Submitted:
11 December 2023
Posted:
15 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. The choice of the PLS-SEM method for mathematical modeling
2.2. Specifying the structural model
- H1: By optimizing collection networks, and recovering value, Reverse Logistics (RL) efficiency is achieved. This can help companies decrease RL costs, reduce expenditures, and improve performance (effectivity) [16]. Increasing efficiency leads to a decrease in both plastic waste and pollution. Besides that, adopting a sustainability system enables industries to access new markets, thus promoting growth in sales and revenues, and consequently, competitive advantage [17].
- H2: The fast handling of collected products, the upgrading of return policies, and the operation of take-back networks enable companies to use the resultant RL effectiveness to strengthen their competitiveness by increasing consumer confidence in both brand and image [16], which improves RL performance. The trained employee demonstrates in a company a positive relation between higher performance and effectiveness [18].
- H3: Socioeconomic aspects comprise not only income and consumption expenses—which are positively correlated with waste generation—but also the Gross Domestic Product (GDP) [14]. Also, there is a relationship between the growth of GDP and the increase in the generation of recyclable MSW [19,20]. It is reasonable to think that the bigger the GDP, the greater the positive influence on the performance of plastics RL if economies of scale are considered.
2.3. Specifying the measurement model
2.4. The choice for the reflective measurement model
2.5. Data collection, Exploratory Factor Analysis, and the parameters for the algorithm run
3. Results of the PLS-SEM path model estimation
3.1. Assessing the initial PLS-SEM results
3.2. Assessing PLS-SEM results of the reflective measurement model
3.3. Assessing PLS-SEM results of the structural model
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. R code to perform KMO and Bartlett’s tests.


Appendix B
| Part 1 - Efficiency in Reverse Logistics, i.e., fast with less spending of resources. | |||||
| No. 1) High complexity of shape and size of plastic waste. | ○ 1-Very bad influence on RL performance | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| No. 2) Working with varieties of plastic waste (e.g.: PET, HDPE, LDPE, PP, PVC, PS) at the same plant facility. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| No. 3) High variability in plastic waste, i.e., the opposite of purity. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| Part 2 - Effectiveness in Reverse Logistics, i.e., solving the logistics with better safety and better quality. | |||||
| No. 4) Maturity of the plastic waste market. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
| No. 5) Value of plastic waste. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
| No. 6) Volume of plastic waste processing. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
| Part 3 - Performance in Reverse Logistics. | |||||
| No. 7) High recycling rate of plastic waste. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| No. 8) High thermochemical conversion rate (for plastics that cannot be recycled but only incinerated). | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| No. 9) High profitability of the plastic waste business. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| No. 10) Availability of plastics sorting technologies (e.g.: automated sorting machines). | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| Part 4 - Infrastructure of the Municipality | |||||
| No. 11) Availability of selective collection in the municipality. | ○ 1-Very bad influence on RL performance | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| No. 12) Presence of Deposit-Return Systems in the municipality, i.e., vending machines that charge an extra deposit because of the packaging when purchasing a bottled drink, and they get a refund upon returning an empty bottle. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
| Part 5 - Socio-economic characteristics of the municipality | |||||
| No. 13) Socio-economic profile of the municipality. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
| No. 14) Population density of the municipality. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
Appendix C
| EFICI-1 | EFICI-2 | EFICI-3 | EFICA-1 | EFICA-2 | EFICA-3 | DESEMP-1 | DESEMP-2 | DESEMP-3 | DESEMP-4 | INFRA-1 | INFRA-2 | SOCIO-1 | SOCIO-2 |
| 5 | 4 | 4 | 4 | 1 | 2 | 4 | 4 | 5 | 3 | 4 | 4 | 1 | 3 |
| 4 | 3 | 3 | 5 | 5 | 5 | 5 | 2 | 2 | 1 | 5 | 4 | 5 | 5 |
| 3 | 2 | 3 | 2 | 2 | 4 | 3 | 3 | 3 | 3 | 5 | 5 | 3 | 2 |
| 3 | 1 | 1 | 4 | 3 | 5 | 3 | 3 | 1 | 3 | 5 | 4 | 5 | 5 |
| 4 | 2 | 2 | 4 | 4 | 3 | 4 | 2 | 4 | 4 | 4 | 3 | 4 | 4 |
| 5 | 2 | 1 | 4 | 4 | 3 | 2 | 1 | 2 | 5 | 5 | 4 | 5 | 5 |
| 3 | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 4 |
| 4 | 4 | 2 | 2 | 2 | 3 | 4 | 1 | 5 | 5 | 3 | 3 | 5 | 5 |
| 1 | 1 | 1 | 5 | 5 | 5 | 1 | 1 | 5 | 5 | 5 | 5 | 3 | 5 |
| 3 | 3 | 3 | 1 | 1 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 2 | 4 | 2 | 4 | 5 | 4 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 3 |
| 3 | 4 | 2 | 5 | 5 | 4 | 3 | 3 | 5 | 3 | 4 | 2 | 5 | 3 |
| 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 4 | 4 | 5 | 2 | 1 |
| 3 | 2 | 3 | 5 | 5 | 5 | 5 | 3 | 5 | 5 | 4 | 4 | 5 | 5 |
| 3 | 2 | 2 | 4 | 3 | 4 | 4 | 3 | 4 | 5 | 4 | 3 | 5 | 5 |
| 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 5 |
| 3 | 1 | 1 | 5 | 5 | 4 | 4 | 1 | 5 | 5 | 5 | 5 | 5 | 3 |
| 1 | 2 | 2 | 4 | 4 | 5 | 5 | 4 | 5 | 5 | 5 | 3 | 5 | 5 |
| 4 | 3 | 5 | 5 | 2 | 4 | 5 | 2 | 5 | 5 | 5 | 5 | 5 | 5 |
| 1 | 2 | 1 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 5 | 5 |
| 2 | 2 | 2 | 3 | 4 | 3 | 4 | 3 | 3 | 3 | 4 | 4 | 4 | 4 |
| 2 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 5 | 5 |
| 3 | 4 | 3 | 1 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 |
| 1 | 1 | 1 | 4 | 3 | 5 | 5 | 3 | 3 | 5 | 5 | 5 | 5 | 5 |
| 2 | 5 | 2 | 5 | 3 | 5 | 5 | 5 | 4 | 5 | 4 | 3 | 5 | 1 |
| 2 | 2 | 1 | 4 | 3 | 5 | 5 | 3 | 5 | 5 | 5 | 4 | 5 | 5 |
| 4 | 4 | 3 | 4 | 3 | 4 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 4 |
| 5 | 3 | 5 | 3 | 4 | 4 | 3 | 2 | 3 | 2 | 3 | 4 | 1 | 2 |
| 2 | 2 | 1 | 5 | 5 | 5 | 5 | 2 | 5 | 5 | 2 | 3 | 5 | 4 |
| 1 | 1 | 2 | 5 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 2 | 3 | 5 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 3 |
| 3 | 1 | 4 | 2 | 3 | 5 | 5 | 4 | 3 | 3 | 5 | 5 | 2 | 1 |
| 4 | 3 | 3 | 4 | 2 | 3 | 3 | 2 | 4 | 5 | 4 | 2 | 5 | 5 |
| 5 | 4 | 4 | 5 | 5 | 5 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | 5 |
| 3 | 2 | 1 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 3 | 5 | 2 | 3 | 5 | 5 | 5 | 3 | 5 | 5 | 4 | 4 | 5 | 5 |
| 2 | 2 | 2 | 5 | 5 | 5 | 5 | 2 | 5 | 5 | 4 | 4 | 5 | 5 |
| 5 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 1 | 1 |
| 4 | 3 | 4 | 3 | 2 | 4 | 4 | 2 | 4 | 3 | 5 | 5 | 4 | 1 |
| 1 | 2 | 2 | 5 | 5 | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 4 |
| 4 | 5 | 4 | 4 | 3 | 5 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| 1 | 3 | 2 | 2 | 3 | 3 | 5 | 4 | 5 | 4 | 5 | 5 | 5 | 5 |
| 3 | 3 | 3 | 2 | 3 | 3 | 1 | 1 | 2 | 4 | 3 | 3 | 1 | 4 |
| 4 | 5 | 2 | 4 | 3 | 4 | 4 | 4 | 4 | 3 | 5 | 4 | 5 | 5 |
| 3 | 2 | 1 | 4 | 5 | 4 | 5 | 2 | 5 | 5 | 4 | 5 | 5 | 5 |
| 3 | 3 | 3 | 4 | 4 | 4 | 4 | 2 | 3 | 4 | 4 | 5 | 4 | 4 |
| 3 | 3 | 1 | 5 | 5 | 5 | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 |
| 3 | 1 | 1 | 3 | 3 | 3 | 4 | 3 | 5 | 5 | 3 | 5 | 5 | 4 |
| 4 | 2 | 2 | 5 | 1 | 4 | 5 | 2 | 5 | 5 | 4 | 3 | 5 | 5 |
| 2 | 2 | 1 | 3 | 2 | 3 | 3 | 3 | 4 | 5 | 4 | 4 | 5 | 5 |
| 3 | 2 | 2 | 5 | 3 | 4 | 5 | 1 | 4 | 5 | 5 | 1 | 5 | 4 |
| 3 | 4 | 2 | 2 | 3 | 4 | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 4 |
| 1 | 2 | 1 | 5 | 4 | 4 | 5 | 3 | 5 | 4 | 4 | 4 | 5 | 5 |
| 1 | 3 | 1 | 5 | 2 | 5 | 5 | 5 | 5 | 5 | 4 | 3 | 5 | 5 |
| 5 | 1 | 1 | 3 | 5 | 5 | 5 | 1 | 5 | 5 | 5 | 5 | 5 | 5 |
| 4 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 2 | 3 | 3 | 4 | 4 |
| 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 3 | 2 | 4 | 2 | 5 | 5 |
| 4 | 5 | 4 | 4 | 4 | 3 | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 3 |
| 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 2 |
| 2 | 4 | 3 | 4 | 4 | 3 | 5 | 3 | 4 | 5 | 3 | 4 | 4 | 4 |
| 3 | 1 | 1 | 1 | 5 | 3 | 3 | 2 | 4 | 1 | 2 | 2 | 1 | 1 |
| 1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | 5 | 5 | 4 | 3 | 5 | 5 |
| 1 | 2 | 5 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | 3 | 1 | 2 |
| 2 | 2 | 3 | 5 | 4 | 5 | 4 | 4 | 2 | 4 | 5 | 4 | 5 | 2 |
| 2 | 2 | 2 | 5 | 5 | 4 | 5 | 1 | 4 | 5 | 5 | 4 | 5 | 5 |
| 1 | 1 | 1 | 4 | 5 | 4 | 3 | 3 | 5 | 5 | 4 | 4 | 5 | 4 |
| 5 | 5 | 1 | 4 | 5 | 5 | 5 | 1 | 3 | 5 | 3 | 3 | 5 | 5 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 4 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 |
| 2 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 |
| 3 | 4 | 2 | 4 | 4 | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 |
Appendix D. R code specifying the same PLS model as simulated in SmartPLS 4 but to perform RMSE and MAE calculations in Out-of-sample predictive power measurements



Appendix E
| Alternatives | Population covered by the door-to-door selective collection (%) | Recovery rate of inorganic recyclable materials from the total collected (%) | Per capita mass of recovered inorganic recyclable materials (kg/inhabitant) | Per capita mass of recyclable materials collected via selective collection (kg/inhabitant) |
|---|---|---|---|---|
| Aracaju (SE) | 38.06 | 0.25 | 1.05 | 1.53 |
| Belo Horizonte (MG) | 15.77 | 0.72 | 2.14 | 2.54 |
| Brasília (DF) | 75.15 | 2.05 | 5.42 | 18.78 |
| Campo Grande (MS) | 67.43 | 0.87 | 3.22 | 6.61 |
| Cuiabá (MT) | 16.39 | 0.65 | 1.85 | 5.28 |
| Curitiba (PR) | 100.00 | 2.92 | 8.64 | 14.40 |
| Manaus (AM) | 38.27 | 0.77 | 2.91 | 5.49 |
| Natal (RN) | 12.85 | 0.69 | 3.37 | 3.85 |
| Porto Alegre (RS) | 100.00 | 1.83 | 6.22 | 9.57 |
| Recife (PE) | 29.67 | 0.13 | 0.69 | 1.45 |
| Rio de Janeiro (RJ) | 61.53 | 1.30 | 5.73 | 7.16 |
| São Paulo (SP) | 74.91 | 0.85 | 2.74 | 5.94 |
References
- Pereira, L.M., Freires, F.G.M. Use of Structural Equation Modeling to improve the Plastic Waste Management of a Brazilian capital. In 29th Industrial Engineering and Operations Management (IJCIEOM), Lusófona University, Lisbon, Portugal, June 28-30, 2023. Available online: http://portalabepro.educacao.ws/ijcieom/restrito/arquivos/icieom2023/FULL_0032_37760.pdf , (accessed on 28 jul 2023).
- Li, C.H.; Lee, T.T.; Lau, S.S.Y. Enhancement of Municipal Solid Waste Management in Hong Kong through Innovative Solutions: A Review. Sustainability 2023, 15, 3310. [Google Scholar] [CrossRef]
- Sebrae: Estudo de Mercado – Comércio e Serviços: Reciclagem de Resíduos. Available online: https://www.sebrae.com.br/Sebrae/Portal%20Sebrae/UFs/BA/Anexos/Reciclagem%20de%20res%C3%ADduos%20na%20Bahia.pdf (accessed on 15 dec 2022).
- Nascimento, V.F.; Sobral, A.C.; Fehr, M.; Yesiller, N.; Andrade, P.R.; Ometto, J.P.H.B. Municipal Solid Waste Disposal in Brazil: Improvements and Challenges. IJEWM 2019, 23, 300. [Google Scholar] [CrossRef]
- Manzi, M.; Santana, J.S.; Marchi, C.M.D.F. ‘Accumulation by Appropriation’: The Integration of Recyclable-Waste Collector Cooperatives in Salvador, Brazil, and the Right to the City. Environ Plan D 2022, 40, 683–705. [Google Scholar] [CrossRef]
- Freires, F.G.M. A Influência dos Componentes Físicos e da Cooperação entre os Actores sobre o Desempenho de Sistemas Logísticos Inversos: O Caso dos Pneus-Resíduo. Doctoral dissertation in Industrial Engineering. Faculdade de Engenharia da Universidade do Porto. Porto, Portugal, 2007.
- Instituto Brasileiro de Geografia e Estatística Panorama Do Censo 2022. Available online: https://censo2022.ibge.gov.br/panorama/ (accessed on 25 October 2023).
- Empresa de Limpeza Urbana de Salvador (Limpurb) - Secretaria de Ordem Pública. Cooperativas e/ou associações de catadores de materiais recicláveis cadastradas na Limpurb. Available online: https://limpurb.salvador.ba.gov.br/wp-content/uploads/2023/05/RELACAO-DAS-COOPERATIVAS-Versao-site-16.05.2023.pdf. (accessed on 25 oct 2023).
- SNIS (Sistema Nacional de Informações sobre Saneamento): Série Histórica - Ministério do Desenvolvimento Regional. Diagnóstico do Manejo de Resíduos Sólidos Urbanos de 2017. Brasília, 2019, (accessed on 17 jul 2023).
- Almeida, E.; Oliveira, F.; Nascimento, F. Economia Circular em Salvador-BA: Perspectivas para Gestão e Gerenciamento dos Resíduos Sólidos Inorgânicos. Painel Salvador de Mudança do Clima - Cadernos Temáticos, 1, 2020.
- SNIS (Sistema Nacional de Informações sobre Saneamento): Série Histórica - Ministério das Cidades. Available online: http://app4.mdr.gov.br/serieHistorica/. (accessed on 30 jun 2023).
- Secretaria Municipal de Inovação e Tecnologia (SEMIT) Casa So+Ma Recolhe Mais de 700 Toneladas de Materiais Recicláveis Em 2022 – Secretaria de Comunicação. Available online: https://comunicacao.salvador.ba.gov.br/casa-soma-recolhe-mais-de-700-toneladas-de-materiais-reciclaveis-em-2022/ (accessed on 26 October 2023).
- Santana, W.B.; Maués, L.M.F. Environmental Protection Is Not Relevant in the Perceived Quality of Life of Low-Income Housing Residents: A PLS-SEM Approach in the Brazilian Amazon. Sustainability 2022, 14, 13171. [Google Scholar] [CrossRef]
- Bittencourt, E.S. Metabolismo socioeconômico dos resíduos sólidos: um modelo de análise através de equações estruturais de pneus em fim de vida. Doctoral dissertation in Industrial Engineering, Universidade Federal da Bahia, Salvador, Brazil, 2021.
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Second edition.; SAGE: Los Angeles London New Delhi Singapore Washington DC Melbourne, 2017; ISBN 978-1-4833-7744-5.
- Wondimu, S. Measuring performance of reverse logistics system in pet bottles recovery in EABSCO. Master’s thesis in Lo-gistics and Supply Chain Management, Addis Ababa University, Addis Ababa, Ethiopia, 2016.
- Agustina Hidayat, Y.; Kiranamahsa, S.; Arya Zamal, M.; 1 Industrial Engineering Department, Faculty of Industrial Tech-nology, Bandung Institute of Technology, Jl Ganeca No. 10, Bandung, Indonesia; 2 Engineering Management Department, Faculty of Industrial Technology, Bandung Institute of Technology, Jl Ganeca No. 10, Bandung, Indonesia A Study of Plastic Waste Management Effectiveness in Indonesia Industries. AIMS Energy 2019, 7, 350–370. [CrossRef]
- Filho, J.C.; Nunhes, T.V.; Oliveira, O.J. Guidelines for Cleaner Production Implementation and Management in the Plastic Footwear Industry. Journal of Cleaner Production 2019, 232, 822–838. [Google Scholar] [CrossRef]
- Aludaisi Adekomaya; Thokozani Majozi Sustainable Management of Plastic Waste: Assessment of Recycled Biodegradable Plastic Market and Projection for the Future. Engineering and Applied Science Research 2020, 47, 216221. [CrossRef]
- Olivo, F.; Junqueira, M.C.; Furlan, M.B.; Justi, P.A.; De Morais Lima, P. Monetary Losses Caused by the Absence of Packaging Reverse Logistics: Environmental and Economic Impacts. J Mater Cycles Waste Manag 2020, 22, 1801–1817. [Google Scholar] [CrossRef]
- Correa, C.A.; De Oliveira, M.A.; Jacinto, C.; Mondelli, G. Challenges to Reducing Post-Consumer Plastic Rejects from the MSW Selective Collection at Two MRFs in São Paulo City, Brazil. J Mater Cycles Waste Manag 2022, 24, 1140–1155. [Google Scholar] [CrossRef]
- Andreasi Bassi, S.; Boldrin, A.; Faraca, G.; Astrup, T.F. Extended Producer Responsibility: How to Unlock the Environmental and Economic Potential of Plastic Packaging Waste? Resources, Conservation and Recycling 2020, 162, 105030. [CrossRef]
- Martin, E.J.P.; Oliveira, D.S.B.L.; Oliveira, L.S.B.L.; Bezerra, B.S. Life Cycle Comparative Assessment of Pet Bottle Waste Management Options: A Case Study for the City of Bauru, Brazil. Waste Management 2021, 119, 226–234. [Google Scholar] [CrossRef]
- Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions; Letcher, T.M., Ed.; Elsevier: Cambridge, 2020; ISBN 978-0-12-817880-5.
- Streit, A.F.M.; De Santana, M.P.; De Oliveira Júnior, D.L.; Bassaco, M.M.; Tanabe, E.H.; Dotto, G.L.; Bertuol, D.A. Development of a Pre-Treatment Process of Polymeric Wastes (HDPE, LDPE/LLDPE, PP) for Application in the Qualification of Selectors of Recyclable Materials. Environ Dev Sustain 2022, 24, 6349–6371. [Google Scholar] [CrossRef]
- Mwanza, B. G.; Mbohwa, C.; Telukdarie, A. Drivers of Reverse Logistics in the Plastic Industry: Producer’s Perspective. Pro-ceedings of the International Conference on Industrial Engineering and Operations Management, Bogota, Colombia, October 25-26, 2017; IEOM Society International: Southfield, Michigan, USA, 2017; ISBN 978-1-5323-5943-9.
- Larrain, M.; Van Passel, S.; Thomassen, G.; Van Gorp, B.; Nhu, T.T.; Huysveld, S.; Van Geem, K.M.; De Meester, S.; Billen, P. Techno-Economic Assessment of Mechanical Recycling of Challenging Post-Consumer Plastic Packaging Waste. Resources, Conservation and Recycling 2021, 170, 105607. [CrossRef]
- European Commission A European Strategy for Plastics in a Circular Economy; European Union: Brussels, 2018. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:2df5d1d2-fac7-11e7-b8f5-01aa75ed71a1.0001.02/DOC_1&format=PDF , (accessed on 30 jul 2023).
- Daaboul, J.; Le Duigou, J.; Penciuc, D.; Eynard, B. Reverse Logistics: Network Design Based on Life Cycle Assessment. In Advances in Production Management Systems. Sustainable Production and Service Supply Chains; Prabhu, V., Taisch, M., Kiritsis, D., Eds.; IFIP Advances in Information and Communication Technology; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; Vol. 414, pp. 450–460 ISBN 978-3-642-41265-3.
- Waste to Energy Conversion Technology; Klinghoffer, N.B., Castaldi, M.J., Eds.; Woodhead publishing series in energy; Woodhead Publ: Oxford, 2013; ISBN 978-0-85709-636-4.
- Rudolph, N.S.; Kiesel, R.; Aumanate, C. Understanding Plastics Recycling: Economic, Ecological, and Technical Aspects of Plastic Waste Handling; Hanser Publishers ; Hanser Publications: Cincinnati : Munich, 2017; ISBN 978-1-56990-676-7.
- Gasde, J.; Woidasky, J.; Moesslein, J.; Lang-Koetz, C. Plastics Recycling with Tracer-Based-Sorting: Challenges of a Potential Radical Technology. Sustainability 2020, 13, 258. [Google Scholar] [CrossRef]
- Pimentel Pincelli, I.; Borges De Castilhos Júnior, A.; Seleme Matias, M.; Wanda Rutkowski, E. Post-Consumer Plastic Packaging Waste Flow Analysis for Brazil: The Challenges Moving towards a Circular Economy. Waste Management 2021, 126, 781–790. [Google Scholar] [CrossRef]
- Milios, L.; Holm Christensen, L.; McKinnon, D.; Christensen, C.; Rasch, M.K.; Hallstrøm Eriksen, M. Plastic Recycling in the Nordics: A Value Chain Market Analysis. Waste Management 2018, 76, 180–189. [Google Scholar] [CrossRef]
- Das, S.; Bhattacharyya, B.Kr. Optimization of Municipal Solid Waste Collection and Transportation Routes. Waste Management 2015, 43, 9–18. [Google Scholar] [CrossRef]
- Aybek, E.C.; Toraman, C. How Many Response Categories Are Sufficient for Likert Type Scales? An Empirical Study Based on the Item Response Theory. International Journal of Assessment Tools in Education 2022, 9, 534–547. [Google Scholar] [CrossRef]
- Mirahmadizadeh, A.; Shiraz University of Medical Sciences; Delam, H.; Shiraz University of Medical Sciences; Seif, M.; Shiraz University of Medical Sciences; Bahrami, R.; Shiraz University of Medical Sciences Designing, Constructing, and Analyzing Likert Scale Data. J Educ Community Health 2018, 5, 63–72. [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Third edition.; SAGE: Los Angeles, 2022; ISBN 978-1-5443-9640-8.
- Kaiser, H.F. A Second Generation Little Jiffy. Psychometrika 1970, 35, 401–415. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark Iv. Educational and Psychological Measurement 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Cureton, E.E.; D’Agostino, R.B. Factor Analysis, an Applied Approach; Psychology Press: New York, 1983; ISBN 978-1-315-79947-6.
- Bartlett, M.S. The Effect of Standardization on a χ 2 Approximation in Factor Analysis. Biometrika 1951, 38, 337. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. In Modern methods for business research.; Psychology Press; p. 448 ISBN 978-1-135-68413-6.
- Dijkstra, T.K.; Henseler, J. Consistent and Asymptotically Normal PLS Estimators for Linear Structural Equations. Computational Statistics & Data Analysis 2015, 81, 10–23. [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; 2nd ed.; L. Erlbaum Associates: Hillsdale, N.J, 1988; ISBN 978-0-8058-0283-2.
- Shmueli, G.; Ray, S.; Velasquez Estrada, J.M.; Chatla, S.B. The Elephant in the Room: Predictive Performance of PLS Models. Journal of Business Research 2016, 69, 4552–4564. [Google Scholar] [CrossRef]
- Willmott, C.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Danks, N.P.; Ray, S. Predictions from Partial Least Squares Models. In Applying Partial Least Squares in Tourism and Hospitality Research; Ali, F., Rasoolimanesh, S.M., Cobanoglu, C., Eds.; Emerald Publishing Limited, 2018; pp. 35–52 ISBN 978-1-78756-700-9.
- Rehman, A. et al. Generation Effects and Management of Municipal Solid Waste: A Review. International Multidisciplinary Research Journal 2021, 9, 7, ISSN 2286-4822.
- Løcka, S.; Heggdal, J.H. The Economics of plastic recovery from rivers. Master’s thesis in Business Innovation, University of Stavanger, Norway, 2020.
- Awan, U.; Sroufe, R. Sustainability in the Circular Economy: Insights and Dynamics of Designing Circular Business Models. Applied Sciences 2022, 12, 1521. [Google Scholar] [CrossRef]
- Fagundes, M.V.C.; Teles, E.O.; Vieira De Melo, S.A.B.; Freires, F.G.M. Supply Chain Risk Management Modelling: A Systematic Literature Network Analysis Review. IMA Journal of Management Mathematics 2020, 31, 387–416. [Google Scholar] [CrossRef]
- Kousemaker, T.M.; Jonker, G.H.; Vakis, A.I. LCA Practices of Plastics and Their Recycling: A Critical Review. Applied Sciences 2021, 11, 3305. [Google Scholar] [CrossRef]






| Hypothesis | Basis |
|---|---|
| H1: Efficiency is directly correlated with the performance | [16,17] |
| H2: Effectiveness is directly correlated with the performance | [16,18] |
| H3: Municipality's socioeconomic aspects are directly correlated with the performance | [14,19,20] |
| H4: Municipality infrastructure is directly correlated with the performance | [22,23] |
| Construct | Position in the model | Indicator | Basis |
|---|---|---|---|
| Reverse Logistics Efficiency | Exogenous | EFICI-1 - Complexity of waste | [21,22] |
| EFICI-2 - Variety of waste (types of plastic: PET, HDPE, LDPE, PP, PS, PVC, or PUR...) | [21] | ||
| EFICI-3 - Variability of waste | [17,21,24] | ||
| Reverse Logistics Effectiveness | Exogenous | EFICA-1 - Market maturity | [25,26] |
| EFICA-2 - Value of waste | [27] | ||
| EFICA-3 - Volume processing | [19] | ||
| Reverse Logistics Performance (Effectivity) | Endogenous | DESEMP-1 - Recycling rate | [22,28] |
| DESEMP-2 - Thermochemical conversion rate | [29] | ||
| DESEMP-3 - Business profitability | [22,24,30] | ||
| DESEMP-4 - Availability of plastics sorting technologies | [31,32] | ||
| The infrastructure of the municipality | Exogenous | INFRA-1 - Availability of selective collection in the municipality | [33] |
| INFRA-2 - Presence of Deposit-Return Systems (DRS) | [34] | ||
| Socioeconomic characteristics of the municipality | Exogenous | SOCIO-1 - Socioeconomic profile of the municipality | [33] |
| SOCIO-2 - Population density of the municipality | [35] |
| Construct | Indicator | Description | Outer Loading | VIF | Cronbach's Alpha | CR | rho_A | AVE |
|---|---|---|---|---|---|---|---|---|
| DESEMP | DESEMP-1 | Recycling rate | 0.783 | 1.489 | 0.775 | 0.868 | 0.798 | 0.688 |
| DESEMP-3 | Business profitability | 0.837 | 1.752 | |||||
| DESEMP-4 | Availability of plastic sorting technologies | 0.866 | 1.626 | |||||
| EFICA | EFICA-1 | Market maturity | 0.880 | 1.508 | 0.734 | 0.883 | 0.737 | 0.790 |
| EFICA-3 | Volume processing | 0.897 | 1.508 | |||||
| EFICI | EFICI-3 | Variability of waste | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| INFRA | INFRA-1 | Availability of selective collection in the municipality | 0.945 | 2.013 | 0.830 | 0.920 | 0.879 | 0.852 |
| INFRA-2 | Presence of Deposit-Return Systems | 0.901 | 2.013 | |||||
| SOCIO | SOCIO-1 | Socioeconomic profile of the municipality | 0.896 | 1.425 | 0.706 | 0.872 | 0.715 | 0.772 |
| SOCIO-2 | Population density of the municipality | 0.862 | 1.425 |
| Cross-loadings (correlations) | |||||
|---|---|---|---|---|---|
| Indicator | DESEMP | EFICA | EFICI | INFRA | SOCIO |
| DESEMP-1 | 0.783 | 0.556 | -0.174 | 0.371 | 0.270 |
| DESEMP-3 | 0.837 | 0.507 | -0.162 | 0.468 | 0.314 |
| DESEMP-4 | 0.866 | 0.649 | -0.369 | 0.580 | 0.527 |
| EFICA-1 | 0.594 | 0.880 | -0.249 | 0.513 | 0.388 |
| EFICA-3 | 0.639 | 0.897 | -0.184 | 0.342 | 0.519 |
| EFICI-3 | -0.298 | -0.242 | 1.000 | -0.364 | -0.067 |
| INFRA-1 | 0.603 | 0.536 | -0.359 | 0.945 | 0.414 |
| INFRA-2 | 0.453 | 0.317 | -0.308 | 0.901 | 0.282 |
| SOCIO-1 | 0.433 | 0.544 | -0.094 | 0.479 | 0.896 |
| SOCIO-2 | 0.379 | 0.346 | -0.019 | 0.181 | 0.862 |
| Fornell and Larcker's criterion | |||||
| Construct | DESEMP | EFICA | EFICI | INFRA | SOCIO |
| DESEMP | 0.829 | ||||
| EFICA | 0.695 | 0.889 | |||
| EFICI | -0.298 | -0.242 | 1.000 | ||
| INFRA | 0.581 | 0.477 | -0.364 | 0.923 | |
| SOCIO | 0.464 | 0.513 | -0.067 | 0.386 | 0.879 |
| Heterotrait-monotrait (HTMT) ratio | |||||
| Construct | DESEMP | EFICA | EFICI | INFRA | SOCIO |
| DESEMP | 1 | ||||
| EFICA | 0.911 | 1 | |||
| EFICI | 0.335 | 0.296 | 1 | ||
| INFRA | 0.696 | 0.597 | 0.399 | 1 | |
| SOCIO | 0.603 | 0.706 | 0.151 | 0.495 | 1 |
| Hypothesis | VIF | Original R2 | Sample Mean1 R2 | Original β | Sample Mean1 β | Original f² | Sample Mean1 f² | Standard Error1 | t-value2 | Decision |
|---|---|---|---|---|---|---|---|---|---|---|
| H1: EFICI -> DESEMP | 1.181 | 0.573 | 0.606 | -0.069 | -0.072 | 0.010 | -0.072 | 0.097 | 0.717 | Not Supported |
| H2: EFICA -> DESEMP | 1.576 | 0.573 | 0.606 | 0.493 | 0.492 | 0.361 | 0.492 | 0.105 | 4.671 | Supported |
| H3: SOCIO -> DESEMP | 1.431 | 0.573 | 0.606 | 0.097 | 0.100 | 0.015 | 0.100 | 0.095 | 1.026 | Not Supported |
| H4: INFRA -> DESEMP | 1.485 | 0.573 | 0.606 | 0.283 | 0.286 | 0.126 | 0.286 | 0.110 | 2.574 | Supported |
| PLS out-of-sample metrics | |||
|---|---|---|---|
| DESEMP_1 | DESEMP_3 | DESEMP_4 | |
| RMSE | 1.075 | 1.023 | 0.842 |
| MAE | 0.826 | 0.775 | 0.654 |
| LM out-of-sample metrics | |||
| DESEMP_1 | DESEMP_3 | DESEMP_4 | |
| RMSE | 1.107 | 1.020 | 0.845 |
| MAE | 0.853 | 0.811 | 0.658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
