Submitted:
28 November 2023
Posted:
29 November 2023
You are already at the latest version
Abstract
Keywords:
1. The Need for Solar Integral Field Spectrometers in the Extreme Ultraviolet
2. SISA Science in the SPARK Framework
-
How does impulsive energy release accelerate particles in the solar atmosphere?SISA shall provide several measurements of accelerated particles in EUV, both electrons through line ratios (see Section 3.2) and ions through line profiles (see Section 3.3). The integral field spectroscopy of SISA will offer insights as to where and when the particles are accelerated, while the fast cadence will reveal how long they persist at a given location. Measuring the spatial distribution of the accelerated particles, and their relationship to magnetic field (see Section 3.1) and field-aligned emission structures, will also offer insights as to the conditions required for particle acceleration, both in solar flares and active-region corona. The fast-cadence SISA observations with multiple hot lines (Table 1) shall also clarify the relationship of particle acceleration to plasma heating. Finally, since the emission line profiles reflect the line-of-sight distribution of ion velocities, from zero to very high velocities, they provide key information about both the high-energy particles simultaneously with the low-energy end of the distribution, not accessible with either LISSAN or FOXSI instruments.
-
How is impulsively released energy transported and dissipated in the solar atmosphere?Once heated, the hot flare plasma evolves rapidly on short timescales depending on the conditions. The hot flare lines observed by SISA cover some of the largest available temperatures via EUV line spectroscopy (Table 1) and are thus favorable for characterizing the hot flare plasma and its evolution. Typically, the hot plasma is observed first above the chromospheric footpoints in the form of localized bright kernels e.g., [5,6], from which the flare loops are filled. Indications however exist that these kernels located within bright flare ribbons can already be pre-heated by electron beams [7,8]. These kernels have been long observed to move along ribbons e.g., [9,10,11], which have been identified as a consequence of 3D slipping reconnection e.g., [12,13,14,15,16,17,18], where the field lines do not reconnect in an X-point, but slip (slide) past each other as they mutually exchange their connectivities [see, e.g., 19,20,21]. The existence of this process implies that the location of the energy deposition into the lower solar atmosphere changes with time as the slipping reconnection proceeds. In the past, it has been extremely difficult to identify the spectroscopic signatures of this process due to the slit not being able (or designed) to track a particular moving (slipping) kernel. Using sit-and-stare observations Li and Zhang [15] showed that the slipping reconnection is likely be related to periodic changes of Siiv spectral line intensities accompanied by enhanced redshifts, as well as increased nonthermal widths, as individual kernels moved through the location of the slit. Recently, Lörinčík et al. [18] detected extremely short-lived blueshifts (upflows), lasting only seconds, and reaching about 50 km s−1 in chromospheric and transition-region lines, at the leading edges of the slipping kernels. The authors argued that such detection can be a matter of luck with slit spectrographs, as the slit has to be in the right place at the right time. The IFS provided by SISA shall be enormously helpful in this regard, as it can image the entire flare region and allow us to identify how the flaring atmosphere undergoing slipping reconnection responds at short temporal cadences, as well as enable tracking the spectral evolution of individual moving kernels as they slip along flare ribbons. In addition, the SISA thermal coverage would help in establishing whether the blueshifts at the leading edges of ribbons or individual kernels are related to evaporation of hot flare plasma.The fastest upflow velocities of the evaporating hot flaring plasma filling coronal loops are detected in the hottest flare lines [5], while the `cooler’ ( MK) lines show downflows at the same location, implying multi-directional flows that could occur due to rapid plasma evolution. The fast SISA cadence and the integral field spectroscopy, coupled with the available plasma diagnostics (Section 3) will provide key information on the thermal evolution of the heated plasma. For example, diagnostics of electron density coupled with the measured timescales of plasma cooling will allow for discerning whether the plasma is in ionization equilibrium, and at what times. Meanwhile, the emission line profiles will provide information on the presence and role of turbulence. Mass flows and the thermodynamic evolution of the atmosphere determined via spectroscopy can reveal much about the energy input to the lower atmosphere during flares, especially when combined with state-of-the-art modelling. For example, flare observations from the Interface Region Imaging Spectrograph IRIS; [2,22] have been used in tandem with flare loop models to interrogate our understanding of flare processes [23,24]. A major model-data discrepancy is the duration of the flare gradual phase, with models under-predicting the cooling time by an order of magnitude. SISA observations that provide plasma diagnostics over the full field of view, with high cadence, will help illuminate the source of the continued heating or energy input. Measurements of nonthermal line widths from lines formed at different temperatures, will inform us about the roles of turbulence in suppressing thermal conduction [e.g. [25], and the potential role of Alfvén waves in flares [e.g. [26,27].SISA measurements will provide key diagnostics of processes that occur within flares on short timescales. For example, a key open question in solar flare energy release is what drives "bursty" pulsations and oscillatory signatures observed in flare emission, known as quasi-periodic pulsations (QPPs) [see [28,29,30], for reviews]. QPPs and other oscillatory behaviour observed in flares have timescales ranging from sub-seconds to minutes, and are identified across the entire electromagnetic spectrum from radio, EUV [31], X-rays [32] and even -rays [33], essentially encompassing all aspects of the flaring process. The exact nature and underlying physical mechanism for the generation of these pulsations remains highly debated. It is suggested that they may be related to magnetohydrodynamic oscillations in/near the flare site, or possibly connected to the intermittent or time-dependent magnetic reconnection itself. Observational limitations to date of temporal cadences, spatial resolution, and saturation issues with EUV imagers have limited our ability to observational identify the locations of the emission modulations and constrain the suggested models - both of which are directly linked to energy release and transport in solar flares. Some work has aimed to identify the spatial locations of the modulations e.g. [15,31,34,35,36], although they are limited temporal cadences, and the spatially diagnostics; for example only spatially observing along the slit position. In order to correctly identify the mechanism producing QPPs, characteristics of the temporal, spatial and spectral properties of pulsations and their relationships across energy ranges and temperatures are required. The SISA EUV measurements with high temporal cadence, and its ability to perfrom imaging spectroscopy of the flaring region (rather than just over the slit) will allow us to observe rapid changes in the flaring regions such as these pulsations, with information regarding where and at what temperature they originate in the flare structure.Finally, though there is unambiguous evidence for the presence of nonthermal particles in flares, other mechanisms may also act to transport liberated magnetic energy. High frequency Alfvén waves have been proposed as a means of transporting energy the magnetic reconnection site to the lower atmosphere and heating it [e.g. [37,38,39]. Modelling has revealed that those waves do indeed heat the chromosphere, and drive explosive evaporation into the corona [40,41,42]. While it is likely that MHD waves are produced during flares, which are fundamentally a large scale change in the corona’s magnetic field, the proportion of energy that manifests itself in the form of waves compared to energetic particles is not known. SISA’s capability to measure the coronal magnetic field before, during and after a flare will provide crucial information regarding field perturbations, and together with density diagnostics the Alfvén speed, which will help to provide estimates of the Poynting flux carried by MHD waves. Furthermore, nonthermal broadening of ions will also help constrain the Poynting flux see discussion in, e.g., [26].
-
What are the physical low-corona origins of space weather events?Both Coronal Mass Ejections (CMEs) and jets inject magnetic field and plasma into the heliosphere, where they disturb the solar wind flow. Although previous studies of CME source regions have provided details about the physical processes taking place once a CME has initiated, many questions remain regarding their initiation and similarities with smaller scale flux rope eruptions within solar jets. Observing the initiation of both CMEs and jets spectroscopically is quite difficult with current or planned instrumentation for several reasons, including the use of a single slit, long exposure times, or limited diagnostics and temperature coverage provided by the available spectral lines. SISA will capture these processes at cadences down to a few seconds from every pixel within its entire field of view. This will allow us to identify the locations, spectral properties, plasma conditions, and thus the mechanisms behind the processes of CME and jet initiations. In larger eruptive events, SISA will be able to capture the entirety of precursor phase of the associated flare. The spatial localization of the precursors with respect to the subsequent flare and eruption allows for identification of the CME initiation mechanism, whether by tether-cutting, ideal MHD instability, or breakout [see [43] for every flare observed. The high-temperature lines observed by SISA (Table 1) will provide information on the plasma properties during the onset of eruptive events, including the possibly constant, isothermal 10–15 MK onset temperatures detected by broad-band X-ray instrumentation [44]. These lines will also allow the quantification of plasma heating (via temperature and density measurements) as well as turbulence (via line broadening) in the precursor phase.
-
How is the corona above active regions heated?It is currently thought that the solar corona is heated by individual impulsive "nanoflare" events that release small amounts of energy at either high or low frequencies e.g., [45,46,47,48,49]. A key prediction of such impulsive energy release is the existence of small amounts of hot 5–10 MK plasma, which is difficult to detect spectroscopically with current instrumentation [50,51,52,53,54,55]. The spectral range of SISA contains several hot lines (Table 1) that will provide stringent constraints on the amount of plasma reaching 10 MK temperatures. The Fexvii and Nixvii lines (Table 1) shall provide additional constraints. SISA will also work in tandem with the HXR and SXR observations to constrain the high-T component of the impulsive energy release by nanoflares. Another key observable of impulsive energy release is that the plasma should at least temporarily be out of thermal equilibrium, showing either presence of accelerated particles, out-of-ionization equilibrium plasma e.g., [56,57,58,59], or both. The coronal Fexi lines formed in both quiet Sun and active regions offer such diagnostics for electrons [60,61] while the line profiles of multiple ionization stages shall provide information on ion velocity distribution [62,63,64,65]. Furthermore, temporal evolution of line intensities of multiple ionization stages obtained in high cadences in combination with electron density diagnostics (Section 3.7) shall provide information on both the presence of energy release events and constraints on the presence of non-equilibrium ionization for multiple coronal structures at the same time, a feat not possible with current or planned instrumentation. Finally, it will become possible for the first time to tie all these measurements to the measurements of the underlying magnetic field (Section 3.1), thus allowing for discerning whether there are different heating mechanisms for different magnetic structures within the active and quiescent solar corona.
3. SISA EUV Measurements and Diagnostics
3.1. Magnetic Field Measurements
3.2. Electron temperature and nonthermal diagnostics
3.3. Ion temperature and nonthermal diagnostics
3.4. Electron Density Diagnostics
3.5. Elemental Composition Diagnostics
3.6. Flare lines
3.7. Departures from ionization equilibrium
3.8. Predicted signal in the main SISA lines
4. Image slicer technology in the EUV regime
5. SISA instrument proposal
5.1. Specifications
5.2. Layout
5.3. Components
5.4. Efficiency
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIV | Alignment Integration and Verification |
| CCD | Charge-coupled Device |
| CME | Coronal Mass Ejection |
| CUBES | Cassegrain U-Band Efficient Spectrograph |
| EIS | EUV Imaging Spectrometer onboard Hinode |
| ELT | Extremely Large Telescope |
| EUV | Extreme Ultraviolet |
| EUVST | Extreme Ultraviolet High-Throughput Spectroscopic Telescope |
| EVE | EUV Variability Experiment onboard SDO |
| FIP | First Ionisation Potential |
| FOXSI | Focusing Optics X-ray Solar Imager |
| FRIDA | inFRared Imager and Dissector for Adaptive optics |
| Full Width Half Maximum | |
| FUV | Far Ultraviolet |
| FWHM | Full Width Half Maximum |
| GOES | Geostationary Operational Environmental Satellite |
| GNIRS | Gemini Near-InfraRed Spectrograph |
| GRIS | Gregor Infrared Spectrograph |
| GTC | Gran Telescopio Canarias |
| HARMONI | High Angular Resolution Monolithic Optical |
| and Near-infrared Integral field spectrograph | |
| HXR | Hard X-ray |
| IFS | Integral Field Spectrograph |
| IFU | Integral Field Unit |
| INFUSE | INtegral Field Ultraviolet Spectroscopic Experiment |
| LISSAN | Large Imaging Spectrometer for Solar Accelerated Nuclei |
| LUCES | Looking Up image slicer optimum Capabilities in the EUV for Space |
| METIS | Mid-Infrared E-ELT Imager and Spectrograph |
| MHD | Magnetohydrodynamic |
| MINOS | Manufacturing of Image slicer NOvel technology for Space |
| MIRI | Mid-Infrared Instrument |
| MUSE | Multi-Slit Solar Explorer |
| QPP | Quasi-Periodic Pulsations |
| SDO | Solar Dynamics Observatory |
| SISA | Spectral Imager of the Solar Atmosphere |
| SNIFS | Solar eruptioN Integral Field Spectrograph |
| SPARK | Solar Particle Acceleration, Radiation and Kinetics mission |
| SXR | Soft X-ray |
| TRL | Technology Readiness Level |
References
- Culhane, J.L.; Harra, L.K.; James, A.M.; Al-Janabi, K.; Bradley, L.J.; Chaudry, R.A.; Rees, K.; Tandy, J.A.; Thomas, P.; Whillock, M.C.R.; et al. The EUV Imaging Spectrometer for Hinode. Sol Phys 2007, 243, 19–61. [Google Scholar] [CrossRef]
- De Pontieu, B.; Title, A.M.; Lemen, J.R.; Kushner, G.D.; Akin, D.J.; Allard, B.; Berger, T.; Boerner, P.; Cheung, M.; Chou, C.; et al. The Interface Region Imaging Spectrograph (IRIS). Sol Phys 2014, arXiv:astro-ph.SR/1401.2491]289, 2733–2779. [Google Scholar] [CrossRef]
- Chamberlin, P.C.; Schmit, D.J.; Daw, A.N.; Polito, V.; Gong, Q.; Milligan, R.O. The Solar eruptioN Integral Field Spectrograph (SNIFS) Sounding Rocket. In Proceedings of the AGU Fall Meeting Abstracts, Vol. 2020; pp. 056–03. [Google Scholar]
- Knoer, V.; Chamberlin, P.; Daw, A.; Gong, Q.; Milligan, R.; Polito, V.; Schmit, D. A Novel Integral Field Spectrograph Design for taking High-Cadence Spectral Solar Images: SNIFS. In Proceedings of the AGU Fall Meeting Abstracts, Vol. 2021; pp. 55–1837. [Google Scholar]
- Young, P.R.; Doschek, G.A.; Warren, H.P.; Hara, H. Properties of a Solar Flare Kernel Observed by Hinode and SDO. ApJ 2013, arXiv:astro-ph.SR/1212.4388]766, 127. [Google Scholar] [CrossRef]
- Polito, V.; Reep, J.W.; Reeves, K.K.; Simões, P.J.A.; Dudík, J.; Del Zanna, G.; Mason, H.E.; Golub, L. Simultaneous IRIS and Hinode/EIS Observations and Modelling of the 2014 October 27 X2.0 Class Flare. ApJ 2016, arXiv:astro-ph.SR/1512.06378]816, 89. [Google Scholar] [CrossRef]
- Panos, B.; Kleint, L.; Huwyler, C.; Krucker, S.; Melchior, M.; Ullmann, D.; Voloshynovskiy, S. Identifying Typical Mg II Flare Spectra Using Machine Learning. ApJ 2018, arXiv:astro-ph.SR/1805.10494]861, 62. [Google Scholar] [CrossRef]
- Polito, V.; Kerr, G.S.; Xu, Y.; Sadykov, V.M.; Lorincik, J. Solar Flare Ribbon Fronts. I. Constraining Flare Energy Deposition with IRIS Spectroscopy. ApJ 2023, arXiv:astro-ph.SR/2211.05333]944, 104. [Google Scholar] [CrossRef]
- Qiu, J.; Lee, J.; Gary, D.E.; Wang, H. Motion of Flare Footpoint Emission and Inferred Electric Field in Reconnecting Current Sheets. ApJ 2002, 565, 1335–1347. [Google Scholar] [CrossRef]
- Fletcher, L.; Pollock, J.A.; Potts, H.E. Tracking of TRACE Ultraviolet Flare Footpoints. Sol Phys 2004, 222, 279–298. [Google Scholar] [CrossRef]
- Sun, X.; Hoeksema, J.T.; Liu, Y.; Aulanier, G.; Su, Y.; Hannah, I.G.; Hock, R.A. Hot Spine Loops and the Nature of a Late-phase Solar Flare. ApJ 2013, arXiv:astro-ph.SR/1310.1438]778, 139. [Google Scholar] [CrossRef]
- Dudík, J.; Janvier, M.; Aulanier, G.; Del Zanna, G.; Karlický, M.; Mason, H.E.; Schmieder, B. Slipping Magnetic Reconnection during an X-class Solar Flare Observed by SDO/AIA. ApJ 2014, arXiv:astro-ph.SR/1401.7529]784, 144. [Google Scholar] [CrossRef]
- Dudík, J.; Polito, V.; Janvier, M.; Mulay, S.M.; Karlický, M.; Aulanier, G.; Del Zanna, G.; Dzifčáková, E.; Mason, H.E.; Schmieder, B. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare. ApJ 2016, arXiv:astro-ph.SR/1603.06092]823, 41. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J. Slipping Magnetic Reconnection Triggering a Solar Eruption of a Triangle-shaped Flag Flux Rope. ApJL 2014, arXiv:astro-ph.SR/1407.4180]791, L13. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J. Quasi-periodic Slipping Magnetic Reconnection During an X-class Solar Flare Observed by the Solar Dynamics Observatory and Interface Region Imaging Spectrograph. ApJL 2015, arXiv:astro-ph.SR/1504.01111]804, L8. [Google Scholar] [CrossRef]
- Sobotka, M.; Dudík, J.; Denker, C.; Balthasar, H.; Jurčák, J.; Liu, W.; Berkefeld, T.; Collados Vera, M.; Feller, A.; Hofmann, A.; et al. Slipping reconnection in a solar flare observed in high resolution with the GREGOR solar telescope. A&A 2016, arXiv:astro-ph.SR/1605.00464]596, A1. [Google Scholar] [CrossRef]
- Lörinčík, J.; Aulanier, G.; Dudík, J.; Zemanová, A.; Dzifčáková, E. Velocities of Flare Kernels and the Mapping Norm of Field Line Connectivity. ApJ 2019, arXiv:astro-ph.SR/1906.01880]881, 68. [Google Scholar] [CrossRef]
- Lörinčík, J.; Dudík, J.; Polito, V. Blueshifted Si IV 1402.77 Å Line Profiles in a Moving Flare Kernel Observed by IRIS. ApJ 2022, 934, 80. [Google Scholar] [CrossRef]
- Aulanier, G.; Pariat, E.; Démoulin, P.; Devore, C.R. Slip-Running Reconnection in Quasi-Separatrix Layers. Sol Phys 2006, 238, 347–376. [Google Scholar] [CrossRef]
- Aulanier, G.; Janvier, M.; Schmieder, B. The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. A&A 2012, 543, A110. [Google Scholar] [CrossRef]
- Janvier, M.; Aulanier, G.; Pariat, E.; Démoulin, P. The standard flare model in three dimensions. III. Slip-running reconnection properties. A&A 2013, arXiv:astro-ph.SR/1305.4053]555, A77. [Google Scholar] [CrossRef]
- De Pontieu, B.; Polito, V.; Hansteen, V.; Testa, P.; Reeves, K.K.; Antolin, P.; Nóbrega-Siverio, D.E.; Kowalski, A.F.; Martinez-Sykora, J.; Carlsson, M.; et al. A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS). Sol Phys 2021, arXiv:astro-ph.SR/2103.16109]296, 84. [Google Scholar] [CrossRef]
- Kerr, G.S. Interrogating Solar Flare Loop Models with IRIS Observations 1: Overview of the Models, and Mass flows. Frontiers in Astronomy and Space Sciences 2022, arXiv:astro-ph.SR/2212.06647]9, 1060856. [Google Scholar] [CrossRef]
- Kerr, G.S. Interrogating Solar Flare Loop Models with IRIS Observations 2: Plasma Properties, Energy Transport, and Future Directions. Frontiers in Astronomy and Space Sciences 2023, arXiv:astro-ph.SR/2212.06261]9, 1060862. [Google Scholar] [CrossRef]
- Allred, J.C.; Kerr, G.S.; Gordon Emslie, A. Solar Flare Heating with Turbulent Suppression of Thermal Conduction. ApJ 2022, arXiv:astro-ph.SR/2204.11684]931, 60. [Google Scholar] [CrossRef]
- Cheung, M.C.M.; Martínez-Sykora, J.; Testa, P.; De Pontieu, B.; Chintzoglou, G.; Rempel, M.; Polito, V.; Kerr, G.S.; Reeves, K.K.; Fletcher, L.; et al. Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions. ApJ 2022, arXiv:astro-ph.SR/2106.15591]926, 53. [Google Scholar] [CrossRef]
- Ashfield, W.; Longcope, D. A Model for Gradual-phase Heating Driven by MHD Turbulence in Solar Flares. ApJ 2023, arXiv:astro-ph.SR/2301.04592]944, 147. [Google Scholar] [CrossRef]
- Nakariakov, V.M.; Melnikov, V.F. Quasi-Periodic Pulsations in Solar Flares. Space Sci. Rev. 2009, 149, 119–151. [Google Scholar] [CrossRef]
- McLaughlin, J.A.; Nakariakov, V.M.; Dominique, M.; Jelínek, P.; Takasao, S. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares. Space Sci. Rev. 2018, arXiv:astro-ph.SR/1802.04180]214, 45. [Google Scholar] [CrossRef]
- Zimovets, I.V.; McLaughlin, J.A.; Srivastava, A.K.; Kolotkov, D.Y.; Kuznetsov, A.A.; Kupriyanova, E.G.; Cho, I.H.; Inglis, A.R.; Reale, F.; Pascoe, D.J.; et al. Quasi-Periodic Pulsations in Solar and Stellar Flares: A Review of Underpinning Physical Mechanisms and Their Predicted Observational Signatures. Space Sci. Rev. 2021, 217, 66. [Google Scholar] [CrossRef]
- Clarke, B.P.; Hayes, L.A.; Gallagher, P.T.; Maloney, S.A.; Carley, E.P. Quasi-periodic Particle Acceleration in a Solar Flare. ApJ 2021, arXiv:astro-ph.SR/2102.04267]910, 123. [Google Scholar] [CrossRef]
- Hayes, L.A.; Inglis, A.R.; Christe, S.; Dennis, B.; Gallagher, P.T. Statistical Study of GOES X-Ray Quasi-periodic Pulsations in Solar Flares. ApJ 2020, arXiv:astro-ph.SR/2004.11775]895, 50. [Google Scholar] [CrossRef]
- Nakariakov, V.M.; Foullon, C.; Myagkova, I.N.; Inglis, A.R. Quasi-Periodic Pulsations in the Gamma-Ray Emission of a Solar Flare. In Proceedings of the EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts; 2010; p. 8615. [Google Scholar]
- Brosius, J.W.; Daw, A.N.; Inglis, A.R. Quasi-periodic Fluctuations and Chromospheric Evaporation in a Solar Flare Ribbon Observed by Hinode/EIS, IRIS, and RHESSI. ApJ 2016, 830, 101. [Google Scholar] [CrossRef]
- Mishra, S.K.; Sangal, K.; Kayshap, P.; Jelínek, P.; Srivastava, A.K.; Rajaguru, S.P. Origin of Quasi-periodic Pulsation at the Base of a Kink-unstable Jet. ApJ 2023, arXiv:astro-ph.SR/2301.01534]945, 113. [Google Scholar] [CrossRef]
- Xu, J.; Ning, Z.; Li, D.; Shi, F. Quasi-Periodic Pulsations in an M-Class Solar Flare. Universe 2023, 9, 215. [Google Scholar] [CrossRef]
- Emslie, A.G.; Sturrock, P.A. Temperature minimum heating in solar flares by resistive dissipation of Alfvén waves. Sol Phys 1982, 80, 99–112. [Google Scholar] [CrossRef]
- Fletcher, L.; Hudson, H.S. Impulsive Phase Flare Energy Transport by Large-Scale Alfvén Waves and the Electron Acceleration Problem. ApJ 2008, 675, 1645–1655. [Google Scholar] [CrossRef]
- Russell, A.J.B.; Fletcher, L. Propagation of Alfvénic Waves from Corona to Chromosphere and Consequences for Solar Flares. ApJ 2013, arXiv:astro-ph.SR/1302.2458]765, 81. [Google Scholar] [CrossRef]
- Reep, J.W.; Russell, A.J.B. Alfv∖’enic Wave Heating of the Upper Chromosphere in Flares. ApJL 2016, arXiv:astro-ph.SR/1601.01969]818, L20. [Google Scholar] [CrossRef]
- Reep, J.W.; Russell, A.J.B.; Tarr, L.A.; Leake, J.E. A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints. ApJ 2018, arXiv:astro-ph.SR/1712.06171]853, 101. [Google Scholar] [CrossRef]
- Kerr, G.S.; Fletcher, L.; Russell, A.J.B.; Allred, J.C. Simulations of the Mg II k and Ca II 8542 lines from an AlfvÉn Wave-heated Flare Chromosphere. ApJ 2016, arXiv:astro-ph.SR/1605.05888]827, 101. [Google Scholar] [CrossRef]
- Chifor, C.; Tripathi, D.; Mason, H.E.; Dennis, B.R. X-ray precursors to flares and filament eruptions. A&A 2007, 472, 967–979. [Google Scholar] [CrossRef]
- Hudson, H.; Fletcher, L.; Hannah, I.; Hayes, L.; Simoes, P. Hot onsets of solar flares. In Proceedings of the AGU Fall Meeting Abstracts; 2021; Vol. 2021, p. SH22B–02. [Google Scholar]
- Cargill, P.J. Active Region Emission Measure Distributions and Implications for Nanoflare Heating. ApJ 2014, 784, 49. [Google Scholar] [CrossRef]
- Klimchuk, J.A. Key aspects of coronal heating. Philosophical Transactions of the Royal Society of London Series A 2015, arXiv:astro-ph.SR/1410.5660]373, 20140256–20140256. [Google Scholar] [CrossRef] [PubMed]
- Schmelz, J.T.; Winebarger, A.R. What can observations tell us about coronal heating? Philosophical Transactions of the Royal Society of London Series A 2015, 373, 20140257–20140257. [Google Scholar] [CrossRef] [PubMed]
- Warren, H.P.; Reep, J.W.; Crump, N.A.; Ugarte-Urra, I.; Brooks, D.H.; Winebarger, A.R.; Savage, S.; De Pontieu, B.; Peter, H.; Cirtain, J.W.; et al. Observation and Modeling of High-temperature Solar Active Region Emission during the High-resolution Coronal Imager Flight of 2018 May 29. ApJ 2020, 896, 51. [Google Scholar] [CrossRef]
- Upendran, V.; Tripathi, D. On the Impulsive Heating of Quiet Solar Corona. ApJ 2021, arXiv:astro-ph.SR/2103.16824]916, 59. [Google Scholar] [CrossRef]
- Cargill, P.J. Some Implications of the Nanoflare Concept. ApJ 1994, 422, 381. [Google Scholar] [CrossRef]
- Reale, F.; McTiernan, J.M.; Testa, P. Comparison of Hinode/XRT and RHESSI Detection of Hot Plasma in the Non-Flaring Solar Corona. ApJL 2009, arXiv:astro-ph.SR/0909.2529]704, L58–L61. [Google Scholar] [CrossRef]
- Schmelz, J.T.; Kashyap, V.L.; Saar, S.H.; Dennis, B.R.; Grigis, P.C.; Lin, L.; De Luca, E.E.; Holman, G.D.; Golub, L.; Weber, M.A. Some Like It Hot: Coronal Heating Observations from Hinode X-ray Telescope and RHESSI. ApJ 2009, 704, 863–869. [Google Scholar] [CrossRef]
- Winebarger, A.R.; Warren, H.P.; Schmelz, J.T.; Cirtain, J.; Mulu-Moore, F.; Golub, L.; Kobayashi, K. Defining the “Blind Spot” of Hinode EIS and XRT Temperature Measurements. ApJL 2012, 746, L17. [Google Scholar] [CrossRef]
- Parenti, S.; del Zanna, G.; Petralia, A.; Reale, F.; Teriaca, L.; Testa, P.; Mason, H.E. Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties. ApJ 2017, arXiv:astro-ph.SR/1707.08445]846, 25. [Google Scholar] [CrossRef]
- Del Zanna, G.; Andretta, V.; Cargill, P.J.; Corso, A.J.; Daw, A.N.; Golub, L.; Klimchuk, J.A.; Mason, H.E. High resolution soft X-ray spectroscopy and the quest for the hot (5-10 MK) plasma in solar active regions. Frontiers in Astronomy and Space Sciences 2021, arXiv:astro-ph.SR/2103.06156]8, 33. [Google Scholar] [CrossRef]
- Bradshaw, S.J.; Del Zanna, G.; Mason, H.E. On the consequences of a non-equilibrium ionisation balance for compact flare emission and dynamics. A&A 2004, 425, 287–299. [Google Scholar] [CrossRef]
- Bradshaw, S.J.; Klimchuk, J.A. What Dominates the Coronal Emission Spectrum During the Cycle of Impulsive Heating and Cooling? ApJS 2011, 194, 26. [Google Scholar] [CrossRef]
- Dzifčáková, E.; Dudík, J.; Mackovjak, Š. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations. A&A 2016, arXiv:astro-ph.SR/1603.04256]589, A68. [Google Scholar] [CrossRef]
- Dudík, J.; Dzifčáková, E.; Meyer-Vernet, N.; Del Zanna, G.; Young, P.R.; Giunta, A.; Sylwester, B.; Sylwester, J.; Oka, M.; Mason, H.E.; et al. Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review). Sol Phys 2017, arXiv:astro-ph.SR/1706.03396]292, 100. [Google Scholar] [CrossRef]
- Lörinčík, J.; Dudík, J.; del Zanna, G.; Dzifčáková, E.; Mason, H.E. Plasma Diagnostics from Active Region and Quiet-Sun Spectra Observed by Hinode/EIS: Quantifying the Departures from a Maxwellian Distribution. ApJ 2020, arXiv:astro-ph.SR/2003.07091]893, 34. [Google Scholar] [CrossRef]
- Del Zanna, G.; Polito, V.; Dudík, J.; Testa, P.; Mason, H.E.; Dzifčáková, E. Diagnostics of Non-Maxwellian Electron Distributions in Solar Active Regions from Fe XII Lines Observed by the Hinode Extreme Ultraviolet Imaging Spectrometer and Interface Region Imaging Spectrograph. ApJ 2022, 930, 61. [Google Scholar] [CrossRef]
- Jeffrey, N.L.S.; Fletcher, L.; Labrosse, N. First evidence of non-Gaussian solar flare EUV spectral line profiles and accelerated non-thermal ion motion. A&A 2016, arXiv:astro-ph.SR/1601.07308]590, A99. [Google Scholar] [CrossRef]
- Jeffrey, N.L.S.; Fletcher, L.; Labrosse, N. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration. ApJ 2017, arXiv:astro-ph.SR/1701.02196]836, 35. [Google Scholar] [CrossRef]
- Dudík, J.; Polito, V.; Dzifčáková, E.; Del Zanna, G.; Testa, P. Non-Maxwellian Analysis of the Transition-region Line Profiles Observed by the Interface Region Imaging Spectrograph. ApJ 2017, arXiv:astro-ph.SR/1705.02104]842, 19. [Google Scholar] [CrossRef]
- Polito, V.; Dudík, J.; Kašparová, J.; Dzifčáková, E.; Reeves, K.K.; Testa, P.; Chen, B. Broad Non-Gaussian Fe XXIV Line Profiles in the Impulsive Phase of the 2017 September 10 X8.3-class Flare Observed by Hinode/EIS. ApJ 2018, arXiv:astro-ph.SR/1807.09361]864, 63. [Google Scholar] [CrossRef]
- Del Zanna, G. The multi-thermal emission in solar active regions. A&A 2013, 558, A73. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Wang, K.; Brage, T.; Hutton, R.; Landi, E. A Theoretical Investigation of the Magnetic-field-induced Transition in Fe X, of Importance for Measuring Magnetic Field Strengths in the Solar Corona. ApJ 2021, 913, 135. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Tian, H.; Bai, X.; Hutton, R.; Brage, T. Application of a Magnetic-field-induced Transition in Fe X to Solar and Stellar Coronal Magnetic Field Measurements. Research in Astronomy and Astrophysics 2023, arXiv:astro-ph.SR/2212.02873]23, 022001. [Google Scholar] [CrossRef]
- Del Zanna, G.; Mason, H.E. Solar UV and X-ray spectral diagnostics. Living Reviews in Solar Physics 2018, arXiv:astro-ph.SR/1809.01618]15, 5. [Google Scholar] [CrossRef]
- Landi, E.; Li, W.; Brage, T.; Hutton, R. Hinode/EIS Coronal Magnetic Field Measurements at the Onset of a C2 Flare. ApJ 2021, arXiv:astro-ph.SR/2102.06072]913, 1. [Google Scholar] [CrossRef]
- Brooks, D.H.; Warren, H.P.; Landi, E. Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops. ApJL 2021, arXiv:astro-ph.SR/2106.10884]915, L24. [Google Scholar] [CrossRef]
- Dudík, J.; Mackovjak, Š.; Dzifčáková, E.; Del Zanna, G.; Williams, D.R.; Karlický, M.; Mason, H.E.; Lörinčík, J.; Kotrč, P.; Fárník, F.; et al. Imaging and Spectroscopic Observations of a Transient Coronal Loop: Evidence for the Non-Maxwellian K Distributions. ApJ 2015, arXiv:astro-ph.SR/1505.04333]807, 123. [Google Scholar] [CrossRef]
- Antonucci, E. Solar flare spectral diagnosis: Present and future. Sol Phys 1989, 121, 31–60. [Google Scholar] [CrossRef]
- Del Zanna, G.; Berlicki, A.; Schmieder, B.; Mason, H.E. A Multi-Wavelength Study of the Compact M1 Flare on October 22, 2002. Sol Phys 2006, 234, 95–113. [Google Scholar] [CrossRef]
- Polito, V.; Testa, P.; De Pontieu, B. Can the Superposition of Evaporative Flows Explain Broad Fe XXI Profiles during Solar Flares? ApJL 2019, 879, L17. [Google Scholar] [CrossRef]
- Bian, N.H.; Emslie, A.G.; Stackhouse, D.J.; Kontar, E.P. The Formation of Kappa-distribution Accelerated Electron Populations in Solar Flares. ApJ 2014, arXiv:astro-ph.SR/1410.0819]796, 142. [Google Scholar] [CrossRef]
- Del Zanna, G.; Andretta, V.; Cargill, P.J.; Corso, A.J.; Daw, A.N.; Golub, L.; Klimchuk, J.A.; Mason, H.E. High resolution soft X-ray spectroscopy and the quest for the hot (5-10 MK) plasma in solar active regions. Frontiers in Astronomy and Space Sciences 2021, arXiv:astro-ph.SR/2103.06156]8, 33. [Google Scholar] [CrossRef]
- Del Zanna, G.; Woods, T.N. Spectral diagnostics with the SDO EVE flare lines. A&A 2013, 555, A59. [Google Scholar] [CrossRef]
- Del Zanna, G.; Dere, K.P.; Young, P.R.; Landi, E. CHIANTI—An Atomic Database for Emission Lines. XVI. Version 10, Further Extensions. ApJ 2021, arXiv:physics.atom-ph/2011.05211]909, 38. [Google Scholar] [CrossRef]
- Mondal, B.; Sarkar, A.; Vadawale, S.V.; Mithun, N.P.S.; Janardhan, P.; Del Zanna, G.; Mason, H.E.; Mitra-Kraev, U.; Narendranath, S. Evolution of Elemental Abundances during B-Class Solar Flares: Soft X-Ray Spectral Measurements with Chandrayaan-2 XSM. ApJ 2021, arXiv:astro-ph.SR/2107.07825]920, 4. [Google Scholar] [CrossRef]
- Laming, J.M. The FIP and Inverse FIP Effects in Solar and Stellar Coronae. Living Reviews in Solar Physics 2015, 12, 2. [Google Scholar] [CrossRef]
- Doschek, G.A.; Feldman, U.; Kreplin, R.W.; Cohen, L. High-resolution X-ray spectra of solar flares. III - General spectral properties of X1-X5 type flares. ApJ 1980, 239, 725–737. [Google Scholar] [CrossRef]
- Doschek, G.A.; Tanaka, K. Transient Ionization and Solar Flare X-Ray Spectra. ApJ 1987, 323, 799. [Google Scholar] [CrossRef]
- Smith, R.K.; Hughes, J.P. Ionization Equilibrium Timescales in Collisional Plasmas. ApJ 2010, arXiv:astro-ph.HE/1006.0254]718, 583–585. [Google Scholar] [CrossRef]
- Lee, J.Y.; Raymond, J.C.; Reeves, K.K.; Shen, C.; Moon, Y.J.; Kim, Y.H. Nonequilibrium Ionization Effects on Solar EUV and X-Ray Imaging Observations. ApJ 2019, arXiv:astro-ph.SR/1905.11632]879, 111. [Google Scholar] [CrossRef]
- Olluri, K.; Gudiksen, B.V.; Hansteen, V.H. Non-equilibrium Ionization Effects on the Density Line Ratio Diagnostics of O IV. ApJ 2013, 767, 43. [Google Scholar] [CrossRef]
- Del Zanna, G. The multi-thermal emission in solar active regions. A&A 2013, 558, A73. [Google Scholar] [CrossRef]
- Calcines, A.; Wells, M.; O’Brien, K.; Morris, S.; Seifert, W.; Zanutta, A.; Evans, C.; Di Marcantonio, P. Design of the VLT-CUBES image slicers:. Experimental Astronomy 2023, 55, 267–280. [Google Scholar] [CrossRef]
- Richard, J.; Bacon, R.; Jeanneau, A. BlueMUSE: science cases and requirements. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy VIII; Evans, C.J.; Bryant, J.J.; Motohara, K., Eds. International Society for Optics and Photonics, SPIE, Vol. 11447; 2020; p. 114470. [Google Scholar] [CrossRef]
- Laurent, F.; Adjali, L.; Arns, J.; Bacon, R.; Boudon, D.; Caillier, P.; Daguisé, E.; Delabre, B.; Dubois, J.P.; Godefroy, P.; et al. MUSE integral field unit: test results on the first out of 24. In Proceedings of the Modern Technologies in Space- and Ground-based Telescopes and Instrumentation; Atad-Ettedgui, E.; Lemke, D., Eds., Vol. 7739, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2010; p. 77394. [Google Scholar] [CrossRef]
- Cuevas, S.; Eikenberry, S.S.; Sánchez, B. FRIDA integral field unit manufacturing. In Proceedings of the Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation; Navarro, R.; Cunningham, C.R.; Barto, A.A., Eds. International Society for Optics and Photonics, SPIE, Vol. 9151; 2014; p. 91514. [Google Scholar] [CrossRef]
- Calcines Rosario, A.; Dubbeldam, C.M.; Sharples, R.; Bourgenot, C.; Diaz, R.; Stephens, A.W. The HR image slicer for GNIRS at Gemini North: optical design and performance. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy IX; Evans, C.J.; Bryant, J.J.; Motohara, K., Eds., Vol. 12184, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2022; p. 121840. [Google Scholar] [CrossRef]
- Laurent, F.; Boudon, D.; Kosmalski, J.; Loupias, M.; Raffault, G.; Remillieux, A.; Thatte, N.; Bryson, I.; Schnetler, H.; Clarke, F.; et al. ELT HARMONI: image slicer preliminary design. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy VII; Evans, C.J.; Simard, L.; Takami, H., Eds., Vol. 10702, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2018; p. 1070296. [Google Scholar] [CrossRef]
- Brandl, B.R.; Bettonvil, F.; van Boekel, R.; Glauser, A.; Quanz, S.P.; Absil, O.; Feldt, M.; Garcia, P.J.V.; Glasse, A.; Guedel, M.; et al. Status update on the development of METIS, the mid-infrared ELT imager and spectrograph. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy IX; Evans, C.J.; Bryant, J.J.; Motohara, K., Eds., Vol. 12184, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2022; p. 1218421. [Google Scholar] [CrossRef]
- Calcines, A.; López, R.L.; Collados, M. MuSICa: the Multi-Slit Image Slicer for the est Spectrograph. Journal of Astronomical Instrumentation 2013, 2, 1350009. [Google Scholar] [CrossRef]
- Calcines, A.; López, R.L.; Collados, M. a High Resolution Integral Field Spectrograph for the European Solar Telescope. Journal of Astronomical Instrumentation 2013, 2, 1350007. [Google Scholar] [CrossRef]
- Calcines, A.; López, R.L.; Collados, M.; Vega Reyes, N. MuSICa image slicer prototype at 1. In 5-m GREGOR solar telescope. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy V; Ramsay, S.K.; McLean, I.S.; Takami, H., Eds., Vol. 9147, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2014; p. 91473. [Google Scholar] [CrossRef]
- Dubbeldam, C.M.; Robertson, D.J.; Ryder, D.A.; Sharples, R.M. Prototyping of diamond machined optics for the KMOS and JWST NIRSpec integral field units. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Atad-Ettedgui, E.; Antebi, J.; Lemke, D., Eds., Vol. 6273, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2006; p. 62733. [Google Scholar] [CrossRef]
- Lee, D.; Wells, M.; Dickson, C.J.; Shore, P.; Morantz, P. Development of diamond machined mirror arrays for integral field spectroscopy. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Atad-Ettedgui, E.; Antebi, J.; Lemke, D., Eds., Vol. 6273, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2006; p. 62731. [Google Scholar] [CrossRef]
- Witt, E.M.; Fleming, B.T.; Green, J.C.; France, K.; Williams, J.; Sukegawa, T.; Siegmund, O.; Chafetz, D.; Tecza, M.; Levy, A. INFUSE: assembly and alignment of a rocket-borne FUV integral field spectrograph. In Proceedings of the UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, Vol. 11821, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Siegmund, O.H., Ed.; 2021; p. 118210. [Google Scholar] [CrossRef]
- Calcines-Rosario, A.; Matthews, S.; Reid, H. Exploring the application of image slicers for the EUV for the next generation of solar space missions. In Proceedings of the Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray; den Herder, J.W.A.; Nikzad, S.; Nakazawa, K., Eds., Vol. 12181, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2022; p. 121810. [Google Scholar] [CrossRef]
- De Pontieu, B.; Martínez-Sykora, J.; Testa, P.; Winebarger, A.R.; Daw, A.; Hansteen, V.; Cheung, M.C.M.; Antolin, P. The Multi-slit Approach to Coronal Spectroscopy with the Multi-slit Solar Explorer (MUSE). ApJ 2020, arXiv:astro-ph.IM/1909.08818]888, 3. [Google Scholar] [CrossRef]
- De Pontieu, B.; Testa, P.; Martínez-Sykora, J.; Antolin, P.; Karampelas, K.; Hansteen, V.; Rempel, M.; Cheung, M.C.M.; Reale, F.; Danilovic, S.; et al. Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating. ApJ 2022, arXiv:astro-ph.SR/2106.15584]926, 52. [Google Scholar] [CrossRef]
- Cheung, M.C.M.; Martínez-Sykora, J.; Testa, P.; De Pontieu, B.; Chintzoglou, G.; Rempel, M.; Polito, V.; Kerr, G.S.; Reeves, K.K.; Fletcher, L.; et al. Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions. ApJ 2022, arXiv:astro-ph.SR/2106.15591]926, 53. [Google Scholar] [CrossRef]
- Calcines, A.; Bourgenot, C.; Sharples, R. Design of freeform diffraction gratings: performance, limitations and potential applications. In Proceedings of the Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III; Navarro, R.; Geyl, R., Eds. International Society for Optics and Photonics, SPIE, Vol. 10706; 2018; p. 107064. [Google Scholar] [CrossRef]
- Bourgenot, C.; Robertson, D.J.; Stelter, D.; Eikenberry, S. Towards freeform curved blazed gratings using diamond machining. In Proceedings of the Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II; Navarro, R.; Burge, J.H., Eds., Vol. 9912, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2016; p. 99123. [Google Scholar] [CrossRef]
- Shimizu, T.; Imada, S.; Kawate, T.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Katsukawa, Y.; Kubo, M.; Toriumi, S.; Watanabe, T.; et al. The Solar-C_EUVST mission. In Proceedings of the UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI; Siegmund, O.H., Ed., Vol. 11118, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 2019; p. 1111807. [Google Scholar] [CrossRef]
- Corso, A.J.; Pelizzo, M.G. Extreme ultraviolet multilayer nanostructures and their application to solar plasma observations: A review. Journal of nanoscience and nanotechnology 2019, 19, 532–545. [Google Scholar] [CrossRef]
- Corso, A.J.; Del Zanna, G.; Polito, V. Future perspectives in solar hot plasma observations in the soft X-rays. Experimental Astronomy 2021, 51, 453–474. [Google Scholar] [CrossRef]






| Ion | (Å) | log T | AR core | M2 flare | Notes |
|---|---|---|---|---|---|
| Nixv | 178.89 | 6.5 | 15 | 1.2×102 | |
| Fexxi | 178.90 | 7.1 | - | 4.8×102 (145) | ** Flare Ne |
| Fexi | 179.76 | 6.1 | 130 (40) | 9.0×102 (276) | ** Ne |
| Fexxiii | 180.04 | 7.2 | - | 8.8×102 (270) | * Flare |
| Fexi | 180.40 | 6.1 | 1.4×103 (429) | 3.1×103 (950) | ** (bl Fex) |
| Caxv | 181.90 | 6.5 | - | 4.2×102 (156) | *** Ne |
| Fexi | 182.17 | 6.1 | 120 (47) | 1.1×103 (429) | *** Ne |
| Caxv | 182.86 | 6.5 | - | 6.4×102 (310) | *** Ne |
| Fex | 184.54 | 6.0 | 220 (175) | 5.5×102 (439) | *** Coronal B |
| Fexi | 184.79 | 6.1 | 76 (64) | 5.0×102 (424) | *** Ne |
| Fexii | 186.89 | 6.2 | 600 (395) | 2790 (1836) | (bl) ** Ne |
| Fexxi | 187.93 | 7.1 | - | 3.8×103 (1172) | *** Flare (bl Arxiv) |
| Arxiv | 187.96 | 6.5 | 21 | 3.4×102 | ** Ne, FIP |
| Fexi | 188.22 | 6.1 | 710 (160) | 1.6×103 (362) | *** |
| Arxv | 221.15 | 6.5 | 73 (13) | 3.4×103 (584) | *** FIP |
| Fexxiii | 221.34 | 7.2 | - | 5.6×102 (100) | Flare |
| Sxii | 221.43 | 6.4 | 90 (16) | 4.1×102 (75) | ** FIP |
| Fexv | 233.87 | 6.5 | 260 (247) | 3.0×103 (2850) | ** Ne |
| Feix | 241.74 | 5.9 | 120 (189) | 120 (189) | *** Ne |
| Fexxi | 242.05 | 7.1 | - | 4.1×103 (6540) | *** Flare Ne |
| Heii | 243.03 | ||||
| Arxiv | 243.75 | 6.4 | 43 | 5.3×102 | FIP (bl) |
| Fexv | 243.79 | 6.5 | 880 (1502) | 6.5×103 (11095) | (bl Arxiv) |
| Feix | 244.91 | 5.9 | 80 (141) | 2.3×102 (406) | *** Ne |
| Fexxi | 246.95 | 7.1 | - | 6.5×102 (1205) | *** Flare |
| Fexxii | 247.19 | 7.1 | - | 8.0×103 (14887) | *** Flare |
| Arxiii | 248.68 | 6.2 | 7 (13) | 1.1×102 (209) | ** FIP |
| Nixvii | 249.19 | 6.6 | 840 (1598) | 9.3×103 (17690) | *** Flare |
| Fexii | 249.39 | 6.2 | 65 (124) | 2.4×102 (457) | |
| Fexvi | 251.06 | 6.5 | 650 (1234) | 1.0×104 (18979) | |
| Fexiii | 251.95 | 6.2 | 460 (864) | 1.7×103 (3194) | |
| Fexiv | 252.20 | 6.4 | 280 (524) | 1.8×103 (3367) | |
| Fexxii | 253.17 | 7.1 | - | 3.9×103 (7177) | *** Flare |
| Fexvii | 254.88 | 6.6 | - | 3.5×103 (6140) | *** Flare |
| Fexxiv | 255.11 | 7.3 | - | 4.8×104 (83656) | *** Flare |
| Heii | 256.3 | (bl) | |||
| Sxiii | 256.68 | 6.5 | 1.1×103 (1797) | 8.6×103 (14055) | ** FIP |
| Fex | 257.26 | 6.0 | 140 (222) | 150 (238) | *** coronal B |
| Fexiv | 257.39 | 6.4 | 420 (663) | 2.1×103 (3317) | |
| Fexi | 257.55 | 6.1 | 80 (125) | 2.3×102 (360) | ** Te,NMED |
| Six | 258.37 | 6.2 | 420 (628) | 1.5×103 (2243) | Ne |
| Sx | 259.50 | 6.2 | 53 (74) | 1.8×102 (251) | *** FIP |
| Six | 261.06 | 6.2 | 140 (175) | 4.2×102 (525) | Ne |
| Fexvi | 262.98 | 6.5 | 1.1×103 (1148) | 1.7×104 (17754) | |
| Fexxiii | 263.77 | 7.2 | - | 2.1×104 (20192) | *** Flare |
| Sx | 264.2 | 6.2 | 77 (71) | 257 (237) | *** FIP |
| Field of View | |
| Spectral Window 1 | Å |
| Spectral Window 2 | Å |
| Spectral resolution | Å FWHM |
| Spatial resolution | |
| Spectral Resolving Power (R) | |
| Temporal resolution (high signal) | seconds |
| Temporal resolution (low signal) | seconds |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
