Submitted:
18 January 2025
Posted:
20 January 2025
You are already at the latest version
Abstract
In this study, we investigated the associations between lifestyle factors (diet, physical activity, sleep), body composition, and resting energy expenditure (REE) in a cohort of 80 healthy, non-obese adults aged 30–45 years. Using indi-rect calorimetry, accelerometers, and bioelectrical impedance analysis (BIA), we assessed REE, physical activity levels, sleep duration, and biochemical parame-ters to identify factors contributing to individual variations in REE and their potential role in modulating cardiometabolic risk. We found that fat-free mass (FFM) was the strongest predictor of REE, along with related metrics such as total body water, body cell mass, and muscle mass (p < 0.0001, adj. R² > 0.5). In univariable models, all physical activity intensities were significantly associated with REE, but only moderate physical activity (MPA) remained significant after adjusting for sex and FFM (β = 2.2 ± 1.0, p < 0.05, adj. R² = 0.589). Similarly, a positive association between HDL-C and REE persisted after adjustments (β = 5.0 ± 2.0 kcal/d, p < 0.05, adj. R² = 0.588). These direct links may be attributed to habitual, spontaneous physical activity, which generates post-exercise metabolic elevation and promotes adipose tissue brown-ing, resulting in favorable metabolic effects. Other biochemical and lifestyle factors, including HOMA-IR, insulin levels, tri-glycerides, and total energy intake, showed positive associations with REE in the crude model. However, these relationships diminished after adjustment, suggesting that their influence is likely mediated by factors such as body compo-sition, body size, and sex. Finally, no significant relationship between sleep and REE was observed in our cohort under naturalistic conditions, possibly due to the alignment of participants’ sleep durations with recommended guidelines.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Subjects and Data Collection
2.2. Resting Energy Expenditure Measured By Indirect Calorimetry
2.3. Bioelectrical Impedance Analysis, Biochemical Tests, Physical Activity, and Sleep Duration
2.4. Statistical Analyzes
3. Results
3.1. Impact of Anthropometric and Body Composition Factors on REE
3.2. Impact of Biochemical Factors on REE
3.3. Impact of lifestyle factors (physical activity, sleep, diet) on REE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Achamrah, N.; Delsoglio, M.; De Waele, E.; et al. Indirect calorimetry: The 6 main issues Clin Nutr, 2021, 40, 4-14.
- Lam, Y.Y.; Ravussin, E. Indirect calorimetry: an indispensable tool to understand and predict obesity Eur J Clin Nutr, 2017, 71, 318-322.
- Delsoglio, M.; Achamrah, N.; Berger, M.M.; Pichard, C. Indirect Calorimetry in Clinical Practice. J. Clin. Med. 2019, 8, 1387. [Google Scholar] [CrossRef]
- Borges, J.H.; Guerra-Júnior, G.; Gonçalves, E.M. Methods for data analysis of resting energy expenditure measured using indirect calorimetry. Nutrition 2019, 59, 44–49. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Jurado-Fasoli, L.; De-La-O, A.; Gutierrez, Á.; Castillo, M.J.; Ruiz, J.R. Accuracy and Validity of Resting Energy Expenditure Predictive Equations in Middle-Aged Adults. Nutrients 2018, 10, 1635. [Google Scholar] [CrossRef] [PubMed]
- Molina-Luque, R.; Carrasco-Marín, F.; Márquez-Urrizola, C.; Ulloa, N.; Romero-Saldaña, M.; Molina-Recio, G. Accuracy of the Resting Energy Expenditure Estimation Equations for Healthy Women. Nutrients 2021, 13, 345. [Google Scholar] [CrossRef] [PubMed]
- Buch, A.; Diener, J.; Stern, N.; Rubin, A.; Kis, O.; Sofer, Y.; Yaron, M.; Greenman, Y.; Eldor, R.; Eilat-Adar, S. Comparison of Equations Estimating Resting Metabolic Rate in Older Adults with Type 2 Diabetes. J. Clin. Med. 2021, 10, 1644. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Frankenfield, D.C.; Muth, E.R.; Rowe, W.A. The Harris-Benedict Studies of Human Basal Metabolism: History and Limitations. J. Am. Diet. Assoc. 1998, 98, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Marra, M.; Cioffi, I.; Sammarco, R.; et al. Are Raw BIA Variables Useful for Predicting Resting Energy Expenditure in Adults with Obesity? Nutrients 2019, 11, 216. [Google Scholar] [CrossRef]
- Marra, M.; Sammarco, R.; De Filippo, E.; De Caprio, C.; Speranza, E.; Contaldo, F.; Pasanisi, F. Resting Energy Expenditure, Body Composition and Phase Angle in Anorectic, Ballet Dancers and Constitutionally Lean Males. Nutrients 2019, 11, 502. [Google Scholar] [CrossRef]
- Tanaka, N.; Okuda, T.; Shinohara, H.; Yamasaki, R.S.; Hirano, N.; Kang, J.; Ogawa, M.; Nishi, N.N. Relationship between Seasonal Changes in Food Intake and Energy Metabolism, Physical Activity, and Body Composition in Young Japanese Women. Nutrients 2022, 14, 506. [Google Scholar] [CrossRef]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism J Physiol 1949, 109, 1-9.
- Ostrowska, J.; Samborowska, E.; Jaworski, M.; Toczyłowska, K.; Szostak-Węgierek, D. The Potential Role of SCFAs in Modulating Cardiometabolic Risk by Interacting with Adiposity Parameters and Diet. Nutrients 2024, 16, 266. [Google Scholar] [CrossRef] [PubMed]
- Lochs, H.; Allison, S.P.; Meier, R.; Pirlich, M.; Kondrup, J.; Schneider, S.; van den Berghe, G.; Pichard, C. Introductory to the ESPEN Guidelines on Enteral Nutrition: Terminology, Definitions and General Topics. Clin. Nutr. 2006, 25, 180–186. [Google Scholar] [CrossRef]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic Sleep/Wake Identification From Wrist Activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef]
- Danielewicz, A.L.; Lazzer, S.; Marra, A.; Abbruzzese, L.; D’alleva, M.; De Martino, M.; Isola, M.; Avelar, N.C.P.; Mendonça, V.A.; Lacerda, A.C.R.; et al. Prediction of resting energy expenditure in Italian older adults with severe obesity. Front. Endocrinol. 2023, 14, 1283155. [Google Scholar] [CrossRef]
- Jésus, P.; Achamrah, N.; Grigioni, S.; Charles, J.; Rimbert, A.; Folope, V.; Petit, A.; Déchelotte, P.; Coëffier, M. Validity of predictive equations for resting energy expenditure according to the body mass index in a population of 1726 patients followed in a Nutrition Unit. Clin. Nutr. 2014, 34, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bertoli, S.; Leone, A.; De Amicis, R.; Lucchetti, E.; Agosti, F.; Marazzi, N.; Battezzati, A.; Sartorio, A. External validation of equations to estimate resting energy expenditure in 14952 adults with overweight and obesity and 1948 adults with normal weight from Italy. Clin. Nutr. 2019, 38, 457–464. [Google Scholar] [CrossRef]
- Marra, M.; Cioffi, I.; Sammarco, R.; Montagnese, C.; Naccarato, M.; Amato, V.; Contaldo, F.; Pasanisi, F. Prediction and evaluation of resting energy expenditure in a large group of obese outpatients. Int. J. Obes. 2017, 41, 697–705. [Google Scholar] [CrossRef]
- Maddocks, M.; Kon, S.S.; Jones, S.E.; Canavan, J.L.; Nolan, C.M.; Higginson, I.J.; Gao, W.; Polkey, M.I.; Man, W.D.-C. Bioelectrical impedance phase angle relates to function, disease severity and prognosis in stable chronic obstructive pulmonary disease. Clin. Nutr. 2015, 34, 1245–1250. [Google Scholar] [CrossRef]
- Fiaccadori, E.; Morabito, S.; Cabassi, A.; Regolisti, G. Body cell mass evaluation in critically ill patients: killing two birds with one stone. Crit. Care 2014, 18, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.S.; Tousoulis, D. The molecular mechanisms of obesity paradox. Cardiovasc. Res. 2017, 113, 1074–1086. [Google Scholar] [CrossRef] [PubMed]
- MacotelaY. ; Emanuelli B.; Mori M.A.; et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 2012, 61, 1691–1699.
- Drabsch, T.; Holzapfel, C.; Stecher, L.; Petzold, J.; Skurk, T.; Hauner, H. Associations Between C-Reactive Protein, Insulin Sensitivity, and Resting Metabolic Rate in Adults: A Mediator Analysis. Front. Endocrinol. 2018, 9, 556. [Google Scholar] [CrossRef]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, M.; Honjo, S.; Sakamoto, T.; Yagyu, T.; Uchinaka, E.; Hanaki, T.; Watanabe, J.; Matsunaga, T.; Yamamoto, M.; Fukumoto, Y.; et al. Prognostic Impact of Pre- and Post-operative P-CRP Levels in Pancreatic Cancer Patients. Yonago Acta Medica 2020, 63, 70–78. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.-L. Biomarkers of sepsis: time for a reappraisal. Crit. Care 2020, 24, 1–15. [Google Scholar] [CrossRef]
- Utaka, S.; Avesani, C.M.; A Draibe, S.; A Kamimura, M.; Andreoni, S.; Cuppari, L. Inflammation is associated with increased energy expenditure in patients with chronic kidney disease. Am. J. Clin. Nutr. 2005, 82, 801–805. [Google Scholar] [CrossRef]
- Sepandar, F.; Rashidbeygi, E.; Maghbooli, Z.; Khorrami-Nezhad, L.; Hajizadehoghaz, M.; Mirzaei, K. The association between resting metabolic rate and metabolic syndrome May Be mediated by adipokines in overweight and obese women. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Mirzaei, K.; Abdurahman, A.A.; Keshavarz, S.A.; Hossein-Nezhad, A. Mediatory effect of circulating vaspin on resting metabolic rate in obese individuals. Eur. J. Nutr. 2015, 55, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Korzeniowska, K.; Szarejko, K.; Borowski, H.; Brzeziński, M.; Myśliwiec, M.; Czupryniak, L.; Berggren, P.-O.; Radziwiłł, M.; Soszyński, P. Fitness, Food, and Biomarkers: Characterizing Body Composition in 19,634 Early Adolescents. Nutrients 2022, 14, 1369. [Google Scholar] [CrossRef]
- Hernández-Reyes, A.; Cámara-Martos, F.; Molina-Luque, R.; Romero-Saldaña, M.; Molina-Recio, G.; Moreno-Rojas, R. Changes in body composition with a hypocaloric diet combined with sedentary, moderate and high-intense physical activity: a randomized controlled trial. BMC Women's Heal. 2019, 19, 1–12. [Google Scholar] [CrossRef]
- van Baak, M.A. Physical activity and energy balance. Public Health Nutr. 1999, 2, 335–9. [Google Scholar] [CrossRef]
- Couillard, C.; Després, J.P.; Lamarche, B.; et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol. 2001, 21, 1226–32. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, L.; Zhao, X.; Mattingly, M.S; et al. Poor sleep quality and sleep apnea are associated with higher resting energy expenditure in obese individuals with short sleep duration. J Clin Endocrinol Metab. 2012, 97, 2881–9. [Google Scholar] [CrossRef]
- Taheri, S.; Lin, L.; Austin, D.; et al. Short sleep is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med, 2004, 1:e62.
- Jung, C.M.; Melanson, E.L.; Frydendall, E.J.; Perreault, L.; Eckel, R.H.; Wright, K.P. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J. Physiol. 2010, 589, 235–244. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National sleep foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- Ho, D.K.N.; Liao, Y.C.; Mayasari, N.R.; Chien, M.; Chung, M.; Bai, C.; Huang, Y.; Chen, Y.; Tseng, S.; Chang, C.; et al. The effects of dietary macronutrient composition on resting energy expenditure following active weight loss: A systematic review and meta-analysis. Obes. Rev. 2024, 25, e13760. [Google Scholar] [CrossRef]
- Soenen, S.; Martens, E.; Hochstenbach-Waelen, A.; Lemmens, S.; Westerterp-Plantenga, M. Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat-free mass. J. Nutr. 2013, 143, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Mokhtar, N.; Byrne, N.M. Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures. Front. Nutr. 2014, 1, 5–5. [Google Scholar] [CrossRef]
- Benton, M.J.; Hutchins, A.M.; Dawes, J.J. Effect of menstrual cycle on resting metabolism: A systematic review and meta-analysis. PLOS ONE 2020, 15, e0236025. [Google Scholar] [CrossRef]
| Total, n = 77 | Females, n = 46 | Males, n = 31 | |||||
| Basic parameters | Mean (SD) | Range | Mean (SD) | Range | Mean (SD) | Range | p-value |
| Age (years) | 37 (4.7) | 28.0, 45.0 | 36 (4.4) | 28.0, 45.0 | 38 (5.1) | 30.0, 45.0 | ns. |
| Body weight (kg) | 72 (14.3) | 44.0, 107.0 | 63 (8.1) | 44.0, 82.0 | 85 (10.4) | 57.0, 107.0 | < 0.001 |
| Height (cm) | 173 (9.6) | 150.0, 194.0 | 167 (6.4) | 150.0, 178.0 | 182 (5.9) | 171.0, 194.0 | < 0.001 |
| BMI (kg/m²) | 24 (3.1) | 18.6, 29.5 | 23 (2.5) | 18.6, 28.1 | 26 (2.9) | 18.6, 29.5 | < 0.001 |
| WC (cm) | 84 (11.6) | 63.0, 110.0 | 78 (8.1) | 63.0, 91.0 | 93 (9.5) | 65.0, 110.0 | < 0.001 |
| Body composition parameters | |||||||
| FFM (kg) | 52 (10.3) | 34.3, 75.0 | 44 (3.6) | 34.3, 51.2 | 63 (5.8) | 46.2, 75.0 | < 0.001 |
| FFM (%) | 71 (9.8) | 0.7, 84.3 | 71 (5.7) | 60.8, 83.6 | 72 (14.0) | 0.7, 84.3 | ns. |
| FAT (kg) | 20 (6.5) | 8.8, 42.2 | 19 (5.6) | 9.7, 32.1 | 23 (6.9) | 8.8, 42.2 | < 0.01 |
| FAT (%) | 28 (5.5) | 15.7, 39.2 | 29 (5.5) | 19.8, 39.2 | 26 (5.1) | 15.7, 38.4 | < 0.05 |
| VAT (cm²) | 118 (82.0) | 21.0, 350.0 | 84 (50.2) | 30.0, 276.0 | 171 (92.7) | 21.0, 350.0 | < 0.001 |
| SAT (cm²) | 97 (35.0) | 28.0, 201.0 | 88 (32.3) | 28.0, 201.0 | 110 (35.5) | 46.0, 173.0 | < 0.05 |
| VAT/SAT | 1 (0.6) | 0.3, 2.9 | 1 (0.3) | 0.3, 2.0 | 2 (0.7) | 0.5, 2.9 | < 0.001 |
| TBW (Lt) | 37 (7.8) | 24.0, 54.5 | 31 (2.9) | 24.0, 36.9 | 46 (4.1) | 34.6, 54.5 | < 0.001 |
| TBW (%) | 51 (3.6) | 41.9, 62.9 | 50 (3.1) | 41.9, 57.0 | 53 (3.4) | 46.6, 62.9 | < 0.001 |
| ECW (Lt) | 17 (2.7) | 12.2, 22.8 | 15 (1.5) | 12.2, 19.3 | 19 (1.7) | 14.9, 22.8 | < 0.001 |
| ECW (%) | 45 (7.5) | 0.4, 69.8 | 48 (6.4) | 15.5, 69.8 | 41 (7.6) | 0.4, 46.6 | < 0.001 |
| ICW (l) | 21 (6.2) | 7.3, 47.7 | 17 (5.1) | 7.3, 47.7 | 26 (2.6) | 19.2, 31.9 | < 0.001 |
| ICW (%) | 54 (4.4) | 30.2, 59.0 | 52 (4.3) | 30.2, 56.2 | 57 (1.2) | 53.4, 59.0 | < 0.001 |
| ECW/ICW | 1 (0.2) | 0.7, 2.3 | 1 (0.2) | 0.8, 2.3 | 1 (0.0) | 0.7, 0.9 | < 0.001 |
| BCM (kg) | 27 (6.2) | 14.1, 41.1 | 23 (2.3) | 14.1, 26.9 | 34 (3.1) | 25.1, 41.1 | < 0.001 |
| ECM (kg) | 25 (4.3) | 17.4, 34.6 | 22 (1.8) | 17.4, 25.9 | 29 (2.8) | 21.1, 34.6 | < 0.001 |
| Protein mass (kg) | 11 (2.4) | 6.6, 18.2 | 9 (1.1) | 6.6, 11.5 | 13 (2.1) | 8.6, 18.2 | < 0.001 |
| Mineral mass (kg) | 4 (0.7) | 2.7, 6.4 | 4 (0.4) | 2.7, 4.7 | 5 (0.7) | 3.0, 6.4 | < 0.001 |
| Muscle mass (kg) | 24 (6.5) | 12.6, 37.8 | 19 (1.8) | 12.6, 22.6 | 31 (3.2) | 22.8, 37.8 | < 0.001 |
| TBK (gr) | 125 (32.9) | 63.5, 196.3 | 101 (10.3) | 63.5, 119.0 | 162 (15.7) | 118.4, 196.3 | < 0.001 |
| TBCa (gr) | 1,031 (238.1) | 582.0, 1,543.0 | 852 (74.2) | 582.0, 984.0 | 1,298 (113.4) | 979.0, 1,543.0 | < 0.001 |
| Glycogen mass (gr) | 469 (93.5) | 311.0, 682.0 | 401 (34.5) | 311.0, 465.0 | 571 (50.6) | 420.0, 682.0 | < 0.001 |
| Dry weight (kg) | 70 (14.7) | 38.2, 108.3 | 61 (8.7) | 38.2, 78.7 | 84 (10.7) | 53.3, 108.3 | < 0.001 |
| Biochemical parameters | |||||||
| TC (mg/dl) | 199 (30.3) | 107.3, 268.8 | 198 (26.9) | 150.9, 262.4 | 200 (35.2) | 107.3, 268.8 | ns. |
| HDL-C (mg/dl) | 61 (14.3) | 35.2, 105.0 | 67 (14.4) | 44.2, 105.0 | 53 (9.4) | 35.2, 76.0 | < 0.001 |
| LDL-C (mg/dl) | 119 (24.0) | 62.0, 190.0 | 115 (21.7) | 62.0, 170.0 | 125 (26.4) | 93.0, 190.0 | ns. |
| TG (mg/dl) | 94 (47.2) | 35.3, 340.0 | 78 (26.4) | 38.2, 144.9 | 118 (60.3) | 35.3, 340.0 | < 0.001 |
| Fasting blood glucose (mg/dl) | 97 (7.3) | 80.0, 118.0 | 97 (5.9) | 82.0, 111.0 | 99 (8.9) | 80.0, 118.0 | ns. |
| Fasting insulin (μU/ml) | 8 (4.5) | 2.2, 25.0 | 7 (2.9) | 2.8, 14.2 | 10 (5.9) | 2.2, 25.0 | ns. |
| HOMA-IR | 2 (1.2) | 0.5, 6.4 | 2 (0.7) | 0.6, 3.4 | 2 (1.6) | 0.5, 6.4 | ns. |
| CRP (mg/l) | 1 (2.8) | 0, 24.0 | 1 (2.0) | 0, 5.8 | 2 (4.2) | 0, 24.0 | ns. |
| Indirect calorimetry parameters | |||||||
| VO2 (ml/min) | 249 (53.6) | 155.8, 370.7 | 220 (34.9) | 155.8, 297.4 | 294 (45.2) | 191.9, 370.7 | < 0.001 |
| VCO2 (ml/min) | 231 (58.8) | 135.4, 468.3 | 201 (34.5) | 135.4, 299.0 | 276 (59.1) | 190.3, 468.3 | < 0.001 |
| RQ factor | 1 (0.1) | 0.8, 1.3 | 1 (0.1) | 0.8, 1.1 | 1 (0.1) | 0.8, 1.3 | ns. |
| REE (kcal/day) | 1,766 (389.0) | 1,089.7, 2,823.6 | 1,552 (246.5) | 1,089.7, 2,120.8 | 2,087 (340.2) | 1,384.4, 2,823.6 | < 0.001 |
| Physical activity and sleep parameters | |||||||
| MPA (min/day) | 63 (31.8) | 22.8, 183.0 | 54 (18.9) | 22.8, 100.1 | 77 (41.6) | 30.3, 183.0 | < 0.05 |
| VPA (min/day) | 8 (14.7) | 0.0, 60.0 | 5 (7.3) | 0.1, 31.6 | 14 (20.4) | 0.0, 60.0 | < 0.05 |
| MVPA (min/day) | 72 (43.5) | 23.6, 236.5 | 59 (21.2) | 23.6, 114.5 | 91 (59.4) | 34.3, 236.5 | < 0.05 |
| TST (min/night) | 455 (58.2) | 289.0, 609.0 | 458 (69.0) | 289.0, 609.0 | 451 (35.8) | 387.1, 518.2 | ns. |
| Diet parameters | |||||||
| Energy (kcal/d) | 2038.99 (455.75) | 1287.0, 3132.4 | 1797.06 (271.54) | 1287.0, 2526.3 | 2406.37 (435.13) | 1447.3, 3132.4 | <0.001 |
| Protein (g/d) | 85.44 (24.31) | 28.0, 137.2 | 72.97 (16.57) | 28.0, 102.3 | 104.38 (21.95) | 76.7, 137.2 | <0.001 |
| Fats (g/d) | 77.65 (21.42) | 43.8, 150.8 | 70.18 (15.19) | 43.8, 108.0 | 89.00 (24.60) | 48.4, 150.8 | <0.01 |
| Carbohydrates (g/d) | 242.83 (65.02) | 125.9, 390.6 | 219.68 (39.39) | 128.4, 311.0 | 277.99 (79.87) | 125.9, 390.6 | <0.01 |
| Basic parameters | p– value | β ± SE | 95%Cl | Adj. R² |
| Age (years) | Ns. | - | - | - |
| Sex | < 0.0001 | 535.7 ± 65.6 | 405.0, 666.2 | 0.454 |
| Body weight (kg) | < 0.0001 | 19.8 ± 2.1 | 15.6, 24.1 | 0.523 |
| Height (cm) | < 0.0001 | 26.8 ± 3.4 | 20.0, 33.7 | 0.427 |
| BMI (kg/m2) | < 0.0001 | 68.6 ± 11.9 | 45.0, 92.3 | 0.291 |
| WC (cm) | < 0.0001 | 22.1 ± 2.9 | 16.4, 27.8 | 0.426 |
| Body composition parameters | ||||
| FFM (kg) | < 0.0001 | 28.8 ± 2.8 | 23.2, 34.3 | 0.572 |
| FAT (kg) | < 0.001 | 25.5 ± 6.1 | 13.3, 37.8 | 0.171 |
| VAT (cm²) | < 0.0001 | 2.5 ± 0.5 | 1.6, 3.4 | 0.264 |
| SAT (cm²) | < 0.05 | 3.0 ± 1.2 | 0.7, 5.5 | 0.066 |
| VAT/SAT | < 0.0001 | 366.3 ± 63.6 | 239.7, 492.9 | 0.289 |
| TBW (Lt) | < 0.0001 | 37.2 ± 3.7 | 29.8, 44.6 | 0.556 |
| ECW (Lt) | < 0.0001 | 100.7 ± 12.0 | 76.7, 124.7 | 0.466 |
| ICW (Lt) | < 0.0001 | 38.7 ± 5.6 | 27.6, 49,7 | 0.375 |
| BCM (kg) | < 0.0001 | 47.4 ± 4.6 | 38.2, 56.6 | 0.570 |
| ECM (kg) | < 0.0001 | 66.9 ± 7.0 | 53.0, 80,8 | 0.535 |
| Protein mass (kg) | < 0.0001 | 106.7 ± 13.7 | 79.3, 134.1 | 0.429 |
| Muscle mass (kg) | < 0.0001 | 44.8 ± 4.5 | 35.8, 53.7 | 0.554 |
| Dry weight (kg) | < 0.0001 | 19.1 ± 2.1 | 15.0, 23.3 | 0.516 |
| Crude model | Model 1Adjusted for sex, FFM | |||||||
| Biochemical parameters | p-value | β ± SE | 95%Cl | Adj. R² | p-value | β ± SE | 95%Cl | Adj. R² |
| TC (mg/dl) | ns. | - | - | - | ns. | - | - | - |
| HDL-C (mg/dl) | < 0.05 | - 7.0 ± 3.0 | - 13.0, -1.1 | 0.053 | < 0.05 | 5.0 ± 2.0 | 1.1, 9.0 | 0.588 |
| LDL-C (mg/dl) | ns. | - | - | - | ns. | - | - | - |
| TG (mg/dl) | < 0.001 | 3.2 ± 0.9 | 1.5, 5.0 | 0.142 | ns. | - | - | - |
| CRP (mg/l) | ns. | - | - | - | ns. | - | - | - |
| Fasting blood glucose (mg/dl) | ns. | - | - | - | ns. | - | - | - |
| Fasting insulin (μU/ml) | < 0.05 | 24 ± 9.3 | 5.5, 43,0 | 0.067 | ns. | - | - | - |
| HOMA-IR | < 0.05 | 89 ± 35.0 | 19.5, 158.5 | 0.065 | ns. | - | - | - |
| Crude model | Model 1Adjusted for sex, FFM | |||||||
| Physical activity and sleep parameters | p-value | β ± SE | 95%Cl | Adj. R² | p-value | β ± SE | 95%Cl | Adj. R² |
| MPA (min/day) | < 0.0001 | 5.7 ± 1.2 | 3.2, 8.1 | 0.204 | < 0.05 | 2.2 ± 1.0 | 0.2, 4.1 | 0.589 |
| VPA (min/day) | < 0.0001 | 11.0 ± 3.0 | 5.1, 16.3 | 0.190 | ns. | - | - | - |
| MVPA (min/day) | < 0.001 | 4.3 ± 0.9 | 2.5, 6.0 | 0.221 | < 0.05 | 1.5± 0.7 | 0.1, 3.0 | 0.590 |
| TST (min/night) | ns. | - | - | - | ns. | - | - | - |
| Diet parameters | p-value | β ± SE | 95%Cl | Adj. R² | p-value | β ± SE | 95%Cl | Adj. R² |
| Energy (kcal/d) | <0.01 | 0.7±0.2 | 0.3,1.2 | 0.218 | ns (0.06) | - | - | - |
| Protein (g/d) | ns | - | - | - | ns | - | - | - |
| Fats (g/d) | ns | - | - | - | ns | - | - | - |
| Carbohydrates (g/d) | ns | - | - | - | ns | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
