Submitted:
27 December 2023
Posted:
28 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental site
2.2. Vegetation analysis
2.3. Image acquisition
2.4. Image Analysis
![]() |
2.5. Quantification of vegetation-covered areas
2.6. Surveys to understand the population’s preferences
3. Results
3.1. Image Analysis
3.2. Vegetation Analysis
3.3. Responses obtained from the survey
4. Discussion
4.1. Image Analysis
4.2. Vegetation Analysis
4.3. Responses obtained to the survey
5. Conclusions
Author Contributions
Funding
Acknowledgments
References
- Darma, I. D. P. , Sutomo, S., Hanum, S. F., Iryadi, R., & Rahayu, A. (2021). Flowers and Value of Conservation in The Culture of Hindu Community in Bali. Biosaintifika: Journal of Biology & Biology Education, 13(1), 34–40. [CrossRef]
- Friberg, C. , & Vasquez, R. (Eds.). (2017). Experiencing the everyday. NSU Press.
- Matthews, P. (2002). Scientific Knowledge and the Aesthetic Appreciation of Nature. The Journal of Aesthetics and Art Criticism, 60(1), 37–48. http://www.jstor.org/stable/1519972.
- Jim, C. Y. (2017). An archaeological and historical exploration of the origins of green roofs. Urban Forestry & Urban Greening, 27, 32–42. [CrossRef]
- Almeida, C. , Teotónio, I., Silva, C. M., & Cruz, C. O. (2021). Socioeconomic feasibility of green roofs and walls in public buildings: The case study of primary schools in Portugal. The Engineering Economist, 66(1), 27–50. [CrossRef]
- Caldeira Cabral, F. (2003). Os Fundamentos da Arquitectura Paisagista (2a). Instituto da Conservação da Natureza.
- William, R. , Goodwell, A., Richardson, M., Le, P. V. V., Kumar, P., & Stillwell, A. S. (2016). An environmental cost-benefit analysis of alternative green roofing strategies. Ecological Engineering, 95, 1–9. [CrossRef]
- Du Pisani, J. A. (2006). Sustainable development – historical roots of the concept. Environmental Sciences, 3(2), 83–96. [CrossRef]
- Ducarme, F. (2019). Qu’est-ce que la nature qu’on cherche à conserver? Une approche sémiologique de l’action écologique. Nouvelles perspectives en sciences sociales, 14(2), 23–60. [CrossRef]
- Peck, S. W. , Kuhn, M., Architects, O. A. of, & Corporation, C. M. and H. (2003). Design Guidelines for Green Roofs (Ontario Association of Architects). Ontario Association of Architects. https://books.google.pt/books?
- Matos Silva, C. , Oliveira Cruz, C., & Teotónio, I. (2019). Project GENESIS: An All-inclusive Model to Perform Cost-Benefit Analysis of Green Roofs and Walls. European Journal of Sustainable Development, 8(3), 85. [CrossRef]
- Anico, A. (2016). Plantas autóctones em coberturas verdes: Avaliação do desenvolvimento e valor estético vs. Rega e tipo de substrato [Dissertação de Mestrado].
- Papafotiou, M., Pergialioti, N., Tassoula, L., Massas, I., & Kargas, G. (2013). Growth of Native Aromatic Xerophytes in an Extensive Mediterranean Green Roof as Affected by Substrate Type and Depth and Irrigation Frequency. HortScience, 48(10), 1327–1333. [CrossRef]
- Benvenuti, S., & Bacci, D. (2010). Initial agronomic performances of Mediterranean xerophytes in simulated dry green roofs. Urban Ecosystems, 13(3), 349–363. [CrossRef]
- Carbone, M. , Nigro, G., Garofalo, G., & Piro, P. (2015). Experimental Testing for Evaluating the Influence of Substrate Thickness on the Sub-Surface Runoff of a Green Roof. In Applied Mechanics and Materials (Vol. 737, pp. 705–709). Trans Tech Publications, Ltd. [CrossRef]
- Cascone, S. , Coma, J., Gagliano, A., & Pérez, G. (2019). The evapotranspiration process in green roofs: A review. Building and Environment, 147, 337–355. [CrossRef]
- Klein, P. M. , & Coffman, R. (2015). Establishment and performance of an experimental green roof under extreme climatic conditions. Science of The Total Environment, 512–513, 82–93. [CrossRef]
- Paço, T. , Cruz De Carvalho, R., Arsénio, P., & Martins, D. (2019). Green Roof Design Techniques to Improve Water Use under Mediterranean Conditions. Urban Science, 3(1), 14. [CrossRef]
- Wooster, E. I. F. , Fleck, R., Torpy, F., Ramp, D., & Irga, P. J. (2022). Urban green roofs promote metropolitan biodiversity: A comparative case study. Building and Environment, 207, 108458. [CrossRef]
- Partridge, D. R., & Clark, J. A. (2018). Urban green roofs provide habitat for migrating and breeding birds and their arthropod prey. PLOS ONE, 13(8), e0202298. [CrossRef]
- Esfahani, R. E. , Paço, T. ( 178, 106576. [CrossRef]
- Figueiredo, C. (2020). Desenvolvimento de tapetes de vegetação com espécies autóctones com potencial para instalação em coberturas verdes [Dissertação de Mestrado]. Universidade de Lisboa.
- Arganda-Carreras, I. , Kaynig, V., Rueden, C., Schindelin, J., Cardona, A., & Seung, H. S. (2016). Trainable_Segmentation: Release v3.1.2. Zenodo. Disponível em: https://zenodo.org/record/59290. Acedido a: 2022-03-14 15:02:17.
- Rocha, B. , Paço, T., Luz, A., Palha, P., Milliken, S., Kotzen, B., Branquinho, C., Pinho, P., & De Carvalho, R. (2021). Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water, 13(1), 94. [CrossRef]
- Martins, D. (2018). Estabelecimento de coberturas verdes com plantas autóctones na região de Lisboa Desenvolvimento de técnica inovadora de instalação de vegetação [Dissertação de Mestrado]. Universidade de Lisboa.
- Fayad, A. (2008). Agronomic performance of annual self-reseeding legumes and their self-establishment potential in the Apulia region of Italy.
- Douglas, G. B., & Foote, A. G. (1985). Performance of several annual legumes which have potential for soil conservation. New Zealand Journal of Experimental Agriculture, 13(1), 13–17. [CrossRef]
- Petrova, S. , & Chipilski, R. (2021). Agrobiological and physiological evaluation of the accessions of the Lathyrus sp. Collection from the Genebank in Sadovo. [CrossRef]
- Boswell, C. C. , Lucas, R. J., Lonati, M., Fletcher, A., & Moot, D. J. (2003). The ecology of four annual clovers adventive in New Zealand grasslands. NZGA: Research and Practice Series, 11, 175–184. [CrossRef]
- Bates, A. J. , Sadler, J. P., & Mackay, R. (2013). Vegetation development over four years on two green roofs in the UK. Urban Forestry & Urban Greening, 12(1), 98–108. [CrossRef]
- Vanstockem, J. , Somers, B., & Hermy, M. (2019). Weeds and gaps on extensive green roofs: Ecological insights and recommendations for design and maintenance. Urban Forestry & Urban Greening, 46, 126484. [CrossRef]










| NativeScapeGR (2014) | ApiWall (2018) | ApiMat (2020) |
| Brachypodium phoenicoides | Antirrhinum linkianum | Briza maxima |
| Brachythecium plumosum | Asphodelus fistulosus | Sedum sediforme |
| Homalothecium | Briza maxima | Silene scabriflora |
| Lavandula stoechas | Capsella bursa-pastoris | Stachys germanica |
| Neckera | Centranthus ruber | Teucrium scorodonia |
| Pleurochaete squarrosa | Centranthus calcitrapae | Trifolium angustifolium |
| Rosmarinus officinalis | Papaver rhoeas | Trifolium incarnatum |
| Phagnalon saxatile | ||
| Pleurochaete squarrosa | ||
| Reichardia picroides | ||
| Sanguisorba verrucosa | ||
| Sedum sediforme | ||
| Silene scabriflora | ||
| Stachys germanica | ||
| Teucrium scorodonia | ||
| Trifolium angustifolium |
| Species/ Test beds | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Antirrhinum linkianum | • | • | • | • | • | • | • | • | ||||
| Asphodelus fistulosus | • | • | • | • | • | • | • | |||||
| Brachypodium phoenicoides | • | • | ||||||||||
| Brachythecium plumosum | • | • | ||||||||||
| Briza maxima | • | • | • | • | • | |||||||
| Capsella bursa-pastoris | • | • | • | • | ||||||||
| Centranthus calcitrapae | • | • | • | • | • | • | • | |||||
| Centranthus ruber | • | • | • | • | • | • | • | • | ||||
| Homalothecium | • | |||||||||||
| Lavandula stoechas | • | • | ||||||||||
| Papaver rhoeas | • | • | • | • | ||||||||
| Neckera | • | |||||||||||
| Phagnalon saxatile | • | • | • | • | • | • | • | |||||
| Pleurochaete squarrosa | • | • | • | • | ||||||||
| Reichardia picroides | • | • | • | • | • | • | • | |||||
| Rosmarinus officinalis | • | • | ||||||||||
| Sanguisorba verrucosa | • | • | • | • | ||||||||
| Sedum sediforme | • | • | • | • | • | • | • | • | • | |||
| Silene scabriflora | • | • | • | • | ||||||||
| Stachys germanica | • | • | • | • | • | |||||||
| Teucrium scorodonia | • | • | • | • | • | |||||||
| Trifolium angustifolium | • | • | • | • | ||||||||
| Trifolium incarnatum | • | |||||||||||
| Test Bed | Date | North Area % (m2) | South Area % (m2) | Total Area (m2) |
| 1 | December 22nd | 45.25 (0.57) | 37.10 (0.46) | 1.03 |
| June 20th | 53.84 (0.67) | 44.13 (0.55) | 1.22 | |
| 2 | December 22nd | 21.50 (0.27) | 30.20 (0.38) | 0.65 |
| June 20th | 42.03 (0.53) | 57.75 (0.72) | 1.25 | |
| 3 | December 22nd | 31.80 (0.40) | 31.80 (0.40) | 0.80 |
| June 20th | 38.91 (0.49) | 60.70 (0.79) | 1.28 | |
| 4 | December 22nd | 24.00(0.30) | 19.40 (0.24) | 0.54 |
| June 20th | 42.43 (0.53) | 55.43 (0.69) | 1.22 | |
| 5 | December 22nd | 40.70 (0.51 ) | 22.80 (0.29) | 0.80 |
| June 20th | 31.97 (0.40) | 29.61 (0.37) | 0.77 | |
| 6 | December 22nd | 65.0 (0.81) | 32.30 (0.40) | 1.21 |
| June 20th | 51.49 (0.64) | 50.71 (0.63) | 1.27 | |
| 7 | December 22nd | 25.10 (0.31) | 24.30 (0.30) | 0.61 |
| June 20th | 30.99 (0.39) | 55.79 (0.70) | 1.09 | |
| 8 | December 22nd | 23.20 (0.29) | 34.70 (0.43) | 0.72 |
| June 20th | 45.79 (0.57) | 61.48 (0.77) | 1.34 | |
| 9 | December 22nd | 28.80 (0.36) | 17.70 (0.22) | 0.58 |
| June 20th | 63.57 (0.79) | 56.65 (0.71) | 1.50 | |
| 10 | December 22nd | 17.40 (0.22) | 12.20 (0.15) | 0.37 |
| June 20th | 47.17 (0.59) | 61.08 (0.76) | 1.35 | |
| 11 | December 22nd | 21.20 (0.27) | 29.20 (0.37) | 0.64 |
| June 20th | 44.00 (0.55) | 41.24 (0.52) | 1.07 | |
| 12 | December 22nd | 9.40 (0.12) | 19.50 (0.24) | 0.36 |
| June 20th | 27.19 (0.34) | 38.31 (0.48) | 0.82 | |
| Average | 36.36 | 38.50 | 0.94 | |
| Standard deviation | 14.34 | 15.66 | 0.34 |
| NativeScapeGR (2014) | ApiWall (2018) | ApiMat (2020) |
| Lavandula stoechas | Asphodelus fistulosus | Briza maxima |
| Rosmarinus officinalis | Antirrhinum linkianum | Stachys germanica |
| Brachypodium phoenicoides | Briza maxima | Teucrium scorodonia |
| Centranthus ruber | Trifolium angustifolium | |
| Papaver rhoeas | ||
| Reichardia picroides | ||
| Stachys germanica | ||
| Teucrium scorodonia | ||
| Trifolium angustifolium |
| Test bed | 1 | 2 | 3 | 4 | 5 | 6 |
|
Installed vegetation |
L. stoechas | T. angustifolium | A. linkianum | A. fistulosus | L. stoechas | B. maxima |
| R. officinalis | T. scorodonia | A. fistulosus | T. angustifolium | |||
| T. angustifolium | R. picroides | T. scorodonia | ||||
| T. scorodonia | B. maxima | |||||
|
Spontaneous vegetation |
V. myuros | L. luteoalbum | G. purpureum | L. luteoalbum | L. luteoalbum | A. arvensis |
| C. grandiflorum | V. myuros | L. luteoalbum | L. tingitanus | V. myuros | B. phoenicoides | |
| T. angustifolium | V. myuros | T. angustifolium | L. tingitanus | |||
| T. angustifolium | V. myuros | |||||
| Test bed | 7 | 8 | 9 | 10 | 11 | 12 |
| Installedvegetation | B. phoenicoides | B. maxima | R. picroides | A. fistulosus | ||
| P. rhoeas | R. picroides | R. picroides | ||||
| S. germanica | T. angustifolium | |||||
| T. angustifolium | T. scorodonia | |||||
| T. scorodonia | ||||||
| Spontaneous vegetation | A. linkianum | D. viscosa | B. maxima | B. madritensis | A. linkianum | B. phoenicoides |
| G. purpureum | L. luteolbum | G. purpureum | C. ruber | B. phoenicoides | B. madritensis | |
| R. picroides | L. tingitanus | L. luteoalbum | D. viscosa | B. madritensis | G. purpureum | |
| V. myuros | S. vulgaris | R. officinalis | G. purpureum | G. purpureum | R. picroides | |
| V. myuros | S. vulgaris | L. luteoalbum | H. lanatus | T. angustifolium | ||
| T. scorodonia | H. lanatus | R. picroides | T. arvense | |||
| T. angustifolium | T. angustifolium | T. arvense | V. myuros | |||
| T. arvense | V. myuros | V. myuros | ||||
| V. myuros |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

