Submitted:
20 April 2024
Posted:
23 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Germination Salt Tolerance Test
2.2. Salt Tolerance Test in Seedlings
3. Results
3.1. Germination under Salinity Conditions
3.2. Development of Tomato Seedlings under Salinity Conditions
4. Discussion
4.1. Germination Test
4.2. Development of Tomato Seedlings under Salinity Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A





References
- FAO. 2021. Global Map of Salt Affected Soils Version 1.0. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/.
- Johansen, K., Morton, M.J.L., Malbeteau, Y.M., Aragon, B., Al-Mashharawi, S. K., Ziliani, M. G., Angel, Y., Fiene, G. M., Negrão, S.S.C.; Mousa, M.A.A.; Tester, M.A. and McCabe, M.F. Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress. Front. Plant Sci., 2019, 10:370. [CrossRef]
- Secretaría de Agricultura y Desarrollo Rural. 2021. Mapa Agrícola de afectación por salinidad en México. https://www.gob.mx/agricultura/acciones-y-programas/mapa-agricola-de-afectacion-por-salinidad-en-mexico.
- Li, H.; Zhu, Y.; Hu, Y.; Han, W. and Gong, H. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum, 2015, 37(4). [CrossRef]
- Bogoutdinova, L.R.; Baranova, E.N.; Kononenko, N.V.; Chaban, I.A.; Konovalova, L.N.; Gulevich, A.A.; Lazareva, E.M. and Khaliluev, M.R. Characteristics of Root Cells during In Vitro Rhizogenesis under Action of NaCl in Two Tomato Genotypes Differing in Salt Tolerance. Int. J. Plant Biol., 2023, 14, 104–119. [CrossRef]
- Horie, T.; Karahara, I., and Katsuhara, M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 2012, 5, 11. [CrossRef]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A. and Sarwar, M.I. A review: Impact of salinity on plant growth. Nat. Sci., 2019, 17, 34.
- Frukh, A.; Siddiqi, T. O.; Khan, M. I. R. and Ahmad, A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiology and Biochemistry, 2020, 146, 55–70. [CrossRef]
- Guo, M.; Wang, X.S.; Guo, H.D.; Bai, S.Y.; Khan, A.; Wang, X.M.; Gao, Y.M. and Li, J.S. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Front. Plant Sci., 2022, 13:949541. [CrossRef]
- Parra-Terraza, S.; Angulo-Castro, A.; Sánchez-Peña, P.; Valdez-Torres, J.B. and Rubio-Carrasco, W. Effect of Cl- and Na+ ratios nutrient solutions on tomato (Solanum lycopersicum L.) yield in a hydroponic system. Revista Chapingo Serie Horticultura, 2021, 28(1), 67-78. [CrossRef]
- Sun, W.; Xu, X.; Zhu, H.; Liu, A.; Liu, L.; Li, J. and Hua, X. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol., 2010, 51:997-1006. [CrossRef]
- Peleg, Z.; Apse, M. P. and Blumwald, E. Engineering Salinity and Water-Stress Tolerance in Crop Plants: Getting Closer to the Field. Advances Bot. Res., 2021, 57, 407-443. [CrossRef]
- Ruiz-Espinoza, F.H.; Villalpando-Gutiérrez, R.L.; Murillo-Amador, B.; Beltrán-Morales, F.A. and Hernández-Montiel, L.G. Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenológicas. Terra latinoamericana, 2014, 32(4), 311-323.
- Sanjuan-Lara, F.; Ramírez-Vallejo, P.; Sánchez-García, P.; Sandoval-Villa, M.; Livera -Muñoz. M.; Carrillo-Rodríguez, J. C. and Perales-Segovia, C. Tolerancia de líneas nativas de tomate (Solanum lycopersicum L.) a la salinidad con NaCl. Interciencia, 2015, 40(10), 704-709. ISSN: 0378-1844.
- Cuartero, J., Yeo, A. R. and Flowers, T. J. Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol., 1992, 121, 63-69. [CrossRef]
- Martínez, J.P.; Antúnez, A.; Araya, H.; Pertuzé, R.; Fuentes, L.; Lizana, X. C. and Lutts, S. Salt stress differently affects growth, water status and antioxidant enzyme activities in Solanum lycopersicum and its wild relative Solanum chilense. Aust. J. Bot., 2014, 62, 359–368. [CrossRef]
- Marín-Montes, I. M.; Rodríguez-Pérez, J. E.; Sahagún-Castellanos, J.; Hernández-Ibáñez, L. and Velasco-García, A.M. Morphological and molecular variation in 55 native tomato collections from Mexico. Revista Chapingo Serie Horticultura, 2016, 22(2), 117-131. [CrossRef]
- Cuartero, J. and Fernández-Muñoz, R. Tomato and salinity. Scientia Horticulturae, 1999, 78, 83-125. [CrossRef]
- Foolad, M.R. and Lin, G.Y. Genetic potential for salt tolerance during germination in Lycopersicon species. HortScience., 1997, 32(2): 296-300. [CrossRef]
- Pérez-Alfocea, F.; Balibrea, M.E.; Santa-Cruz, A. and Están, M.T. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant and Soil., 1996, 180 (2): 251-257. [CrossRef]
- Chetelat, R.T. and Rick, C.M. Tomato Genetics Resource Center Department of Vegetable Crops. University of California. Davis, U.S.A., 2004. http://tgrc.ucdavis.
- Rick, C. M. and Chetelat, R.T. Utilization of related wild species for tomato improvement. Acta Hort., 1995, 412: 21-38. [CrossRef]
- Zegarra, R. Biodiversidad y taxonomía de la flora desértica sur peruana: familia solanáceae. Idesia., 2005, 22: 64-69. [CrossRef]
- Chetelat, R.T.; Pertuzé, R.A.; Faúndez, L.; Graham, E.B. and Jones, C.M. Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama desert region of Northern Chile. Euphytica, 2009, 167: 77-93. [CrossRef]
- Hoyt, E. Conservando los Parientes Silvestres de las Plantas Cultivadas. Addison-Wesley Iberoamericana. Wilmington, U.S.A., 1992, 52 pp.
- Pailles, Y.; Awlia, M.; Julkowska, M.M.; Passone, L.; Zemmouri, K.; Negrão, S. and Tester, M. Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. Plant Physiology, 2019, 00700. [CrossRef]
- Razali, R.; Bougouffa, S.; Morton, M. J. L.; Lightfoot, D. J.; Alam, I.; Essack, M.; … Negrão, S. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front. Plant Sci., 2018, 9, 1402. [CrossRef]
- Rodríguez-Guzmán, E.; Vargas-Canela, D.; de Sánchez-González, J.J.; Lépiz-Idelfonso, R.; Rodríguez-Contreras, A.; Ruiz-Corral, J.A.; Puente-Ovalle, P. and Miranda-Medrano, R. Etnobotánica de Solanum var cerasiforme en el occidente de México. Nat. Desarro., 2009, 7, 45–57.
- Ramírez-Ojeda, G.; Rodríguez-Pérez, J. E.; Rodríguez-Guzmán, E.; Sahagún-Castellanos, J.; Chávez-Servia J. L.; Peralta I. E. and Barrera-Guzmán, L. Á. Distribution and Climatic Adaptation of Wild Tomato Populations (Solanum lycopersicum L.) in Mexico. Plants, 2022, 11(1595):1-13. [CrossRef]
- Ramírez-Ojeda, G.; Peralta, I. E.; Rodríguez-Guzmán, E.; Chávez-Servia, J. L.; Sahagún-Castellanos, J. and Rodríguez-Pérez, J.E. Climatic Diversity and Ecological Descriptorsof Wild Tomato Species (Solanum sect. Lycopersicon) and Close Related Species (Solanum sect. Juglandifolia y sect. Lycopersicoides) in Latin America. Plants, 2021, 10, 855. https://doi.org./10.3390/plants10050855.
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; B. Xu; X. Yang; D. Zhu; X. Zhang; R. Zhang; H. Feng; X. Zhao; Z. Li; H. Li and H. Yang. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci., 2017, 8:1111. [CrossRef]
- Khan, T.A.; Saleem, M. and Fariduddin, Q. Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. J Plant Growth Regul., 2022, 42(4):1-25. [CrossRef]
- El-Habbasha, K.M.; Shaheen, A.M. and Rizk, F.A. Germination of some tomato cultivars as affected by salinity stress condition. Egyptian-Journal-of-Horticulture, 1996, 23 (2): 179-190.
- Singer, S.M. Germination responses of some tomato genotypes as affected by salinity and temperature stress. Egyptian Journal of Horticulture, 1994, 21 (1): 47-64.
- Srinivas, T. R. Salinity tolerance of tomato germplasm during germination. Seed Science and Technology, 2001, 29(3), 673-677.
- Goykovic-Cortés, V.; Nina-Alanoca, P. and Calle-Llave, M. Efecto de la salinidad sobre la germinación y crecimiento vegetativo de plantas de tomate silvestres y cultivadas. Interciencia, 2014, 39(7), 511-517. ISSN: 0378-1844.
- Ávila-Amador, C.; Argentel-Martínez, L.; Peñuelas-Rubio, O.; López-Sánches, R. C. and González-Aguilera, J. Variabilidad de respuesta de 8 cultivares de tomate al estrés salino durante los primeros estadios de desarrollo. Ciencia em Foco, 2023, 6:5, 52-64. [CrossRef]
- Sholi, N.J.Y. Effect of salt stress on seed germination, plant growth, photosynthesis and ion accumulation of four tomato cultivars. Am. J. Plant Physiol., 2012, 7, 269–275. [CrossRef]
- Adilu, G.S. and Gebre, Y.G. Effect of salinity on seed germination of some tomato (Lycopersicon esculentum mill.) varieties. J. Aridland Agric., 2021, 76–82. [CrossRef]
- Maguire, J. D. Speed of germination, aid in selection and evaluation of seedling emergence vigor. Crop Science, 1962, 2,176-177. [CrossRef]
- Wafa’a, A. Comparative effects of drought and salt stress on germination and seedling growth of Pennisetum divisum (Gmel.) Henr. Amer. J. Appl. Sci., 2010, 7, 640–646. ISSN 1546-9239.
- Saeed, A.; Shahid, M.Q.; Anjum, S.A.; Khan, A.A.; Shakeel, A.; Saleem, M.F. and Saeed, N. Genetic analysis of NaCl tolerance in tomato. Genet. Mol. Res., 2010, 10, 1754–1776. [CrossRef]
- González-Grande, P.; Suárez, N. and Marín, O. Effect of salinity and seed salt priming on the physiology of adult plants of Solanum lycopersicum cv. ‘Río Grande’. Braz. J. Bot., 2020, 43, 775–787. [CrossRef]
- Faisal-Alharby, H. Using some growth stimuli, a comparative study of salt tolerance in two tomatoes cultivars and a related wild line with special reference to superoxide dismutases and related micronutrients. Saudi Journal of Biological Sciences, 2021, 28(11): 6133–6144 . [CrossRef]
- Moles, T.M.; Guglielminetti, L. and Reyes, T.H. Differential effects of sodium chloride on germination and post-germination stages of two tomato genotypes. Scientia Horticulturae, 2019, 257, 108730. [CrossRef]
- Argentel-Martínez, L.; Garatuza-Payan, J.; Yepez, E.A.; Arredondo, T. and De los Santos-Villalobos, S. Water regime and osmotic adjustment under warming conditions on wheat in the Yaqui Valley, Mexico. PeerJ, 2019, 7, e7029. https:// doi.org/10.7717/peerj.7029.
- Abdel-Farid, I.B.; Marghany, M.R.; Rowezek, M.M. and Sheded, M.G. Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants (Basel), 2020, 9, 1626. [CrossRef]
- Singh, J.; Sastry, E.V. and Singh, V. Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiol. Mol. Biol. Plants, 2012, 18, 45–50. [CrossRef]
- Florido-Bacallao, M. and Bao-Fundora, L. Tolerancia a estrés por déficit hídrico en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 2014, 35(3), 70-88. ISSN 0258-5936.
- Almeida, P.; de Boer, G.J and de Boer, A.H. Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1;2. J Plant Physiol., 2014, 171, 438–447. [CrossRef]
- Assimakopoulou, A.; Nifakos, K.; Salmas, I. and Kalogeropoulos, P. Growth, ion uptake, and yield responses of three indigenous small-sized greek tomato (Lycopersicon esculentum) cultivars and four hybrids of cherry tomato under NaCl salinity stress. Communication in Soil Science and Plant Analisys, 2015, 46, 2357–2377. [CrossRef]
- Ludwiczak, A.; Osiak, M.; Cárdenas-Pérez, S.; Lubińska-Mielińska, S. and Piernik. A. Osmotic stress or ionic composition: Which affects the early growth of crop species more? Agronomy, 2021, 11, 435. [CrossRef]
- Rosca, M.; Mihalache, G. and Stoleru, V. Tomato responses to salinity stress: From morphological traits to genetic changes. Frontiers in Plant Science, 2023, 14, 1118383. [CrossRef]
- Isayenkov, S.V. and Maathuis, F.J. Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science, 2019, 10:80. [CrossRef]
- Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, P.M. and Menzies, N.W. The effect of salinity on plant-available water. Plant Soil, 2017, 418(1-2), 477-491. [CrossRef]
- Derkaoui, M.K.; Sahnoune, M. and Belkhodja, M. Effect of Salinity on Some Physiological Parameters in Tomato. International Journal for Research in Applied Science & Engineering Technology, 2022, 10(2):1161-1169. [CrossRef]
- Sánchez, A.; Membrives, J.; Valenzuela, J. L. and Guzmán, M. Effects of saline stress and Ca2+/K+ interaction on biomass and mineral contents of tomato. Acta Hortic., 2012, 932, 345–350. [CrossRef]
- De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; Barbieri, G. and Maggio, A. Seasonal and multiannual effects of salinization on tomato yield and fruit quality. Funct. Plant Biol., 2012, 39, 689. [CrossRef]
- Casierra-Posada, Fánor, J.A and Arias-Aguirre; C.A; Efecto de la salinidad por NaCl en híbridos de tomate (Lycopersicon esculentum Miller). Orinoquia, 2013, 17: 23-29. ISSN: 0121-3709.
- Ludwiczak, A.; Osiak, M.; Cárdenas-Pérez, S.; Lubińska-Mielińska, S. and Piernik, A. Osmotic stress or ionic composition: Which affects the early growth of crop species more? Agronomy, 2021, 11, 435. [CrossRef]
- Shrivastava, P. and Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci., 2015, 22, 123–131. [CrossRef]
- Muir, C.D.; Hangarter, R.P.; Moyle, L.C.; Davis, P.A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant Cell Environ, 2014, 37, 1415–1426. [CrossRef]
- Chen, T.; Shabala, S.; Niu, Y.; Chen, Z. H.; Shabala, L.; Meinke, H.; Venkataraman, G.; Pareek, A.; Xu, J. and Zhou, M. Molecular mechanisms of salinity tolerance in rice. Crop J., 2021, 9, 506–520. [CrossRef]
- Yang, Y. and Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol., 2018, 60, 796–804. https:// doi.org/10.1111/jipb.12689.
- Kronzucker, H.J. and Britto, D.T. Sodium transport in plants: A critical review. New Phytol., 2011, 189, 54–81. [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C. and Wang, P. Regulation of plant responses to salt stress. Int. J. Mol. Sci., 2021, 22:4609. [CrossRef]
- Lv, X.; Chen, S. and Wang, Y. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Front. Plant Sci., 2019, 10:1431. [CrossRef]
- Liu, J.; Fu, C.; Li, G.; Khan, M.N. and Wu, H. ROS homeostasis and plant salt tolerance: Plant nanobiotechnology updates. Sustainability, 2021, 13:3552. [CrossRef]
- Shu, P.; Li, Y.; Li, Z.; Sheng, J. and Shen, L. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes. Environ. Exp. Bot., 2022, 193:104698. [CrossRef]
- Yin, Z.; Lu, J.; Meng, S.; Liu, Y.; Mostafa, I.; Qi, M. and Li, T. Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. J. Plant Interact., 2019, 14, 453–463. [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
