Submitted:
15 November 2023
Posted:
16 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Overview of Included Literature
3. ICE Effects on Bodyweight, Energy Expenditure, and Adipose Tissue
| Year | First Author |
Citation | ICE Outcomes | Model |
|---|---|---|---|---|
| 1979 | Doi | [21] | ↑BW (adults), ↔BW (newborns), ↑BAT, ↑EE in response to NorEp, ↑NST, ↓ST | Rats |
| 1984 | Harri | [22] | ↓Weight gain, ↔ BW (trended ↓), ↑BAT, ↑NST, ↓ST | Rats |
| 1986 | Arnold | [19] | ↓BW, ↓FFM, ↓FM, ↑BAT, ↑EE, ↑EI | Rats |
| 1988 | Deshaies | [20] | ↓BW, ↓eWAT and %eWAT, ↑BAT and %BAT | Rats |
| 1989 | Yahata | [23] | ↓BW, ↓eWAT, ↓BAT, ↑EI | Rats |
| 2014 | Yoo | [24] | ↑BW, ↔FFM, ↑FM, ↑iWAT, ↑iWAT adipocyte size, ↑iWAT beiging, ↑eWAT, ↓eWAT adipocyte size, ↑BAT activation, ↔EE | Mice |
| 2014 | Qiao | [25] | Adipoq-/- : ↑iWAT beiging, ↓Thermogenesis | Mice |
| 2014 | Ravussin | [26] | Cohort 1 (1 or 4hrs ICE): ↔BW, ↔FM, ↔FFM, ↔iWAT, ↔eWAT, ↔BAT, ↑EE (4hrs), ↑EI (4hrs) Cohort 2 (4 or 8hrs ICE): ↔BW, ↔FM, ↔FFM, ↔iWAT, ↑eWAT (4&8hrs), ↔BAT, ↑EE (4hrs), ↑↑EE(8hrs), ↑EI (4hrs), ↑↑EI (8hrs) |
Mice |
| 2014 | Blondin | [27] | ↑BAT activity during CE, ↓Skin Temp, ↓ST | Humans |
| 2015 | Wang | [28] | ↔BW, ↔ sWAT, ↓sWAT adipocyte size, ↓vWAT, ↑BAT activity, ↑BAT adipocyte number | Mice |
| 2015 | Bai | [29] | ↔BW, ↔sWAT, ↓sWAT adipocyte size, ↑pericardial WAT, ↓pericardial adipocyte size, ↑pericardial WAT beiging | Platue Pika (Rodent) |
| 2016 | Gibas-Dorna | [30] | Winter Swimmers vs Controls: ↑BW, ↑FM, ↓vWAT Winter Swimmers (pre vs post winter swimming season): ↔BW, ↔FM, ↔vWAT |
Humans |
| 2016 | Tsibui'nikov | [31] | ↑BW (↑8hrs, ↑↑1.5hrs), ↑BAT weight (8hrs) | Rats |
| 2017 | Blondin | [32] | ↔BW, ↑BAT volume, ↑BAT activity with CE, ↓skin temp, ↓ST, ↑EE with CE, ↔ fuel utilization during CE | Humans |
| 2019 | Presby | [33] | ↔BW, ↔FM, ↔FFM, ↔iWAT, ↔eWAT, ↑sWAT beiging, ↑BAT weight, ↑BAT adipocyte size, ↑EE during CE, ↓EE during dark cycle, ↑EE during light cycle | Obese Mice Caloric Restriction During ICE 24hr adlibitum after ICE |
| 2021 | Soberg | [16] | Winter Swimmers: higher supraclavicular skin temp in response to cold exposure, No BAT glucose uptake at thermoneutrality (controls had glucose uptake at thermoneutrality), ↑glucose uptake in perirenal BAT during cold exposure (not significant for control), ↑REE during cold exposure | Humans |
| 2021 | Zhang | [34] | ↓BW, ↑EI (trend) | Rats |
| 2022 | McKie | [35] | ↑BW, ↑iWAT, ↑eWAT, ↑BAT, ↑EI, ↑↑EI (within 4hrs post ICE) | Obese Mice |
| 2023 | Weng | [36] | ↑sWAT, ↔vWAT | Obese Rats |
| 2023 | Nema | [9] | ↔BW, ↔BMI, ↔FM, ↔FFM, ↓Waist Circumference (men only) | Humans (Soldiers) |
4. ICE Effects on Adipose Tissue Gene and Protein Expression
5. ICE Effects on Systemic Factors Related to Adipose Tissue and Metabolism
6. Effects of Exercise During ICE
7. Conclusion and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Grundy, S.M. Adipose Tissue and Metabolic Syndrome: Too Much, Too Little or Neither. Eur J Clin Invest 2015, 45, 1209. [Google Scholar] [CrossRef] [PubMed]
- Fahed, G.; Aoun, L.; Zerdan, M.B.; Allam, S.; Zerdan, M.B.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef] [PubMed]
- Qian, T.; Sheng, X.; Shen, P.; Fang, Y.; Deng, Y.; Zou, G. Mets-IR as a Predictor of Cardiovascular Events in the Middle-Aged and Elderly Population and Mediator Role of Blood Lipids. Front Endocrinol (Lausanne) 2023, 14, 1224967. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; D’cunha, N.M.; Travica, N.; Sergi, D.; Zec, M.; Marx, W.; Naumovski, N. Metabolic Syndrome, Cognitive Impairment and the Role of Diet: A Narrative Review. Nutrients 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-Tissue Plasticity in Health and Disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef] [PubMed]
- Hauner, H. The Mode of Action of Thiazolidinediones. Diabetes Metab Res Rev 2002, 18 (Suppl 2). [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ Signaling and Metabolism: The Good, the Bad and the Future. Nat Med 2013, 19, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The Obesity Transition: Stages of the Global Epidemic. Lancet Diabetes Endocrinol 2019, 7, 231. [Google Scholar] [CrossRef] [PubMed]
- Néma, J.; Zdara, J.; Lašák, P.; Bavlovič, J.; Bureš, M.; Pejchal, J.; Schvach, H. Impact of Cold Exposure on Life Satisfaction and Physical Composition of Soldiers. BMJ Mil Health 2023, e002237. [Google Scholar] [CrossRef]
- Van Der Lans, A.A.J.J.; Boon, M.R.; Haks, M.C.; Quinten, E.; Schaart, G.; Ottenhoff, T.H.; van Marken Lichtenbelt, W.D. Cold Acclimation Affects Immune Composition in Skeletal Muscle of Healthy Lean Subjects. Physiol Rep 2015, 3. [Google Scholar] [CrossRef]
- L, J.; D, P.; S, H.; B, U.; P, S.; V, Z.; J, K. Immune System of Cold-Exposed and Cold-Adapted Humans. Eur J Appl Physiol Occup Physiol 1996, 72, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Van Tulleken, C.; Tipton, M.; Massey, H.; Harper, C.M. Open Water Swimming as a Treatment for Major Depressive Disorder. BMJ Case Rep 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Castellani, J.W.; Young, A.J. Human Physiological Responses to Cold Exposure: Acute Responses and Acclimatization to Prolonged Exposure. Auton Neurosci 2016, 196, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Fenzl, A.; Kiefer, F.W. Brown Adipose Tissue and Thermogenesis. Horm Mol Biol Clin Investig 2014, 19, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Blondin, D.P.; Labbé, S.M.; Phoenix, S.; Guérin, B.; Turcotte, É.E.; Richard, D.; Carpentier, A.C.; Haman, F. Contributions of White and Brown Adipose Tissues and Skeletal Muscles to Acute Cold-Induced Metabolic Responses in Healthy Men. J Physiol 2015, 593, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Søberg, S.; Löfgren, J.; Philipsen, F.E.; Jensen, M.; Hansen, A.E.; Ahrens, E.; Nystrup, K.B.; Nielsen, R.D.; Sølling, C.; Wedell-Neergaard, A.S.; et al. Altered Brown Fat Thermoregulation and Enhanced Cold-Induced Thermogenesis in Young, Healthy, Winter-Swimming Men. Cell Rep Med 2021, 2, 100408. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, J.; Dai, H.; Duan, Y.; An, Y.; Shi, L.; Lv, Y.; Li, H.; Wang, C.; Ma, Q.; et al. Brown and Beige Adipose Tissue: A Novel Therapeutic Strategy for Obesity and Type 2 Diabetes Mellitus. Adipocyte 2021, 10, 48–65. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Song, Y.; Xie, H.; Dong, M. An Update on Brown Adipose Tissue and Obesity Intervention: Function, Regulation and Therapeutic Implications. Front Endocrinol (Lausanne) 2023, 13. [Google Scholar] [CrossRef]
- Arnold, J.; Richard, D. Exercise during Intermittent Cold Exposure Prevents Acclimation to Cold Rats. J Physiol 1987, 390, 45–54. [Google Scholar] [CrossRef]
- Deshaies, Y.; Arnold, J.; Richard, D. Lipoprotein Lipase in Adipose Tissues of Rats Running during Cold Exposure. J Appl Physiol (1985) 1988, 65, 549–554. [Google Scholar] [CrossRef]
- Doi, K.; Kuroshima, A. Lasting Effect of Infantile Cold Experience on Cold Tolerance in Adult Rats. Jpn J Physiol 1979, 29, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Harri, M.; Dannenberg, T.; Oksanen-Rossi, R.; Hohtola, E.; Sundin, U. Related and Unrelated Changes in Response to Exercise and Cold in Rats: A Reevaluation. J Appl Physiol Respir Environ Exerc Physiol 1984, 57, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Yahata, T.; Kuroshima, A. Metabolic Cold Acclimation after Repetitive Intermittent Cold Exposure in Rat. Jpn J Physiol 1989, 39, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.S.; Qiao, L.; Bosco, C.; Leong, L.H.; Lytle, N.; Feng, G.S.; Chi, N.W.; Shao, J. Intermittent Cold Exposure Enhances Fat Accumulation in Mice. PLoS One 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Yoo, H.S.; Bosco, C.; Lee, B.; Feng, G.S.; Schaack, J.; Chi, N.W.; Shao, J. Adiponectin Reduces Thermogenesis by Inhibiting Brown Adipose Tissue Activation in Mice. Diabetologia 2014, 57, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Ravussin, Y.; Xiao, C.; Gavrilova, O.; Reitman, M.L. Effect of Intermittent Cold Exposure on Brown Fat Activation, Obesity, and Energy Homeostasis in Mice. PLoS One 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Blondin, D.P.; Labbé, S.M.; Tingelstad, H.C.; Noll, C.; Kunach, M.; Phoenix, S.; Guérin, B.; Turcotte, É.E.; Carpentier, A.C.; Richard, D.; et al. Increased Brown Adipose Tissue Oxidative Capacity in Cold-Acclimated Humans. J Clin Endocrinol Metab 2014, 99, E438. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Liu, C.; Wang, A.; Sun, Q. Intermittent Cold Exposure Improves Glucose Homeostasis Associated with Brown and White Adipose Tissues in Mice. Life Sci 2015, 139, 153. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Wuren, T.; Liu, S.; Han, S.; Chen, L.; McClain, D.; Ge, R.L. Intermittent Cold Exposure Results in Visceral Adipose Tissue “Browning” in the Plateau Pika (Ochotona Curzoniae). Comp Biochem Physiol A Mol Integr Physiol 2015, 184, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Gibas-Dorna, M.; Checinska, Z.; Korek, E.; Kupsz, J.; Sowinska, A.; Krauss, H. Cold Water Swimming Beneficially Modulates Insulin Sensitivity in Middle-Aged Individuals. J Aging Phys Act 2016, 24, 547–554. [Google Scholar] [CrossRef]
- Tsibul’nikov, S.Y.; Maslov, L.N.; Naryzhnaya, N. V.; Ivanov, V. V.; Lishmanov, Y.B. Specific Features of Adaptation of Rats to Chronic Cold Treatment. Doklady Biological Sciences 2016, 470, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Blondin, D.P.; Daoud, A.; Taylor, T.; Tingelstad, H.C.; Bézaire, V.; Richard, D.; Carpentier, A.C.; Taylor, A.W.; Harper, M.-E.; Aguer, C.; et al. Four-Week Cold Acclimation in Adult Humans Shifts Uncoupling Thermogenesis from Skeletal Muscles to Brown Adipose Tissue. J Physiol 2017, 595, 2099–2113. [Google Scholar] [CrossRef] [PubMed]
- Presby, D.M.; Jackman, M.R.; Rudolph, M.C.; Sherk, V.D.; Foright, R.M.; Houck, J.A.; Johnson, G.C.; Orlicky, D.J.; Melanson, E.L.; Higgins, J.A.; et al. Compensation for Cold-Induced Thermogenesis during Weight Loss Maintenance and Regain. Am J Physiol Endocrinol Metab 2019, 316, E977–E986. [Google Scholar] [CrossRef]
- Zhang, L.; An, G.; Wu, S.; Wang, J.; Yang, D.; Zhang, Y.; Li, X. Long-Term Intermittent Cold Exposure Affects Peri-Ovarian Adipose Tissue and Ovarian Microenvironment in Rats. J Ovarian Res 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- McKie, G.L.; Shamshoum, H.; Hunt, K.L.; Thorpe, H.H.A.; Dibe, H.A.; Khokhar, J.Y.; Doucette, C.A.; Wright, D.C. Intermittent Cold Exposure Improves Glucose Homeostasis despite Exacerbating Diet-Induced Obesity in Mice Housed at Thermoneutrality. J Physiol 2022, 600, 829–845. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Wang, C.; Yuan, Y.; Wang, Z.; Kuang, J.; Yan, X.; Chen, H. Effect of Cold Exposure and Exercise on Insulin Sensitivity and Serum Free Fatty Acids in Obese Rats. Med Sci Sports Exerc 2023. [Google Scholar] [CrossRef] [PubMed]
- Brychta, R.J.; Chen, K.Y. Cold-Induced Thermogenesis in Humans. Eur J Clin Nutr 2017, 71, 345. [Google Scholar] [CrossRef] [PubMed]
- van Marken Lichtenbelt, W.D.; Schrauwen, P. Implications of Nonshivering Thermogenesis for Energy Balance Regulation in Humans. Am J Physiol Regul Integr Comp Physiol 2011, 301, 285–296. [Google Scholar] [CrossRef]
- Zeyl, A.; Stocks, J.M.; Taylor, N.A.S.; Jenkins, A.B. Interactions between Temperature and Human Leptin Physiology in Vivo and in Vitro. Eur J Appl Physiol 2004, 92, 571–578. [Google Scholar] [CrossRef]
- Gibas-Dorna, M.; Checinska, Z.; Korek, E.; Kupsz, J.; Sowinska, A.; Wojciechowska, M.; Krauss, H.; Piątek, J. Variations in Leptin and Insulin Levels within One Swimming Season in Non-Obese Female Cold Water Swimmers. Scand J Clin Lab Invest 2016, 76, 486–491. [Google Scholar] [CrossRef]
- Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.-H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; et al. Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell 2012, 150, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Timmons, J.A.; Wennmalm, K.; Larsson, O.; Walden, T.B.; Lassmann, T.; Petrovic, N.; Hamilton, D.L.; Gimeno, R.E.; Wahlestedt, C.; Baar, K.; et al. Myogenic Gene Expression Signature Establishes That Brown and White Adipocytes Originate from Distinct Cell Lineages. Proceedings of the National Academy of Sciences 2007, 104, 4401–4406. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.D.; Spiegelman, B.M. What We Talk About When We Talk About Fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef] [PubMed]
- Straub, L.G.; Scherer, P.E. Metabolic Messengers: Adiponectin. Nat Metab 2019, 1, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wu, J.; Cohen, P.; Kazak, L.; Khandekar, M.J.; Jedrychowski, M.P.; Zeng, X.; Gygi, S.P.; Spiegelman, B.M. Fat Cells Directly Sense Temperature to Activate Thermogenesis. Proceedings of the National Academy of Sciences 2013, 110, 12480–12485. [Google Scholar] [CrossRef]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-Dependent Myokine That Drives Brown-Fat-like Development of White Fat and Thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Rosenwald, M.; Perdikari, A.; Rülicke, T.; Wolfrum, C. Bi-Directional Interconversion of Brite and White Adipocytes. Nat Cell Biol 2013, 15, 659–667. [Google Scholar] [CrossRef]
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic Syndrome and Insulin Resistance: Underlying Causes and Modification by Exercise Training. In Comprehensive Physiology; Wiley, 2013; pp. 1–58. [Google Scholar]
- Bornfeldt, K.E.; Tabas, I. Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metab 2011, 14, 575–585. [Google Scholar] [CrossRef]
| Year | First Author |
Citation | Methods | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Model | Groups | ICE Modality |
ICE Freq. | ICE Intensity | ICE Duration | ICE Intervention |
|||
| 1979 | Doi | [21] | Rats | 1. Control Newborn 2. Control Adult 3. ICE Newborn 4. ICE Adult |
Air | daily | 5°C | 4hrs | 14 days |
| 1984 | Harri | [22] | Rats | 1. Control 2. CCE 3. ICE 4. Control Exercise 5. CCE Exercise |
Air | 5d/wk | -20°C | 1hr | ≥6wks |
| 1986 | Arnold | [19] | Rats | 1. Control 2. ICE 3. Control Exercise 4. ICE Exercise |
Air | daily | -5°C | 2hrs | 28 days |
| 1988 | Deshaies | [20] | Rats | 1. Control 2. ICE 3. Control Exercise 4. ICE Exercise |
Air | daily | -5°C | 2hrs | 28 days |
| 1989 | Yahata | [23] | Rats | 1. Control 2. CCE 3. ICE |
Air | daily | 5°C | 6hs or 2hrs | 28 days |
| 2014 | Yoo | [24] | Mice | 1. Control 2. ACE 3. ICE |
Air | daily | 4°C | 6hrs | 12-14 days |
| 2014 | Qiao | [25] | Mice | 1. Control ICE 2. Adipoq-/- ICE |
Air | daily | 4°C | 6hrs | 10 days |
| 2014 | Ravussin | [26] | Mice | 1. Control 2. ICE 1hr 3. ICE 4hr 4. ICE 8hr |
Air | 3d/wk | 4°C | 1, 4, or 8hrs | 10-11wks |
| 2014 | Blondin | [27] | Humans | Pre vs Post | Liquid cooled suit | 5d/wk | 18°C | 2hrs | 4wks |
| 2015 | Wang | [28] | Mice | 1. Control 2. ICE |
Air | 5d/wk | 4°C | 2hrs | 14wks |
| 2015 | Bai | [29] | Platue Pika (Rodent) Simulated low air pressure (4100M) |
1. Control 2. ICE |
Air | daily | 5-6°C | 4hrs | 15 days |
| 2016 | Gibas-Dorna | [30] | Humans | 1. Controls 2. Winter Swimmers (Pre vs Post) |
Winter Swimming | ≥2d/wk | 1-10°C | 5-15min | ~6 months |
| 2016 | Tsibui'nikov | [31] | Rats | 1. Control 2. CCE 3. ICE (1.5hrs) 4. ICE (8hrs) |
Air | daily | 4°C | 1.5 or 8hrs | 4wks |
| 2017 | Blondin | [32] | Humans | Pre vs Post ICE | Liquid cooled suit | daily | 10°C | 2hrs | 4wks |
| 2019 | Presby | [33] | Obese Mice Caloric Restriction During ICE 24hr ad libitum after ICE |
1. Caloric Restriction 2. ICE + Caloric Restriction |
Air | 5d/wk | 4°C | 1.5hrs | 3wks |
| 2021 | Soberg | [16] | Humans | 1. Controls 2. Winter Swimmers |
Winter Swimming | 2-3d/wk | NA | 11min | At least 1 season |
| 2021 | Zhang | [34] | Rats | 1. Control 2. ICE |
Air | daily | 10°C | 4hrs | 2wks |
| 2022 | McKie | [35] | Obese Mice | 1. HFD 2. ICE + HFD |
Air | 5d/wk | 4°C | 1hr | 4wks |
| 2023 | Weng | [36] | Obese Rats | 1.Control 2.Exercise 3.ACE 4.ACE+Exercise 5.CCE 6.CCE+Exercise 7.ICE 8.ICE+Exercise |
Air | daily | 3-4°C | 4hrs | 5wks |
| 2023 | Nema | [9] | Humans (Soldiers) | 1. Control Pre vs Post 2. ICE Pre vs Post |
CWI and CS |
CWI ≥1/wk CS ≥4/wk |
CWI≤6°C CS≤10°C |
CWI ≥3min CS ≥30s |
8wks |
| Year | First Author |
Citation | ICE Outcomes | Model |
|---|---|---|---|---|
| 1984 | Harri | [22] | ↑Citrate synthase in BAT, ↑Cytochrome C oxidase in BAT | Rats |
| 1988 | Deshaies | [20] | ↔eWAT LPL | Rats |
| 1989 | Yahata | [23] | ↑BAT glucagon | Rats |
| 2014 | Yoo | [24] | ↑iWAT Ucp1 and UCP1, ↑iWAT lipogenic gene expression | Mice |
| 2014 | Qiao | [25] | Adipoq-/- : ↑iWAT UCP1, ↑BAT UCP1 and Lipogenic protein at RT, ↓BAT UCP1 and PGC1α protein during CE | Mice |
| 2014 | Ravussin | [26] | Cohort 1 (1 or 4hrs ICE): ↑BAT Ucp1 (4hrs), ↑BAT Pgc1α (4hrs), ↓serum leptin (4hrs) Cohort 2 (4 or 8hrs ICE): ↑BAT UCP1 (4&8hrs) |
Mice |
| 2015 | Wang | [28] | ↑sWAT UCP1 and PGC1α, ↔BAT UCP1 (trended↑) | Mice |
| 2015 | Bai | [29] | ↑BAT thermogenic gene expression (Pgc1α, Dio2, Cidea) and adipogenic gene expression (Adipoq, Cebpα, Ppary, Fabp4), ↑ pericardial WAT thermogenic gene expression (Ucp1 and Pgc1α), ↑pericardial WAT UCP1 staining and mito activity genes (Cox8 and ATP5α), ↔ serum leptin | Platue Pika (Rodent) |
| 2019 | Presby | [33] | ↑sWAT Dio2, ↑sWAT UCP1, ↑BAT Dio2, ↑BAT UCP1 | Obese Mice Caloric Restriction During ICE 24hr ad libitum after ICE |
| 2021 | Zhang | [34] | ↑peri-ovarian adipose thermogenic gene expression | Rats |
| 2023 | Weng | [36] | ↔ iWAT ATGL activity, ↑iWAT LPL activity | Obese Rats |
| Year | First Author |
Citation | ICE Outcomes | Model |
|---|---|---|---|---|
| 1988 | Deshaies | [20] | ↓serum cholesterol, ↔HDL | Rats |
| 1989 | Yahata | [23] | ↑plasma glucagon, ↑corticosterone | Rats |
| 2014 | Yoo | [24] | ↔IS, ↑Liver TGs and Hepatic TG release, ↑DNL | Mice |
| 2014 | Ravussin | [26] | Cohort 1 (1 or 4hrs ICE): ↑BAT glucose uptake Cohort 2 (4 or 8hrs ICE): ↑FFA (4&8hrs), ↓insulin |
Mice |
| 2014 | Blondin | [27] | ↓BG, ↓Cortisol | Humans |
| 2015 | Wang | [28] | ↑glucose tolerance, ↑insulin sensitivity | Mice |
| 2015 | Bai | [29] | ↔serum glucose, ↔serum TG | Platue Pika (Rodent) |
| 2016 | Gibas-Dorna | [30] | ↑IS during the portion of the winter swimming season where water tempterature was <8°C | Humans |
| 2017 | Blondin | [32] | ↔FG | Humans |
| 2021 | Soberg | [16] | Winter Swimmers had: ↓plasma glucose during IGTT | Humans |
| 2022 | McKie | [35] | ↑glucose tolerance, ↑insulin and c-peptide in response to glucose, ↔IS | Obese Mice |
| 2023 | Weng | [36] | ↔BG, ↔ insulin, ↓HOMA-IR, ↔FFA | Obese Rats |
| Year | First Author |
Citation | Intervention | Outcomes | Model |
|---|---|---|---|---|---|
| 1986 | Arnold | [19] | ICE | ↓BW, ↓FFM, ↓FM, ↑BAT, ↑EE, ↑EI | Rats |
| Ex | ↓↓BW, ↓FFM, ↓BAT, ↓↓FM, ↔ EE, ↓EI | ||||
| ICE+Ex | ↓↓BW, ↓FFM, ↓↓FM, ↔BAT, ↓EI, ↔EE | ||||
| 1988 | Deshaies | [20] | ICE | ↓BW, ↓eWAT, ↑BAT, ↑EI, ↔TG, ↓Cholesterol | Rats |
| Ex | ↓↓BW, ↓↓eWAT, ↔ BAT, ↓EI, ↓TG, ↔Cholesterol | ||||
| ICE+Ex | ↓↓BW, ↓↓eWAT, ↔ BAT, ↓EI, ↓TG, ↔ Cholesterol | ||||
| 2023 | Weng | [36] | ICE | ↔sWAT (trend↑), ↑sWAT LPL activity, ↑ muscle PGC1α, ↑ muscle p38MAPK | Obese Rats |
| Ex | ↔sWAT, ↑sWAT LPL activity, ↑ muscle PGC1α, ↑ muscle p38MAPK | ||||
| ICE+Ex | ↔sWAT, ↑↑sWAT LPL activity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).