Submitted:
28 November 2023
Posted:
30 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the problem
2.2. Participants
2.3. Procedures
2.4. Training program
| Example of weekly session | |||
|---|---|---|---|
| 1st session | 2nd session | 3rd session | |
| Exercises | HIIT. Example 1 | HIIT. Example 2 | Running |
| 1st | Push-ups | Jumping jacks | 5 minutes of running at 65-75% HRmax |
| 2nd | Mountain Climbers | Box squat | 5 minutes of walking at 40-45% HRm |
| 3rd | Forearm plank | Bench step-ups | 5 minutes of running at 65-75% HRmax |
| 4th | Dips using a bench or chair | Deadweight | 5 minutes of walking |
| Training progression during the HIIT program | |||
| Week | Set/session | Recovery between sets (s) | |
| 1st and 2nd | 2 | 60 | |
| 3rd to 5th | 3 | 60 | |
| 6th to 8th | 4 | 60 | |
| 9th and 10th | 4 | 45 | |
2.5. Statistical procedures
Results
| Participants (n = 48) | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Control Group (n = 24) | Experimental Group (n = 24) | Differences between Groups (ANCOVA Test) | |||||||
| Pretest | Posttest | % | RM t-test (p) | Pretest | Posttest | % | RM t-test (p) | ||
| Anthropometric measures | |||||||||
| Age (yrs) | 20.50 ±1.29 | - | - | - | 21.21 ±2.15 | - | - | - | - |
| Height (cm) | 163.92 ±4.89 | - | - | - | 163.96 ±4.87 | - | - | - | - |
| Weight (kg) | 62.00 ±6.65 | 62.53 ±7.07 | 0.75± 2.89 | p = 0.15 d =-0.08 | 61.16 ±8.94 | 59.26 ±8.73 | -3.22± 1.98 |
p = 0.001** d = 0.41 |
F(1,47) = 1244.36; p=0.000; ηp2 = 0.97 |
| Body Mass Index (%) | 23.04 ±1.74 | 23.24 ±1.97 | 0.75± 2.89 | p = 0.15 d = -0.11 | 22.69± 2.49 | 22.10± 2.47 | -2.72± 1.98 |
p = 0.001** d = 0.24 |
F(1,47) = 685.01; p=0.000; ηp2 = 0.35 |
| Incremental test | |||||||||
| VO2 max (ml/kg/min) |
20.17 ±2.03 |
21.03 ±2.59 |
3.37 ±10.37 |
p = 0.08 d = -0.37 |
20.58 ±3.65 |
24.67 ±3.98 |
15.94 ±12.08 |
p = 0.001** d = -1.07 |
F(1,47) = 32.38; p=0.000; ηp2 = 0.42 |
| Power output (W/kg) | 1.52 ±0.16 |
1.54 ±0.12 |
1.18 ±3.84 |
p = 0.20 d = -0.11 |
1.48 ±0.26 |
1.73 ±0.26 |
13.50 ±11.72 |
p = 0.001** d = -0.96 |
F(1,47) = 43.21; p=0.000; ηp2 = 0.49 |
| Power output (W) | 94.71 ±17.32 | 96.48 ±15.04 |
1.90 ±5.21 |
p = 0.10 d = -0.10 |
91.26 ±23.11 |
102.92 ±23.86 | 10.67 ±12.57 |
p = 0.001** d = -0.50 |
F(1,47) = 148.58; p=0.000; ηp2 = 0.77 |
Discussion
Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caroppo, E.; Mazza, M.; Sannella, A.; Marano, G.; Avallone, C.; Claro, A.E.; Janiri, D.; Moccia, L.; Janiri, L.; Sani, G. Will nothing be the same again?: Changes in lifestyle during COVID-19 pandemic and consequences on mental health. Int. J. Environ. Res. Public Health 2021, 18, 8433. [Google Scholar] [CrossRef] [PubMed]
- Musa, S.; Dergaa, I.; Bachiller, V.; Saad, B.H. Global Implications of COVID-19 Pandemic on Adults’ Lifestyle Behavior: The Invisible Pandemic of Noncommunicable Disease. Int. J. Prev. Med. 2023, 8, 1–9. [Google Scholar]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.R. Worldwide survey of fitness trends for 2019. ACSM's Health Fit. J. 2018, 22, 10–17. [Google Scholar] [CrossRef]
- Gibala, M.J.; Jones, A.M. Physiological and performance adaptations to high-intensity interval training. Nestle Nutr. Inst. Workshop Ser. 2013, 76, 51–60. [Google Scholar] [PubMed]
- Norton, K.; Norton, L.; Sadgrove, D. Position statement on physical activity and exercise intensity terminology. J. Sci. Med. Sport 2010, 13, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef]
- Lu, M.; Li, M.; Yi, L.; Li, F.; Feng, L.; Ji, T.; Zang, Y.; Qiu, J. Effects of 8-week High-Intensity Interval Training and Moderate-Intensity Continuous Training on Bone Metabolism in Sedentary Young Females. J. Exerc. Sci. Fit. 2022, 20, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The Impact of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Vascular Function: A Systematic Review and Meta-Analysis. Sport. Med. 2015, 45, 679–692. [Google Scholar] [CrossRef]
- Bartlett, D.B.; Willis, L.H.; Slentz, C.A.; Hoselton, A.; Kelly, L.; Huebner, J.L.; Kraus, V.B.; Moss, J.; Muehlbauer, M.J.; Spielmann, G.; et al. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: A pilot study. Arthritis Res. Ther. 2018, 20, 1–16. [Google Scholar] [CrossRef]
- Dorneles, G.P.; da Silva, I.; Boeira, M.C.; Valentini, D.; Fonseca, S.G.; Dal Lago, P.; Peres, A.; Romão, P.R.T. Cardiorespiratory fitness modulates the proportions of monocytes and T helper subsets in lean and obese men. Scand. J. Med. Sci. Sport 2019, 29, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Reljic, D.; Lampe, D.; Wolf, F.; Zopf, Y.; Herrmann, H.J.; Fischer, J. Prevalence and predictors of dropout from high-intensity interval training in sedentary individuals: A meta-analysis. Scand. J. Med. Sci. Sport 2019, 29, 1288–1304. [Google Scholar] [CrossRef] [PubMed]
- Osawa, Y.; Azuma, K.; Tabata, S.; Katsukawa, F.; Ishida, H.; Oguma, Y.; Kawai, T.; Itoh, H.; Okuda, S.; Matsumoto, H. Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men : A preliminary study. Open Access J. Sport Med. 2014, 5, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.R.R.; Slama, F.A.; Deslandes, A.C.; Furtado, E.S.; Santos, T.M. Continuous and high-intensity interval training: Which promotes higher pleasure? PLoS ONE 2013, 8, e79965. [Google Scholar] [CrossRef] [PubMed]
- Bhati, P.; Bansal, V.; Moiz, J.A. Comparison of different volumes of high intensity interval training on cardiac autonomic function in sedentary young women. Int. J. Adolesc. Med. Health 2021, 31, 1–13. [Google Scholar] [CrossRef]
- Palinkas, L.A.; Horwitz, S.M.; Green, C.A.; Wisdom, J.P.; Duan, N.; Hoagwood, K. Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. Adm. Policy Ment. Health Ment. Health Serv. Res. 2015, 42, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.P.; Gardner, R.M.; Adams, T.D.; Yanowitz, F.G.; Crapo, R.O. Anaerobic threshold: Problems of determination and validation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Fernández, D.; Fernández-Rodríguez, R.; Taboada-Iglesias, Y.; Gutiérrez-Sánchez, Á. Impact of High-Intensity Interval Training on Body Composition and Depressive Symptoms in Adults under Home Confinement. Int. J. Environ. Res. Public Health 2022, 19, 6145. [Google Scholar] [CrossRef]
- Dupuit, M.; Maillard, F.; Pereira, B.; Marquezi, M.L.; Lancha, A.H.; Boisseau, N. Effect of high intensity interval training on body composition in women before and after menopause: A meta-analysis. Exp. Physiol. 2020, 105, 1470–1490. [Google Scholar] [CrossRef]
- Nunes, P.R.P.; Martins, F.M.; Souza, A.P.; Carneiro, M.A.S.; Orsatti, C.L.; Michelin, M.A.; Murta, E.F.; de Oliveira, E.P.; Orsatti, F.L. Effect of high-intensity interval training on body composition and inflammatory markers in obese postmenopausal women: A randomized controlled trial. Menopause 2019, 26, 256–264. [Google Scholar] [CrossRef]
- Greer, B.K.; O’brien, J.; Hornbuckle, L.M.; Panton, L.B. EPOC Comparison Between Resistance Training and High-Intensity Interval Training in Aerobically Fit Women. Int. J. Exerc. Sci. 2021, 14, 1027–1035. [Google Scholar] [PubMed]
- Panissa, V.L.G.; Fukuda, D.H.; Staibano, V.; Marques, M.; Franchini, E. Magnitude and duration of excess of post-exercise oxygen consumption between high-intensity interval and moderate-intensity continuous exercise: A systematic review. Obes. Rev. 2021, 22, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chidnok, W.; Wadthaisong, M.; Iamsongkham, P.; Mheonprayoon, W.; Wirajalarbha, W.; Thitiwuthikiat, P.; Siriwittayawan, D.; Vachirasrisirikul, S.; Nuamchit, T. Effects of high-intensity interval training on vascular function and maximum oxygen uptake in young sedentary females. Int. J. Health Sci. 2020, 14, 3–8. [Google Scholar]
- Astorino, T.A.; Schubert, M.M.; Palumbo, E.; Stirling, D.; McMillan, D.W.; Cooper, C.; Godinez, J.; Martinez, D.; Gallant, R. Magnitude and time course of changes in maximal oxygen uptake in response to distinct regimens of chronic interval training in sedentary women. Eur. J. Appl. Physiol. 2013, 113, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Nybo, L.; Sundstrup, E.; Jakobsen, M.D.; Mohr, M.; Hornstrup, T.; Simonsen, L.; Bülow, J.; Randers, M.B.; Nielsen, J.J.; Aagaard, P.; et al. High-intensity training versus traditional exercise interventions for promoting health. Med. Sci. Sports Exerc. 2010, 42, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Arboleda Serna, V.H.; Arango Vélez, E.F.; Gómez Arias, R.D.; Feito, Y. Effects of a high-intensity interval training program versus a moderate-intensity continuous training program on maximal oxygen uptake and blood pressure in healthy adults: Study protocol for a randomized controlled trial. Trials 2016, 17, 1–8. [Google Scholar] [CrossRef]
- Sloth, M.; Sloth, D.; Overgaard, K.; Dalgas, U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand. J. Med. Sci. Sport 2013, 23, 341–352. [Google Scholar] [CrossRef]
- Syamsudin, F.; Wungu, C.D.K.; Qurnianingsih, E.; Herawati, L. High-intensity interval training for improving maximum aerobic capacity in women with sedentary lifestyle: A systematic review and meta-analysis. J. Phys. Educ. Sport 2021, 21, 1788–1797. [Google Scholar]
- StØren, Ø.; Helgerud, J.; SÆbØ, M.; StØa, E.M.; Bratland-Sanda, S.; Unhjem, R.J.; Hoff, J.; Wang, E. The Effect of Age on the V-O2max Response to High-Intensity Interval Training. Med. Sci. Sports Exerc. 2017, 49, 78–85. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; De-La-O, A.; Jurado-Fasoli, L.; Dote-Montero, M.; Gutiérrez, Á.; Ruiz, J.R.; Castillo, M.J. . Changes in physical fitness after 12 weeks of structured concurrent exercise training, high intensity interval training, or whole-body electromyostimulation training in sedentary middle-aged adults: A randomized controlled trial. Front. Physiol. 2019, 10, 451. [Google Scholar] [CrossRef]


| 2021 | ||||||||||||
| Months | January | February | March | |||||||||
| Week | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
| EG | Pre | High-intensity interval training | Post | |||||||||
| CG | Pre | Maintain routines | Post | |||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
