 2001, 333, 389–407. [Google Scholar]
- M. T. Murphy, e.a. Possible Evidence for a Variable Fine-Structure Constant from QSO Absorption Lines: Motivations, Analysis and Results. Monthly Notices of the Royal Astronomical Society 2003, 345, 609–638. [Google Scholar] [CrossRef]
- J. K. Webb, e.a. Further Evidence for Cosmological Evolution of the Fine Structure Constant. Physical Review Letters 2001, 87, 091301. [Google Scholar] [CrossRef] [PubMed]
- Peebles, P.J.E.; Ratra, B. The Cosmological Constant and Dark Energy. Reviews of Modern Physics 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Douglas Clowe, e.a. A Direct Empirical Proof of the Existence of Dark Matter. The Astrophysical Journal Letters 2006, 648, L109–L113. [Google Scholar] [CrossRef]
- Richard Massey, e.a. Dark Matter Maps Reveal Cosmic Scaffolding. Nature 2007, 445, 286–290. [Google Scholar] [CrossRef]
- Linder, E.V. Cosmic Growth History and Expansion History. Physical Review D 2005, 72, 043529. [Google Scholar] [CrossRef]
- Luigi Guzzo, e.a. A Test of the Nature of Cosmic Acceleration Using Galaxy Redshift Distortions. Nature 2008, 451, 541–544. [Google Scholar] [CrossRef] [PubMed]
- John A. Peacock, e.a. A Measurement of the Cosmological Mass Density from Clustering in the 2dF Galaxy Redshift Survey. Nature 2001, 410, 169–173. [Google Scholar] [CrossRef]
- Daniel J. Eisenstein, e.a. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. The Astrophysical Journal 2005, 633, 560–574. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Physical Review D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Physics Letters B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. Cosmology with a Time-Variable Cosmological Constant. The Astrophysical Journal 1998, 325, L17–L20. [Google Scholar] [CrossRef]
- Linde, A.D. Particle Physics and Inflationary Cosmology. Harwood Academic Publishers 1990. [Google Scholar]
- E. J. Copeland, e.a. False Vacuum Inflation with Einstein Gravity. Physical Review D 1994, 49, 6410–6433. [Google Scholar] [CrossRef] [PubMed]
- P. A. R. Ade, e.a.B.C. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. Physical Review Letters 2016, 116, 031302. [Google Scholar] [CrossRef]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure. Cambridge University Press 2000. [Google Scholar]
- Kinney, W.H. Cosmology, Inflation, and the Physics of Nothing. NATO Science Series II: Mathematics, Physics and Chemistry 2003, 123, 189–210. [Google Scholar]
- S. Seager, D.D.S.; Scott, D. How Exactly Did the Universe Become Neutral? The Astrophysical Journal Supplement Series 2000, 128, 407–430. [Google Scholar] [CrossRef]
- Hu, W.; Sugiyama, N. A Complete Treatment of CMB Anisotropies in a FRW Universe. The Astrophysical Journal 1997, 471, 542–570. [Google Scholar] [CrossRef]
- Efstathiou, G. Suppressing the Formation of Dwarf Galaxies via Photoionization. Monthly Notices of the Royal Astronomical Society 1992, 256, 43P–47P. [Google Scholar] [CrossRef]
- Naselsky, P.D.; Novikov, I.D. Recombination of the Primeval Plasma in the Inflation and Standard Cosmologies. The Astrophysical Journal 2002, 577, 31–42. [Google Scholar]
- Caldwell, R.R.; Linder, E.V. The Limits of Quintessence. Physical Review Letters 2005, 95, 141301. [Google Scholar] [CrossRef]
- Wayne Hu, e.a. A Complete Treatment of CMB Anisotropies in a FRW Universe. Physical Review D 1998, 57, 3290–3301. [Google Scholar]
- Amendola, L. Dark Energy and Coupled Dark Matter. Physical Review D 2004, 69, 103524. [Google Scholar] [CrossRef]
- Ma, C.P.; Bertschinger, E. Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges. The Astrophysical Journal 1995, 455, 7–25. [Google Scholar] [CrossRef]
- Dodelson, S. Modern Cosmology. Academic Press 2003. [Google Scholar]
- D. N. Spergel, e.a. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series 2003, 148, 175–194. [Google Scholar] [CrossRef]
- Eiichiro Komatsu, e.a. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series 2011, 192, 18. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Hu, W. Baryonic Features in the Matter Transfer Function. The Astrophysical Journal 1998, 496, 605–614. [Google Scholar] [CrossRef]
- Hu, W.; White, M. Acoustic Signatures in the Cosmic Microwave Background. The Astrophysical Journal 1996, 471, 30–51. [Google Scholar] [CrossRef]
- Seljak, U.; Zaldarriaga, M. A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies. The Astrophysical Journal 1996, 469, 437–444. [Google Scholar] [CrossRef]
- Zaldarriaga, M.; Seljak, U. All-Sky Analysis of Polarization in the Microwave Background. Physical Review D 1997, 55, 1830–1840. [Google Scholar] [CrossRef]
- Sachs, R.K.; Wolfe, A.M. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. The Astrophysical Journal 1967, 147, 73. [Google Scholar] [CrossRef]
- Crittenden, R.G.; Turok, N. Looking for Lambda with the Rees-Sciama Effect. Physical Review Letters 1996, 76, 575–578. [Google Scholar] [CrossRef]
- Afshordi, N. Integrated Sachs-Wolfe Effect in Cross-Correlation: The Observer’s Manual. Physical Review D 2004, 70, 083536. [Google Scholar] [CrossRef]
- Tommaso Giannantonio, e.a. A High Redshift Detection of the Integrated Sachs-Wolfe Effect. Physical Review D 2006, 74, 063520. [Google Scholar] [CrossRef]
- Volker Springel, e.a. Simulations of the Formation, Evolution and Clustering of Galaxies and Quasars. Nature 2006, 440, 1137–1144. [Google Scholar]
- Wang, L.; Steinhardt, P.J. Cluster Abundance Constraints on Quintessence Models. The Astrophysical Journal 1998, 508, 483–490. [Google Scholar] [CrossRef]
- Max Tegmark, e.a. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey. The Astrophysical Journal 2004, 606, 702–740. [Google Scholar] [CrossRef]
- Shaun Cole, e.a. The 2dF Galaxy Redshift Survey: Power Spectrum Analysis of the Final Data Set and Cosmological Implications. Monthly Notices of the Royal Astronomical Society 2005, 362, 505–534. [Google Scholar] [CrossRef]
- Alexey Vikhlinin, e.a. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints. The Astrophysical Journal 2009, 692, 1060–1074. [Google Scholar] [CrossRef]
- Eduardo Rozo, e.a. Cosmological Constraints from the Sloan Digital Sky Survey maxBCG Cluster Catalog. The Astrophysical Journal 2010, 708, 645–660. [Google Scholar] [CrossRef]
- Steven, W. Allen, e.a. Cosmological Parameters from Observations of Galaxy Clusters. Annual Review of Astronomy and Astrophysics 2011, 49, 409–470. [Google Scholar] [CrossRef]
- Adam Mantz, e.a. Cosmology and Astrophysics from Relaxed Galaxy Clusters III: Thermodynamic Profiles and Scaling Relations. The Astrophysical Journal 2014, 794, 157. [Google Scholar]
- Collaboration, D. Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Physical Review D 2020, 102, 023509. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
