Submitted:
25 December 2023
Posted:
28 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Model description
-
The c-customers (consumer customers) arrive in the system according to Markovian arrival process () with representation . The underlying Markov chain of the is governed by the matrix . Such that, the matrix denotes the transition rates without arrival while the matrix denotes the transition rates with arrival. So, the arrival rate of c-customers is given by where is the stationary probability vector of the generator matrix and it is satisfied
- The service times of the c-customers follow phase-type distribution with representation where is the initial probability vector, , is an infinitesimal generator matrix holding the transition rates among the n transient states, and is a column vector contains the absorption rates into state 0 from the transient states. It is clear that . The phase-type distribution has the service rate .
- The system also receives n-customers (negative customers) that the arrivals occur according to Poisson process with rate . When a n-customer arrives in the system, there are three possible cases; (i) if there is least one c-customer in the queue at the time an n-customer arrives, then only the c-customer is pushed out from the queue (i.e., the servicing of the c-customer in the server continues), (ii) if the queue has no c-customer and the server is busy with a c-customer, then the c-customer in the server is forced out of the system. However in this case, the inventory level does not change, since it is assumed that stocks are released after the completion of servicing a c-customer and (iii) the received n-customer does not affect the operation of the system if there are no c-customers in the system (in the queue and in the server).
- Hybrid sales scheme is used in the system. When a c-customer arrives in the system, if the inventory level is zero , then the c-customer either joins the queue of infinite capacity with probability (called backorder sale scheme), or leaves the system unserved with probability (called lost sale scheme). Note that . If th inventory level occurs to be zero with completion servicing of a c-customer, the c-customer in the queue (if any) waits for a replenishment.
- In the warehouse part of the system, catastrophic events can occur according to Poisson process with parameter . At the moment of arrival of such an event, all the items in the system are instantly destroyed. As a result of the catastrophes, even the item, which is at the status of release to the c-customer, is destroyed. The c-customer whose service was interrupted due to a catastrophe is returned to the queue. We can say that the catastrophe only destroys the items of the system and does not force c-customers out of the system. If the inventory level is zero, then the disaster does not affect the operation of the system warehouse.
- Two inventory replenishment policies are considered in this study. That is, as -type policy for the Model-1 and an -type policy for the Model-2. The lead time of an order follows exponential distribution with parameter for both replenishment policies. In a -type policy (sometimes this policy is called "Up to S"), when the inventory level drops to the reorder point s, , an order is placed for replenishment and upon replenishment the inventory level becomes S. This policy states that the replenishment quantity varies in order to fill the maximum capacity of the inventory when the reorder is placed. In a -type policy, when the inventory level drops to the reorder point s, , an order quantity of a is placed for replenishment and upon replenishment the inventory level becomes sum of the current items in the inventory and order quantity. This policy states that the replenishment quantity is always fixed.
3. The steady-state analysis
3.1. Model-1 with -type replenishment policy
3.1.1. Stability condition
3.1.2. The steady-state probability vector of the matrix
3.2. Model-2 with -type replenishment policy
3.2.1. Stability condition
3.2.2. The steady-state probability vector of the matrix
4. Performance measures of Model-1 and Model-2
- The probability that there is no c-customer in the system
- The mean number of c-customers in the system
- The mean loss rate of c-customers because of no inventory
- The mean loss rate of c-customers because of n-customer
- The mean loss rate of c-customers
- The mean number of items in the inventory
- The mean reorder rate
- The mean order size
5. Numerical study
5.1. The Effect of parameters on performance measures
5.2. Optimization
- the fixed cost of one order,
- the unit cost of the order size,
- the holding cost per item in the inventory per unit of time,
- the damaging cost per item in the inventory,
- the cost incured due to the loss of a c-customer,
- the waiting cost of a c-customer in the system.
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| QS | Queueing System |
| QIS | Queueing Inventory System |
| ICS | Inventory Control System |
| MAP | Markovian Arrival Process |
| PH | Phase-type distribution |
| IL | Inventory Level |
| QL | Queue Length |
| CTMC | Continuous Time Markov Chain |
| QBD | Quasi-birth-and-death process |
| ETC | Expected Total Cost |
References
- Schwarz, M.; Daduna, H. Queuing Systems with Inventory Management with Random Lead Times and with Backordering. Math. Methods Oper. Res. 2006, 64, 383–414. [Google Scholar] [CrossRef]
- Schwarz, M.; Sauer, C.; Daduna, H.; Kulik, R.; Szekli, R. M/M/1 Queuing Systems with Inventory. Queuing Syst. Theory Appl. 2006, 54, 55–78. [Google Scholar] [CrossRef]
- Melikov, A.; Molchanov, A. Stock Optimization in Transport/Storage Systems. Cybernetics 1992, 28, 484–487. [Google Scholar]
- Sigman, K.; Simchi-Levi, D. Light Traffic Heuristic for an M/G/1 Queue with Limited Inventory. Ann. Oper. Res. 1992, 40, 371–380. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Shajin, D.; Narayanan, W. Inventory with Positive Service Time: A Survey, Advanced Trends in Queueing Theory; Series of Books “Mathematics and Statistics” Sciences. V., 2, Anisimov, V., Limnios, N., Eds.; ISTE & Wiley: London, UK, 2021; pp. 201–238. [Google Scholar]
- Krishnamoorthy, A.; Lakshmy, B.; Manikandan, R. A survey on inventory models with positive service time. OPSEARCH 2011, 48, 153–169. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Sudhesh, R. Recent review article on queueing inventory systems. Research J. Pharm. and Tech. 2016, 9, 1451–1461. [Google Scholar] [CrossRef]
- Ko, S.S. A Nonhomogeneous Quasi-Birth Process Approach for an (s,S) Policy for a Perishable Inventory System with Retrial Demands. J. Ind. Manag. Opt. 2020, 16, 1415–1433. [Google Scholar] [CrossRef]
- Melikov, A.; Krishnamoorthy, A.; Shahmaliyev, M.O. Numerical Analysis and Long Run Total Cost Optimization of Perishable Queuing Inventory Systems with Delayed Feedback. Queuing Model. Serv. Manag. 2019, 2, 83–111. [Google Scholar]
- Jenifer, J.S.A.; Sangeetha, N.; Sivakumar, B. Optimal Control of Service Parameter for a Perishable Inventory System with Service Facility, Postponed Demands and Finite Waiting Hall. Int. J. Inf. & Manag Sci. 2014, 25, 349–370. [Google Scholar]
- Reshmi, P.S.; Jose, K. A Perishable (s,S) Inventory System with an Infinite Orbit and Retrials. Math. Sci. Int. Res. J. 2022, 7, 121–126. [Google Scholar]
- Melikov, A.; Shahmaliyev, M.; Nair, S.S. Matrix-Geometric Method to Study Queuing System with Perishable Inventory. Autom. Remote Control 2021, 82, 2168–2181. [Google Scholar] [CrossRef]
- Goyal, S.; GiriB. Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 2001, 134, 1–16. [Google Scholar]
- Jeganathan, K.; Selvakumar, S.; Saravanan, S.; Anbazhagan, N.; Amutha, S.; Cho, W.; Joshi, G. P.; Ryoo, J. (2022). Performance of stochastic inventory system with a fresh item, returned item, refurbished item, and multi-class customers. Mathematics 2022, 10(7), 1137. [CrossRef]
- Karaesmen I., Scheller-Wolf A., Deniz B. Managing perishable and aging inventories: Review and future research directions- Planning production and inventories in the extended enterprise. A state-of-the-art handbook. (Eds. Kempf K., Keskinocak P, Uzsoy P.). Vol. 1. Springer, 2011, 393-438.
- Nahmias, S. Perishable inventory theory. Heidelberg: Springer. 2011.
- Melikov, A.; Aliyeva, S.; Nair, S.; Krishna Kumar, B. Retrial queuing-inventory systems with delayed feedback and instantaneous damaging of items. Axioms 2022, 11, 241. [Google Scholar] [CrossRef]
- Melikov, A.; Mirzayev, R.R.; Nair, S.S. Numerical investigation of double source queuing-inventory systems with destructive customers. J. Comput. Syst. Sci. Int. 2022, 61, 581–598. [Google Scholar] [CrossRef]
- Melikov, A.; Mirzayev, R.R.; Nair, S.S. Double Sources Queuing-Inventory System with Hybrid Replenishment Policy. Mathematics 2022, 10, 2423. [Google Scholar] [CrossRef]
- Melikov, A.; Mirzayev, R.R.; Sztrik, J. Double Sources QIS with finite waiting room and destructible stocks. Mathematics 2023, 11, 226. [Google Scholar] [CrossRef]
- Lian, Z.; Liu, L.; Neuts, F. A Discrete-Time Model for Common Lifetime Inventory Systems. Math. Oper. Res. 2005, 30, 718–732. [Google Scholar] [CrossRef]
- Chakravarthy, S.R. An inventory system with Markovian demands, and phase-type distributions for perishability and replenishment. OPSEARCH 2010, 47, 266–283. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Shajin, D.; Lakshmy, B. On a queueing-inventory with reservation, cancellation, common life time and retrial. Ann. Oper. Res. 2016, 247, 365–389. [Google Scholar] [CrossRef]
- Shajin, D.; Krishnamoorthy, A.; Manikandan, R. On a Queueing-Inventory System with Common Life Time and Markovian Lead Time Process. Oper. Res. 2022, 22, 651–684. [Google Scholar] [CrossRef]
- Demircioglu, M.; Bruneel, H.; Wittevrongel, S. Analysis of a Discrete-Time Queueing Model with Disasters. Mathematics 2021, 9, 3283. [Google Scholar] [CrossRef]
- Krishna Kumar, B.; Arivudainambi, D. Transient Solution of an M/M/1 Queue with Catastrophes. Comput. Math. Appl. 2000, 40, 1233–1240. [Google Scholar] [CrossRef]
- Vinodhini, G.A.F.; Vidhya, V. Computational Analysis of Queues with Catastrophes in a Multiphase Random Environment. Math. Probl. Eng. 2016, 2917917. [Google Scholar] [CrossRef]
- Ye, J.; Liu, L.; Jiang, T. Analysis of a Single-Sever Queue with Disasters and Repairs under Bernoulli Vacation Schedule. J. Syst. Sci. Inf. 2016, 4, 547–559. [Google Scholar] [CrossRef]
- Chakravarthy, S. R. A catastrophic queueing model with delayed action. Appl. Math. Model. 2017, 46, 631–649. [Google Scholar] [CrossRef]
- Chakravarthy, S. R.; Dudin, A. N.; Klimenok, V. I. A retrial queueing model with MAP arrivals, catastrophic failures with repairs, and customer impatience. Asia-Pacific J. Oper. Res. 2010, 27, 727–752. [Google Scholar] [CrossRef]
- Raj, R.; Jain, V. (2023) Resource and traffic control optimization in MMAP[c]/PH[c]/S queueing system with PH retrial times and catastrophe phenomenon. Telecommun Syst. 2023, 84, 341–362. [Google Scholar] [CrossRef]
- Sivakumar, B.; Arivarignan, G. A Perishable Inventory System with Service Facilities and Negative Customers. Adv. Model. Optim. 2005, 7, 193–210. [Google Scholar]
- Soujanya, M.L.; Laxmi, P.V. Analysis on Dual Supply Inventory Model Having Negative Arrivals and Finite Lifetime Inventory. Reliab. Theory Appl. 2021, 16, 295–301. [Google Scholar]
- Melikov, A.; Poladova, L.; Edayapurath, S.; Sztrik, J. Single-server queuing-inventory systems with negative customers and catastrophes in the warehouse. Mathematics 2023, 11, 2380. [Google Scholar] [CrossRef]
- Neuts, M.F. (1981) Matrix-geometric solutions in stochastic models: An algorithmic approach; The Johns Hopkins University Press: Baltimore, MD, USA, 1981. [Google Scholar]
- Chakravarthy, S.R. Introduction to Matrix-Analytic Methods in Queues; John Wiley & Sons, Inc.: London, UK, 2022; Volume 1. [Google Scholar]
- Chakravarthy, S.R. Introduction to Matrix-Analytic Methods in Queues; John Wiley & Sons, Inc.: London, UK, 2022; Volume 2. [Google Scholar]
- Dudin, A.N.; Klimenok, V.I.; Vishnevsky, V.M. The Theory of Queueing Systems with Correlated Flows; Springer Nature Switzerland AG: Basel, Switzerland, 2020. [Google Scholar]
- He, Q.-M. Fundamentals of Matrix-Analytic Methods; Springer: New York, NY, USA, 2014. [Google Scholar]
- Latouche, G.; Ramaswami, V. Introduction to Matrix Analytic Methods in Stochastic Modeling; SIAM: Philadelphia, PA, USA, 1999. [Google Scholar]
- Chakravarthy, S. R. Markovian arrival processes. Wiley Encyclopedia of Operations Research and Management Science 2010. [Google Scholar] [CrossRef]

| As it is varied | It is fixed |
|---|---|
| the arrival rate of c-customers: | , , , , |
| the arrival rate of n-customers: | , , , , |
| the service rate of c-customers: | , , , , |
| the rate of the catastrophic events: | , , , , |
| the probability that c-customer joins the queue when the inventory level is zero: | , , , , |
| ERLA | HEXA | ||||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | EXPS | HEXS | ERLS | EXPS | HEXS | |
| 4.2 | 3.239 | 3.490 | 5.611 | 7.730 | 8.133 | 10.894 | |
| 4.4 | 3.848 | 4.179 | 6.994 | 9.530 | 10.046 | 13.654 | |
| 4.6 | 4.663 | 5.106 | 8.925 | 11.967 | 12.646 | 17.501 | |
| 4.8 | 5.811 | 6.426 | 11.789 | 15.438 | 16.373 | 23.198 | |
| 5 | 7.559 | 8.458 | 16.444 | 20.759 | 22.140 | 32.449 | |
| 0.4 | 3.401 | 3.707 | 6.344 | 9.298 | 9.772 | 13.120 | |
| 0.6 | 4.384 | 4.808 | 8.496 | 11.889 | 12.534 | 17.199 | |
| 0.8 | 5.686 | 6.291 | 11.589 | 15.463 | 16.380 | 23.117 | |
| 1 | 7.559 | 8.458 | 16.444 | 20.759 | 22.140 | 32.449 | |
| 1.2 | 10.577 | 12.023 | 25.194 | 29.468 | 31.767 | 49.303 | |
| 7.6 | 9.620 | 10.940 | 22.927 | 27.554 | 29.633 | 45.447 | |
| 8 | 7.559 | 8.458 | 16.444 | 20.759 | 22.140 | 32.449 | |
| 8.4 | 6.323 | 6.989 | 12.837 | 16.701 | 17.717 | 25.201 | |
| 8.8 | 5.499 | 6.018 | 10.549 | 14.009 | 14.802 | 20.592 | |
| 9.2 | 4.909 | 5.329 | 8.975 | 12.095 | 12.741 | 17.411 | |
| 1 | 7.559 | 8.458 | 16.444 | 20.759 | 22.140 | 32.449 | |
| 1.4 | 4.317 | 4.701 | 7.931 | 11.502 | 12.095 | 16.254 | |
| 1.8 | 2.957 | 3.159 | 4.778 | 7.644 | 7.979 | 10.175 | |
| 2.2 | 2.216 | 2.331 | 3.200 | 5.555 | 5.767 | 7.059 | |
| 2.6 | 1.753 | 1.822 | 2.296 | 4.262 | 4.405 | 5.205 | |
| ERLA | HEXA | ||||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | EXPS | HEXS | ERLS | EXPS | HEXS | |
| 4.2 | 3.701 | 4.001 | 6.579 | 9.563 | 10.081 | 13.596 | |
| 4.4 | 4.560 | 4.976 | 8.584 | 12.213 | 12.924 | 17.831 | |
| 4.6 | 5.811 | 6.412 | 11.701 | 16.100 | 17.133 | 24.402 | |
| 4.8 | 7.803 | 8.737 | 17.165 | 22.329 | 23.979 | 35.903 | |
| 5 | 11.486 | 13.156 | 29.116 | 33.888 | 37.021 | 61.022 | |
| 0.4 | 4.462 | 4.861 | 8.427 | 13.026 | 13.702 | 18.572 | |
| 0.6 | 5.900 | 6.499 | 11.895 | 17.145 | 18.173 | 25.651 | |
| 0.8 | 7.997 | 8.947 | 17.641 | 23.348 | 25.032 | 37.437 | |
| 1 | 11.486 | 13.156 | 29.116 | 33.888 | 37.021 | 61.022 | |
| 1.2 | 18.705 | 22.381 | 63.549 | 55.978 | 63.556 | 131.820 | |
| 7.6 | 16.591 | 19.688 | 52.949 | 50.813 | 57.091 | 111.116 | |
| 8 | 11.486 | 13.156 | 29.116 | 33.888 | 37.021 | 61.022 | |
| 8.4 | 8.971 | 10.066 | 20.110 | 25.573 | 27.542 | 42.060 | |
| 8.8 | 7.472 | 8.265 | 15.396 | 20.636 | 22.028 | 32.114 | |
| 9.2 | 6.477 | 7.086 | 12.507 | 17.370 | 18.426 | 26.003 | |
| 1 | 11.486 | 13.156 | 29.116 | 33.888 | 37.021 | 61.022 | |
| 1.4 | 5.187 | 5.675 | 9.862 | 14.842 | 15.683 | 21.456 | |
| 1.8 | 3.270 | 3.498 | 5.346 | 9.048 | 9.451 | 12.058 | |
| 2.2 | 2.354 | 2.476 | 3.412 | 6.281 | 6.516 | 7.939 | |
| 2.6 | 1.822 | 1.892 | 2.386 | 4.682 | 4.833 | 5.677 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 3.266 | 3.324 | 3.345 | 3.408 | 3.334 | 3.397 | |
| 4.2 | 3.209 | 3.275 | 3.280 | 3.350 | 3.268 | 3.338 | |
| 4.4 | 3.154 | 3.228 | 3.217 | 3.294 | 3.204 | 3.281 | |
| 4.6 | 3.099 | 3.182 | 3.154 | 3.238 | 3.141 | 3.226 | |
| 4.8 | 3.046 | 3.138 | 3.092 | 3.184 | 3.080 | 3.172 | |
| 0.2 | 4.000 | 4.088 | 4.140 | 4.227 | 4.054 | 4.147 | |
| 0.4 | 3.696 | 3.797 | 3.807 | 3.907 | 3.747 | 3.851 | |
| 0.6 | 3.431 | 3.537 | 3.513 | 3.616 | 3.475 | 3.582 | |
| 0.8 | 3.199 | 3.303 | 3.255 | 3.358 | 3.234 | 3.339 | |
| 1 | 2.994 | 3.094 | 3.030 | 3.130 | 3.020 | 3.120 | |
| 0.1 | 3.655 | 3.665 | 3.774 | 3.795 | 3.767 | 3.796 | |
| 0.3 | 3.500 | 3.526 | 3.606 | 3.643 | 3.598 | 3.639 | |
| 0.5 | 3.343 | 3.390 | 3.432 | 3.487 | 3.422 | 3.478 | |
| 0.7 | 3.191 | 3.259 | 3.256 | 3.328 | 3.245 | 3.316 | |
| 0.9 | 3.039 | 3.127 | 3.077 | 3.165 | 3.068 | 3.155 | |
| 1 | 2.994 | 3.094 | 3.030 | 3.130 | 3.020 | 3.120 | |
| 1.4 | 3.108 | 3.184 | 3.159 | 3.242 | 3.150 | 3.231 | |
| 1.8 | 3.212 | 3.260 | 3.270 | 3.336 | 3.266 | 3.328 | |
| 2.2 | 3.306 | 3.325 | 3.368 | 3.416 | 3.368 | 3.412 | |
| 2.6 | 3.391 | 3.380 | 3.453 | 3.483 | 3.459 | 3.486 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 2.266 | 2.289 | 2.275 | 2.303 | 2.250 | 2.277 | |
| 4.2 | 2.214 | 2.240 | 2.221 | 2.252 | 2.200 | 2.231 | |
| 4.4 | 2.162 | 2.192 | 2.167 | 2.201 | 2.150 | 2.184 | |
| 4.6 | 2.109 | 2.143 | 2.113 | 2.150 | 2.101 | 2.138 | |
| 4.8 | 2.057 | 2.095 | 2.060 | 2.100 | 2.051 | 2.091 | |
| 0.2 | 2.949 | 2.984 | 2.976 | 3.015 | 2.960 | 3.000 | |
| 0.4 | 2.634 | 2.671 | 2.648 | 2.689 | 2.633 | 2.675 | |
| 0.6 | 2.382 | 2.421 | 2.390 | 2.432 | 2.377 | 2.420 | |
| 0.8 | 2.176 | 2.217 | 2.180 | 2.223 | 2.171 | 2.215 | |
| 1 | 2.005 | 2.047 | 2.007 | 2.050 | 2.001 | 2.045 | |
| 0.1 | 2.559 | 2.563 | 2.624 | 2.635 | 2.581 | 2.594 | |
| 0.3 | 2.456 | 2.467 | 2.496 | 2.515 | 2.454 | 2.473 | |
| 0.5 | 2.335 | 2.354 | 2.351 | 2.377 | 2.320 | 2.345 | |
| 0.7 | 2.193 | 2.219 | 2.195 | 2.225 | 2.177 | 2.207 | |
| 0.9 | 2.030 | 2.059 | 2.027 | 2.059 | 2.020 | 2.053 | |
| 1 | 2.005 | 2.047 | 2.007 | 2.050 | 2.001 | 2.045 | |
| 1.4 | 2.121 | 2.152 | 2.124 | 2.161 | 2.112 | 2.148 | |
| 1.8 | 2.218 | 2.236 | 2.222 | 2.252 | 2.205 | 2.233 | |
| 2.2 | 2.301 | 2.303 | 2.306 | 2.327 | 2.285 | 2.303 | |
| 2.6 | 2.371 | 2.355 | 2.378 | 2.389 | 2.353 | 2.362 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 0.642 | 0.607 | 0.646 | 0.609 | 0.633 | 0.598 | |
| 4.2 | 0.653 | 0.615 | 0.655 | 0.615 | 0.643 | 0.605 | |
| 4.4 | 0.663 | 0.621 | 0.663 | 0.620 | 0.653 | 0.612 | |
| 4.6 | 0.673 | 0.628 | 0.672 | 0.626 | 0.663 | 0.619 | |
| 4.8 | 0.682 | 0.634 | 0.680 | 0.632 | 0.673 | 0.626 | |
| 0.2 | 0.511 | 0.472 | 0.496 | 0.466 | 0.496 | 0.464 | |
| 0.4 | 0.572 | 0.526 | 0.561 | 0.521 | 0.558 | 0.516 | |
| 0.6 | 0.620 | 0.570 | 0.613 | 0.566 | 0.607 | 0.561 | |
| 0.8 | 0.659 | 0.608 | 0.655 | 0.605 | 0.649 | 0.600 | |
| 1 | 0.691 | 0.639 | 0.689 | 0.637 | 0.683 | 0.633 | |
| 0.1 | 0.587 | 0.566 | 0.594 | 0.571 | 0.581 | 0.559 | |
| 0.3 | 0.604 | 0.580 | 0.613 | 0.585 | 0.599 | 0.573 | |
| 0.5 | 0.629 | 0.598 | 0.634 | 0.601 | 0.621 | 0.589 | |
| 0.7 | 0.656 | 0.617 | 0.658 | 0.617 | 0.646 | 0.607 | |
| 0.9 | 0.682 | 0.635 | 0.682 | 0.634 | 0.675 | 0.628 | |
| 1 | 0.691 | 0.639 | 0.689 | 0.637 | 0.683 | 0.633 | |
| 1.4 | 0.672 | 0.627 | 0.671 | 0.625 | 0.663 | 0.618 | |
| 1.8 | 0.656 | 0.614 | 0.656 | 0.615 | 0.646 | 0.606 | |
| 2.2 | 0.640 | 0.603 | 0.644 | 0.606 | 0.632 | 0.596 | |
| 2.6 | 0.627 | 0.593 | 0.632 | 0.598 | 0.620 | 0.587 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 0.777 | 0.699 | 0.762 | 0.687 | 0.752 | 0.678 | |
| 4.2 | 0.788 | 0.705 | 0.774 | 0.694 | 0.766 | 0.687 | |
| 4.4 | 0.798 | 0.711 | 0.785 | 0.701 | 0.779 | 0.695 | |
| 4.6 | 0.807 | 0.716 | 0.796 | 0.708 | 0.792 | 0.704 | |
| 4.8 | 0.816 | 0.721 | 0.807 | 0.714 | 0.804 | 0.711 | |
| 0.2 | 0.623 | 0.576 | 0.608 | 0.569 | 0.610 | 0.568 | |
| 0.4 | 0.692 | 0.627 | 0.679 | 0.619 | 0.679 | 0.618 | |
| 0.6 | 0.747 | 0.667 | 0.735 | 0.660 | 0.734 | 0.658 | |
| 0.8 | 0.790 | 0.699 | 0.780 | 0.693 | 0.779 | 0.691 | |
| 1 | 0.825 | 0.725 | 0.817 | 0.720 | 0.816 | 0.719 | |
| 0.1 | 0.697 | 0.646 | 0.684 | 0.636 | 0.666 | 0.619 | |
| 0.3 | 0.729 | 0.668 | 0.714 | 0.656 | 0.698 | 0.640 | |
| 0.5 | 0.762 | 0.690 | 0.746 | 0.677 | 0.733 | 0.665 | |
| 0.7 | 0.792 | 0.708 | 0.779 | 0.698 | 0.771 | 0.691 | |
| 0.9 | 0.820 | 0.723 | 0.814 | 0.719 | 0.811 | 0.717 | |
| 1 | 0.825 | 0.725 | 0.817 | 0.720 | 0.816 | 0.719 | |
| 1.4 | 0.806 | 0.715 | 0.794 | 0.706 | 0.789 | 0.701 | |
| 1.8 | 0.789 | 0.704 | 0.774 | 0.693 | 0.766 | 0.686 | |
| 2.2 | 0.773 | 0.693 | 0.757 | 0.682 | 0.746 | 0.672 | |
| 2.6 | 0.758 | 0.682 | 0.742 | 0.672 | 0.728 | 0.659 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 5.891 | 5.928 | 5.953 | 5.983 | 5.896 | 5.927 | |
| 4.2 | 5.960 | 5.998 | 6.012 | 6.043 | 5.960 | 5.993 | |
| 4.4 | 6.028 | 6.066 | 6.071 | 6.103 | 6.025 | 6.058 | |
| 4.6 | 6.095 | 6.133 | 6.130 | 6.163 | 6.090 | 6.125 | |
| 4.8 | 6.161 | 6.200 | 6.188 | 6.222 | 6.155 | 6.191 | |
| 0.2 | 4.852 | 4.828 | 4.797 | 4.772 | 4.795 | 4.767 | |
| 0.4 | 5.267 | 5.257 | 5.247 | 5.234 | 5.222 | 5.210 | |
| 0.6 | 5.629 | 5.636 | 5.632 | 5.635 | 5.599 | 5.604 | |
| 0.8 | 5.947 | 5.970 | 5.962 | 5.982 | 5.930 | 5.952 | |
| 1 | 6.227 | 6.265 | 6.247 | 6.281 | 6.220 | 6.257 | |
| 0.1 | 5.545 | 5.567 | 5.607 | 5.625 | 5.547 | 5.562 | |
| 0.3 | 5.654 | 5.682 | 5.732 | 5.754 | 5.671 | 5.691 | |
| 0.5 | 5.806 | 5.840 | 5.876 | 5.903 | 5.816 | 5.843 | |
| 0.7 | 5.980 | 6.020 | 6.032 | 6.066 | 5.982 | 6.017 | |
| 0.9 | 6.167 | 6.215 | 6.199 | 6.241 | 6.166 | 6.212 | |
| 1 | 6.227 | 6.265 | 6.247 | 6.281 | 6.220 | 6.257 | |
| 1.4 | 6.087 | 6.127 | 6.125 | 6.158 | 6.085 | 6.118 | |
| 1.8 | 5.966 | 6.010 | 6.021 | 6.055 | 5.973 | 6.005 | |
| 2.2 | 5.861 | 5.912 | 5.931 | 5.969 | 5.880 | 5.912 | |
| 2.6 | 5.770 | 5.831 | 5.853 | 5.896 | 5.802 | 5.835 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 4.605 | 4.611 | 4.613 | 4.614 | 4.573 | 4.574 | |
| 4.2 | 4.666 | 4.669 | 4.671 | 4.670 | 4.637 | 4.637 | |
| 4.4 | 4.725 | 4.726 | 4.728 | 4.724 | 4.700 | 4.698 | |
| 4.6 | 4.784 | 4.781 | 4.784 | 4.778 | 4.763 | 4.759 | |
| 4.8 | 4.841 | 4.835 | 4.840 | 4.832 | 4.825 | 4.818 | |
| 0.2 | 4.036 | 4.006 | 3.993 | 3.959 | 3.994 | 3.959 | |
| 0.4 | 4.319 | 4.293 | 4.294 | 4.265 | 4.288 | 4.259 | |
| 0.6 | 4.548 | 4.527 | 4.535 | 4.511 | 4.524 | 4.501 | |
| 0.8 | 4.738 | 4.722 | 4.732 | 4.714 | 4.720 | 4.704 | |
| 1 | 4.897 | 4.888 | 4.896 | 4.885 | 4.886 | 4.876 | |
| 0.1 | 4.236 | 4.248 | 4.241 | 4.247 | 4.181 | 4.182 | |
| 0.3 | 4.365 | 4.375 | 4.379 | 4.382 | 4.322 | 4.323 | |
| 0.5 | 4.521 | 4.529 | 4.532 | 4.534 | 4.485 | 4.486 | |
| 0.7 | 4.691 | 4.696 | 4.698 | 4.698 | 4.665 | 4.668 | |
| 0.9 | 4.872 | 4.875 | 4.875 | 4.876 | 4.861 | 4.865 | |
| 1 | 4.897 | 4.888 | 4.896 | 4.885 | 4.886 | 4.876 | |
| 1.4 | 4.771 | 4.770 | 4.773 | 4.766 | 4.750 | 4.745 | |
| 1.8 | 4.659 | 4.671 | 4.668 | 4.668 | 4.634 | 4.634 | |
| 2.2 | 4.562 | 4.589 | 4.579 | 4.586 | 4.536 | 4.542 | |
| 2.6 | 4.476 | 4.519 | 4.501 | 4.518 | 4.452 | 4.464 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 0.838 | 0.850 | 0.857 | 0.870 | 0.860 | 0.875 | |
| 4.2 | 0.887 | 0.901 | 0.906 | 0.921 | 0.908 | 0.925 | |
| 4.4 | 0.937 | 0.954 | 0.956 | 0.973 | 0.957 | 0.976 | |
| 4.6 | 0.989 | 1.008 | 1.006 | 1.026 | 1.007 | 1.028 | |
| 4.8 | 1.041 | 1.064 | 1.057 | 1.080 | 1.057 | 1.081 | |
| 0.2 | 0.645 | 0.670 | 0.679 | 0.702 | 0.673 | 0.698 | |
| 0.4 | 0.790 | 0.815 | 0.819 | 0.843 | 0.816 | 0.841 | |
| 0.6 | 0.910 | 0.936 | 0.934 | 0.959 | 0.932 | 0.958 | |
| 0.8 | 1.010 | 1.037 | 1.029 | 1.054 | 1.028 | 1.055 | |
| 1 | 1.095 | 1.122 | 1.109 | 1.134 | 1.108 | 1.135 | |
| 0.1 | 1.838 | 1.845 | 1.867 | 1.878 | 1.877 | 1.894 | |
| 0.3 | 1.437 | 1.447 | 1.468 | 1.480 | 1.476 | 1.493 | |
| 0.5 | 1.039 | 1.050 | 1.063 | 1.076 | 1.068 | 1.084 | |
| 0.7 | 0.635 | 0.646 | 0.649 | 0.660 | 0.650 | 0.663 | |
| 0.9 | 0.217 | 0.222 | 0.220 | 0.226 | 0.221 | 0.226 | |
| 1 | 1.095 | 1.122 | 1.109 | 1.134 | 1.108 | 1.135 | |
| 1.4 | 1.074 | 1.094 | 1.093 | 1.114 | 1.094 | 1.117 | |
| 1.8 | 1.058 | 1.073 | 1.080 | 1.098 | 1.083 | 1.102 | |
| 2.2 | 1.046 | 1.058 | 1.069 | 1.085 | 1.074 | 1.091 | |
| 2.6 | 1.037 | 1.047 | 1.060 | 1.074 | 1.067 | 1.082 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 0.883 | 0.902 | 0.907 | 0.926 | 0.905 | 0.926 | |
| 4.2 | 0.939 | 0.961 | 0.961 | 0.984 | 0.958 | 0.982 | |
| 4.4 | 0.996 | 1.022 | 1.017 | 1.042 | 1.013 | 1.040 | |
| 4.6 | 1.055 | 1.085 | 1.073 | 1.102 | 1.070 | 1.100 | |
| 4.8 | 1.115 | 1.149 | 1.130 | 1.163 | 1.127 | 1.161 | |
| 0.2 | 0.772 | 0.808 | 0.809 | 0.843 | 0.799 | 0.836 | |
| 0.4 | 0.906 | 0.943 | 0.936 | 0.971 | 0.928 | 0.965 | |
| 0.6 | 1.014 | 1.052 | 1.037 | 1.073 | 1.031 | 1.069 | |
| 0.8 | 1.103 | 1.141 | 1.119 | 1.156 | 1.116 | 1.153 | |
| 1 | 1.177 | 1.216 | 1.188 | 1.225 | 1.186 | 1.223 | |
| 0.1 | 1.887 | 1.901 | 1.931 | 1.948 | 1.930 | 1.954 | |
| 0.3 | 1.486 | 1.503 | 1.530 | 1.550 | 1.529 | 1.553 | |
| 0.5 | 1.087 | 1.106 | 1.119 | 1.139 | 1.117 | 1.139 | |
| 0.7 | 0.674 | 0.691 | 0.690 | 0.707 | 0.688 | 0.706 | |
| 0.9 | 0.234 | 0.242 | 0.237 | 0.245 | 0.236 | 0.244 | |
| 1 | 1.177 | 1.216 | 1.188 | 1.225 | 1.186 | 1.223 | |
| 1.4 | 1.144 | 1.174 | 1.164 | 1.194 | 1.161 | 1.192 | |
| 1.8 | 1.117 | 1.141 | 1.144 | 1.170 | 1.141 | 1.168 | |
| 2.2 | 1.097 | 1.117 | 1.127 | 1.150 | 1.125 | 1.149 | |
| 2.6 | 1.081 | 1.098 | 1.113 | 1.134 | 1.113 | 1.134 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 0.759 | 0.752 | 0.724 | 0.727 | 0.745 | 0.745 | |
| 4.2 | 0.787 | 0.782 | 0.756 | 0.761 | 0.776 | 0.777 | |
| 4.4 | 0.815 | 0.813 | 0.788 | 0.794 | 0.806 | 0.809 | |
| 4.6 | 0.843 | 0.843 | 0.819 | 0.827 | 0.836 | 0.840 | |
| 4.8 | 0.871 | 0.873 | 0.851 | 0.860 | 0.865 | 0.871 | |
| 0.2 | 0.743 | 0.736 | 0.747 | 0.748 | 0.756 | 0.755 | |
| 0.4 | 0.790 | 0.787 | 0.783 | 0.788 | 0.796 | 0.798 | |
| 0.6 | 0.830 | 0.830 | 0.818 | 0.825 | 0.831 | 0.835 | |
| 0.8 | 0.866 | 0.869 | 0.851 | 0.860 | 0.864 | 0.870 | |
| 1 | 0.898 | 0.903 | 0.882 | 0.893 | 0.894 | 0.902 | |
| 0.1 | 0.438 | 0.417 | 0.446 | 0.434 | 0.459 | 0.446 | |
| 0.3 | 0.601 | 0.583 | 0.572 | 0.567 | 0.586 | 0.578 | |
| 0.5 | 0.713 | 0.702 | 0.675 | 0.676 | 0.696 | 0.693 | |
| 0.7 | 0.802 | 0.799 | 0.771 | 0.778 | 0.791 | 0.795 | |
| 0.9 | 0.882 | 0.889 | 0.864 | 0.878 | 0.878 | 0.889 | |
| 1 | 0.898 | 0.903 | 0.882 | 0.893 | 0.894 | 0.902 | |
| 1.4 | 1.173 | 1.166 | 1.142 | 1.148 | 1.161 | 1.163 | |
| 1.8 | 1.410 | 1.384 | 1.363 | 1.359 | 1.387 | 1.379 | |
| 2.2 | 1.615 | 1.562 | 1.554 | 1.536 | 1.579 | 1.559 | |
| 2.6 | 1.790 | 1.707 | 1.720 | 1.685 | 1.744 | 1.710 | |
| ERLA | HEXA | MPCA | |||||
|---|---|---|---|---|---|---|---|
| Values of the parameters | ERLS | HEXS | ERLS | HEXS | ERLS | HEXS | |
| 4 | 0.778 | 0.776 | 0.755 | 0.762 | 0.772 | 0.777 | |
| 4.2 | 0.809 | 0.810 | 0.788 | 0.798 | 0.805 | 0.812 | |
| 4.4 | 0.840 | 0.844 | 0.822 | 0.834 | 0.836 | 0.845 | |
| 4.6 | 0.870 | 0.877 | 0.856 | 0.870 | 0.868 | 0.879 | |
| 4.8 | 0.900 | 0.910 | 0.889 | 0.905 | 0.899 | 0.912 | |
| 0.2 | 0.783 | 0.783 | 0.794 | 0.800 | 0.800 | 0.805 | |
| 0.4 | 0.828 | 0.832 | 0.829 | 0.839 | 0.837 | 0.846 | |
| 0.6 | 0.867 | 0.874 | 0.862 | 0.875 | 0.871 | 0.882 | |
| 0.8 | 0.901 | 0.911 | 0.893 | 0.909 | 0.901 | 0.915 | |
| 1 | 0.930 | 0.944 | 0.923 | 0.940 | 0.929 | 0.945 | |
| 0.1 | 0.435 | 0.415 | 0.452 | 0.439 | 0.469 | 0.459 | |
| 0.3 | 0.604 | 0.589 | 0.587 | 0.583 | 0.602 | 0.597 | |
| 0.5 | 0.726 | 0.719 | 0.700 | 0.704 | 0.719 | 0.720 | |
| 0.7 | 0.828 | 0.831 | 0.808 | 0.821 | 0.824 | 0.833 | |
| 0.9 | 0.924 | 0.942 | 0.915 | 0.938 | 0.923 | 0.943 | |
| 1 | 0.930 | 0.944 | 0.923 | 0.940 | 0.929 | 0.945 | |
| 1.4 | 1.206 | 1.208 | 1.187 | 1.200 | 1.201 | 1.212 | |
| 1.8 | 1.441 | 1.424 | 1.410 | 1.414 | 1.430 | 1.431 | |
| 2.2 | 1.642 | 1.597 | 1.600 | 1.590 | 1.624 | 1.612 | |
| 2.6 | 1.813 | 1.738 | 1.764 | 1.738 | 1.789 | 1.764 | |
| MAP | PH | ||||||
| ERLA | ERLS | 12 | 1523.049 | 12 | 1526.263 | 12 | 1538.455 |
| EXPS | 12 | 1577.435 | 12 | 1579.782 | 12 | 1590.842 | |
| HEXS | 14 | 2027.068 | 14 | 2025.895 | 14 | 2030.171 | |
| EXPA | ERLS | 13 | 1657.027 | 13 | 1657.273 | 13 | 1665.452 |
| EXPS | 13 | 1714.634 | 13 | 1714.218 | 13 | 1721.526 | |
| HEXS | 15 | 2169.740 | 15 | 2167.181 | 14 | 2169.473 | |
| HEXA | ERLS | 18 | 2413.463 | 17 | 2402.938 | 16 | 2398.154 |
| EXPS | 18 | 2496.819 | 17 | 2486.839 | 17 | 2482.051 | |
| HEXS | 19 | 3043.694 | 19 | 3034.463 | 18 | 3028.903 | |
| MNCA | ERLS | 13 | 1706.068 | 13 | 1706.237 | 13 | 1714.395 |
| EXPS | 13 | 1760.549 | 13 | 1760.072 | 13 | 1767.381 | |
| HEXS | 15 | 2209.347 | 15 | 2206.767 | 15 | 2209.113 | |
| MPCA | ERLS | 39 | 28273.270 | 38 | 28245.217 | 36 | 28217.794 |
| EXPS | 40 | 28343.298 | 39 | 28316.825 | 37 | 28290.718 | |
| HEXS | 45 | 28862.495 | 43 | 28840.115 | 42 | 28818.031 | |
| MAP | PH | ||||||
| ERLA | ERLS | 15 | 1522.919 | 17 | 1529.208 | 19 | 1547.543 |
| EXPS | 15 | 1577.272 | 17 | 1582.646 | 19 | 1599.781 | |
| HEXS | 17 | 2026.762 | 19 | 2027.477 | 21 | 2035.853 | |
| EXPA | ERLS | 16 | 1656.737 | 18 | 1659.345 | 20 | 1672.515 |
| EXPS | 16 | 1714.313 | 18 | 1716.220 | 20 | 1728.459 | |
| HEXS | 18 | 2169.372 | 20 | 2168.303 | 22 | 2173.935 | |
| HEXA | ERLS | 21 | 2412.971 | 22 | 2403.011 | 23 | 2399.884 |
| EXPS | 21 | 2496.307 | 22 | 2486.853 | 24 | 2483.935 | |
| HEXS | 22 | 3043.138 | 24 | 3034.403 | 25 | 3029.949 | |
| MNCA | ERLS | 16 | 1705.783 | 18 | 1708.339 | 20 | 1721.544 |
| EXPS | 16 | 1760.236 | 18 | 1762.111 | 20 | 1774.414 | |
| HEXS | 18 | 2208.991 | 20 | 2207.933 | 21 | 2213.632 | |
| MPCA | ERLS | 42 | 28273.128 | 43 | 28244.999 | 43 | 28217.403 |
| EXPS | 43 | 28343.163 | 44 | 28316.618 | 44 | 28290.344 | |
| HEXS | 48 | 28862.372 | 48 | 28840.132 | 49 | 28817.682 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
