Submitted:
27 November 2023
Posted:
28 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. A semi classical derivation of quantum gravity.
2.1. Hamilton’s Ricci Flow
2.2. Space-time Quantization
- It is a localized lump of (vacuum) energy
- It preserves its form while growing or diminishing in size
- It preserves its speed and form after collision with another soliton
3. Quantum Spatio-temporal Dynamics
Concluding remarks and future directions
Funding Statement
Data Availability
Acknowledgements
Conflict of interest
References
- G.Nash., Modified General Relativity, arxiv:1904.10803v7 [gr-qc] 2021. [CrossRef]
- S.S Xulu, The Energy-Momentum Problem in General Relativity, arxiv:hep-th/0308070v1 2003. [CrossRef]
- S.Deser, Infinities in Quantum Gravity, arxiv:gr-qc/9911073v1 1999. [CrossRef]
- J.D. Fraser, The Real Problem with Pertubative Quantum Field Theory, The British Journal for The Philosophy of Science 2020, 71:2, 391-413. [CrossRef]
- D.C. Dunbar, P.S.Norridge,Infinities within graviton scattering amplitudes, Class. Quantum Grav. 14 351. [CrossRef]
- Robinson, On the Bel-Robinson Tensor, Class. Quantum Grav. Vol. 14 No 1, pp. A331-A333, 1997. [CrossRef]
- J.M. Senovilla, Super-energy tensors, Class. Quantum Grav. Vol. 17 No. 14 pp. 2799-2841, 2000. [CrossRef]
- M.A.G Bonilla, J.M. Senovilla, Some properties of Bel and Bel Robinson tensors, General Relativity and Gravitation, vol 29 no. 1 p. 1407, 1993. [CrossRef]
- L.Balart,Quasilocal energy, Komar charge and horizon for regular black holes, Physical Letters B, vol. 687, no. 4-5, 4 pages 2003. [CrossRef]
- C.M. Chen, J.M. Nester, Quasilocal quantities for general relativity and other gravity theories, Class. Quantum Grav vol. 16 no.4pp.1279-1304 1999. [CrossRef]
- S.A.Hayward, Quasilocal gravitational energy, Physical Review D vol. 49 no. 2 pp. 831-839, 1994. [CrossRef]
- J.D.Brown , J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Physical Review D, vol. 47 no. 4 p1407, 1993. [CrossRef]
- Trautman, Conservation laws in general relativity, Gravitation : an introduction to Current Research, L. Witten (ed,p. 169, John Wiley & Sons new York 1963.
- Einstein, On the general theory of relativity,Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, vol. 47, pp. 778-786, 1915.
- Papapetron, Einstein’s theory of gravitation and flat space, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, vol. 52 pp.11-23, 1948.
- Møller, On the localization of the energy of a physical system in general relativity, Annals of Physics, vol. No. 4pp.347-371, 1958. [CrossRef]
- P.G. Bergmann , R. Thompson, Spin and angular momentum in general relativity, Physical Review Letters, vol. 89, pp. 400-407, 1953. [CrossRef]
- L.D.Landau, E.M. Lifshitz, The Classical Theory of Fields, p. 280 Pergamon Press, New York, USA. 1987.
- S.Weinberg, Gravitation and Cosmology: Principles and Applications of General Theory of Relativity, p.165, John Wiley & Sons, New York, USA, 1972.
- Randinschi et al., Localization of Energy –Momentum for BlackHole Spacetime Geometry with constant Topological Euler Density, arxiv: 1807.00300v2 [gr-qc] 2018. [CrossRef]
- N.Sheridan, Hamilton’s Ricci Flow, Honors Thesis, University of Melbourne, Department of Mathematics and Statistics, 2006.
- R. Hamilton, Three-Manifolds with positive Ricci Curvature. J. Diff. Geo. 17:255-306, 1982. [CrossRef]
- S. Marongwe., The Schwarzschild Solution to the Nexus Graviton field. Int. J. Geom. Methods Mod. Phys. 12(4) 1550042 2015. [CrossRef]
- S.Marongwe. , The electromagnetic signature of gravitational wave interaction with the quantum vacuum, Int. J. Mod. Phys. D Vol. 26 1750020 2017. [CrossRef]
- S. Marongwe., A Covariant Canonical Quantization of General Relativity, Advances in High Energy Physics Volume 2018, Article ID 4537058, 2020. [CrossRef]
- S. Marongwe., The Nexus Graviton: A quantum of dark energy and dark matter. Int.Geom.MethodsMod.Phys.11(6)1450059 2014. [CrossRef]
- M. Milgrom, A modification of the Newtonian dynamics — Implications for galaxies, Astrophys. J. 270 371–389. 1983. [CrossRef]
- R.Schoen, S.T.Yau, The energy and linear momentum of spacetimes in general relativity, Comm. Math.Phys. 79(1): 47-51. [CrossRef]
- E. Witten, A new proof of the positive mass theorem, Comm. Math.Phys. 80(1): 381-402. [CrossRef]
- F.I. Cooperstock, Energy localization in general relativity : A new hypothesis, Found Phys 22,1011-1024 (1992). [CrossRef]
- S.Marongwe, Horizon scale tests of quantum gravity using the event horizon telescope observation, Int. J. Mod. Phys. D Vol. 32 2350047 2023. [CrossRef]
- Planck Collaboration, Planck 2013 results-XVI. Cosmological parameters, arxiv:1303.5076v3 [astro-ph.CO]. [CrossRef]
- Planck Collaboration, Planck 2018 results-VI. Cosmological parameters, arxiv:1807.06209v4 [astro-ph.CO]. [CrossRef]
- J.Wenzel, Broken Time Translation Symmetry as a model for Quantum State Reduction, Symmetry 2010, 2, 582-608. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).