Submitted:
17 November 2023
Posted:
20 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Karhunen-Loève theorem
3. Response theory
4. Exact response of stochastic processes
4.1. Wiener process perturbation
4.2. Single perturbation realization
4.3. Stochastic coefficients with fixed initial condition
4.4. Averaging over initial conditions and stochastic coefficients
5. Harmonic oscillator
6. Concluding remarks
Acknowledgments
Appendix A
References
- R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer-Verlag, Tiergartenstrasse 17,0-69121 Heidelberg, Germany. [CrossRef]
- Marini Bettolo Marconi U, Puglisi A, Rondoni L, Vulpiani A. Fluctuation–dissipation: Response theory in statistical physics, Physics Reports 461 111 (2008).
- Rondoni, L. Introduction to nonequilibrium statistical physics and its foundations, In: Liu, XY. (eds) Frontiers and Progress of Current Soft Matter Research. Soft and Biological Matter. Springer, Singapore. [CrossRef]
- Denis, J. Evans and Gary P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London (1990).
- Stefano Bernardi and Debra J. Searles, Local response in nanopores, Molecular Simulation 42 463 (2015). [CrossRef]
- Luca Maffioli, Edward R. Smith, James P. Ewen, Peter J. Daivis, Daniele Dini, and B.D. Todd, Slip and stress from low shear rate nonequilibrium molecular dynamics: The transient-time correlation function technique, J. Chem. Phys. 156 184111 (2022). [CrossRef]
- Carlo Paneni; Debra J. Searles; Lamberto Rondoni, Temporal asymmetry of fluctuations in nonequilibrium steady states: Links with correlation functions and nonlinear response, J. Chem. Phys. 1645. [CrossRef]
- Debra J. Searles and Denis J. Evans, Ensemble dependence of the transient fluctuation theorem, The Journal of Chemical Physics 113, 3503 (2000). [CrossRef]
- Evans, D.J.; Searles, D.J. The Fluctuation Theorem, Adv. Phys. 2002, 51, 1529. [CrossRef]
- Denis J. Evans, Stephen R. Williams and Debra J. Searles, On the fluctuation theorem for the dissipation function and its connection with response theory, J. Chem. Phys. 128, 014504 (2008). [CrossRef]
- S. Dal Cengio and L. Rondoni, Broken versus Non-Broken Time Reversal Symmetry: Irreversibility and Response, 8 73 (2016). [CrossRef]
- Alessandro Coretti, Lamberto Rondoni, and Sara Bonella, Fluctuation relations for systems in a constant magnetic field, Phys. Rev. E 102 030101(R) (2020); Erratum Phys. Rev. E 103 029902 (2021). [CrossRef]
- Davide Carbone, Paolo De Gregorio, Lamberto Rondoni, Time reversal symmetry for classical, non-relativistic quantum and spin systems in presence of magnetic fields Ann. Phys. 441 168853 (2022). [CrossRef]
- Michel Loève, Probability theory II, Springer-Verlag, Berlin (1977).
- L. Rondoni and G. Dematteis, Physical Ergodicity and Exact Response Relations for Low-dimensional Maps, CMST 22 71 (2016). [CrossRef]
- Owen G Jepps and Lamberto Rondoni, A dynamical-systems interpretation of the dissipation function, T-mixing and their relation to thermodynamic relaxation, 2016 J. Phys. A: Math. Theor. 49 154002. [CrossRef]
- D. Amadori, M. Colangeli, A. Correa, L. Rondoni, Exact response theory and Kuramoto dynamics, Physica D: Nonlinear Phenomena 429 133076 (2022). [CrossRef]
- Gardiner C.W. Handbook of Stochastic Methods, (1990) Springer-Verlag.
- Antonio Celani, Processi stocastici: istruzioni per l’uso, 2010 Ilmiolibro.
- Salvatore Caruso, Claudio Giberti and Lamberto Rondoni, Dissipation Function: Nonequilibrium Physics and Dynamical Systems, Entropy 2020, 22(8), 835. [CrossRef]
- Denis J. Evans, Stephen R. Williams, Debra J. Searles and Lamberto Rondoni, On Typicality in Nonequilibrium Steady States, Springer Science + Business Media New York 2016. [CrossRef]
- Diego Krapf, Enzo Marinari, Ralf Metzler, Gleb Oshanin, Xinran Xu and Alessio Squarcini, Power spectral density of a single Brownian trajectory: what one can and cannot learn from it, 2018 New J. Phys. 20 023029.
- A.M. Tartakovskya, D.A. Barajas-Solanoa, Q. Hea, Physics-Informed Machine Learning with Conditional Karhunen-Lo`eve Expansions, Pacific Northwest National Laboratory, Richland, WA 99354. [CrossRef]
- Goldstein, T. Typicality and Notions of Probability in Physics. In Probability in Physics; Ben-Menahem, Y., Hemmo, M., Eds.; Springer-Verlag: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
