Submitted:
11 November 2023
Posted:
13 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Lambs, housing, experimental scheme, diets and sampling
2.2. Reagents, chemicals and dietary supplements
2.3. Pre-column methods and chromatography instruments
2.3.1. Fatty acid extraction and methylation of fatty acids
2.3.2. Lipid quality indices
2.3.3. Chromatographic analysis of TCh, α-TAc, tocopherols and MDA in spleens
2.4. Statistical analyses
3. Results
3.1. Contents of SFA and MUFA in ovine spleens
3.2. PUFA concentrations in the ovine spleens
3.3. Concentrations of tocopherols, TCh and MDA in the ovine spleens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Mebius, R.E.; Kraal, G. Structure and Function of the Spleen. Nat Rev Immunol 2005, 5, 606–616. [Google Scholar] [CrossRef]
- Hao, S.; Fang, H.; Fang, S.; Zhang, T.; Zhang, L.; Yang, L. Changes in Nuclear Factor Kappa B Components Expression in the Ovine Spleen during Early Pregnancy. J Anim Feed Sci 2022, 31, 3–11. [Google Scholar] [CrossRef]
- Sahin, N.E.; Oner, Z.; Oner, S.; Turan, M.K. A Study on the Correlation between Spleen Volume Estimated via Cavalieri Principle on Computed Tomography Images with Basic Hemogram and Biochemical Blood Parameters. Anat Cell Biol 2022, 55, 40–47. [Google Scholar] [CrossRef]
- Li, S.; Sun, W.; Zhang, K.; Zhu, J.; Jia, X.; Guo, X.; Zhao, Q.; Tang, C.; Yin, J.; Zhang, J. Selenium Deficiency Induces Spleen Pathological Changes in Pigs by Decreasing Selenoprotein Expression, Evoking Oxidative Stress, and Activating Inflammation and Apoptosis. J Anim Sci Biotechnol 2021, 12. [Google Scholar] [CrossRef]
- Ai, X.M.; Ho, L.C.; Han, L.L.; Lu, J.J.; Yue, X.; Yang, N.Y. The Role of Splenectomy in Lipid Metabolism and Atherosclerosis (AS). Lipids Health Dis 2018, 17. [Google Scholar] [CrossRef]
- Ronaldo Alberti, L.; Magalhães Veloso, D.F.; de Souza Vasconcellos, L.; Petroianu, A. Is There a Relationship between Lipids Metabolism and Splenic Surgeries? Acta Cir Bras 2012, 27, 751–756. [Google Scholar] [CrossRef]
- Wysocki, A.; Drożdż, W.; Dolecki, M. Spleen and Lipids Metabolism-Is There Any Correlation? Med Sci Monit 1999, 5, 524–527. [Google Scholar]
- Gunes, O.; Turgut, E.; Bag, Y.M.; Gundogan, E.; Gunes, A.; Sumer, F. The Impact of Splenectomy on Human Lipid Metabolism. Ups J Med Sci 2022, 127, e8500. [Google Scholar] [CrossRef]
- King, J.H. Studies on the Pathology of Spleen. The Archives of Internal Medicine 1914, 14. [Google Scholar] [CrossRef]
- Asai, K.; Hayashi, T.; Kuzuya, M.; Funaki, C.; Naito, M.; Kuzuya, F. Delayed Clearance of Beta-Very Low Density Lipoprotein after Feeding Cholesterol to Splenectomized Rabbits. Artery 1990, 18, 32–46. [Google Scholar]
- Dinis, A.P.G.; Marques, R.G.; Simões, F.C.; Diestel, C.F.; Caetano, C.E.R.; Secchin, D.J.F.; Neto, J.F.N.; Portela, M.C. Plasma Lipid Levels of Rats Fed a Diet Containing Pork Fat as a Source of Lipids after Splenic Surgery. Lipids 2009, 44, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W.; Noble, R.C. The Lipid Composition of the Spleen and Intestinal Popliteal Lymph Nodes in the Sheep. Lipids 1985, 20, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.M.F.; Pascoal, L.A.F.; Jordão Filho, J.; Melo, T.S.; Almeida, J.M. dos S.; de Almeida, J.L.S.; Moreira Filho, A.L. de B.; Alcântara, M.A.; Grisi, C.V.B.; Cordeiro, A.M.T. de M. Soybean Oil and Selenium Yeast Supplementation in Quail’s Diet: Productive Performance, Fatty Acid Profile, Enzyme Activity, and Oxidative Stability of Meat. European Journal of Lipid Science and Technology 2023, 2200118. [Google Scholar] [CrossRef]
- Yiming, Z.; Qingqing, L.; Hang, Y.; Yahong, M.; Shu, L. Selenium Deficiency Causes Immune Damage by Activating the DUSP1/NF-?B Pathway and Endoplasmic Reticulum Stress in Chicken Spleen. Food Funct 2020, 11, 6467–6475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Xia, K.; Dai, J.; Huang, J.; Wang, Y.; Zhu, G.; Hu, Z.; Zeng, Z.; Jia, Y. Effects of Dietary Selenium on Immune Function of Spleen in Mice. J Funct Foods 2022, 89, 104914. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; He, J.; Hu, M.; Zeng, F.; Li, Y.; Tian, H.; Luo, X. The Adverse Effects of Se Toxicity on Inflammatory and Immune Responses in Chicken Spleens. Biol Trace Elem Res 2018, 185, 170–176. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Li, Y.; Luo, X.; He, J. Excessive Selenium Supplementation Induced Oxidative Stress and Endoplasmic Reticulum Stress in Chicken Spleen. Biol Trace Elem Res 2016, 172, 481–487. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Yan, L.; Cao, J.; Li, D.; Huang, G.Y.; Shi, W.J.; Dong, W.; Zha, J.; Ying, G.G.; et al. Subchronic Effects of Dietary Selenium Yeast and Selenite on Growth Performance and the Immune and Antioxidant Systems in Nile Tilapia Oreochromis Niloticus. Fish Shellfish Immunol 2020, 97, 283–293. [Google Scholar] [CrossRef]
- Sheng Yan Jiu, W.; Pan, M.-X.; Su, Y.-X.; Feng, X.; Tan, B.-Y. Effect of Dietary N-6/n-3 Polyunsaturated Fatty Acid Ratio on Spleen Lymphocyte’s Function and Fatty Acid Composition in Mice. Wei Sheng Yan Jiu 2005, 34, 100–103. [Google Scholar]
- Qin, S.; Wen, J.; Bai, X.C.; Chen, T.Y.; Zheng, R.C.; Zhou, G. Bin; Ma, J.; Feng, J.Y.; Zhong, B.L.; Li, Y.M. Endogenous N-3 Polyunsaturated Fatty Acids Protect against Imiquimod-Induced Psoriasis-like Inflammation via the IL-17/IL-23 Axis. Mol Med Rep 2014, 9, 2097–2104. [Google Scholar] [CrossRef]
- Pestka, J.J.; Vines, L.L.; Bates, M.A.; He, K.; Langohr, I. Comparative Effects of N-3, n-6 and n-9 Unsaturated Fatty Acid-Rich Diet Consumption on Lupus Nephritis, Autoantibody Production and CD4+T Cell-Related Gene Responses in the Autoimmune NZBWF1 Mouse. PLoS One 2014, 9, e100255. [Google Scholar]
- Czauderna, M.; Kowalczyk, J.; Marounek, M. The Simple and Sensitive Measurement of Malondialdehyde in Selected Specimens of Biological Origin and Some Feed by Reversed Phase High Performance Liquid Chromatography. Journal of Chromatography B 2011, 879, 2251–2258. [Google Scholar] [CrossRef] [PubMed]
- Meital, L.T.; Windsor, M.T.; Perissiou, M.; Schulze, K.; Magee, R.; Kuballa, A.; Golledge, J.; Bailey, T.G.; Askew, C.D.; Russell, F.D. Omega-3 Fatty Acids Decrease Oxidative Stress and Inflammation in Macrophages from Patients with Small Abdominal Aortic Aneurysm. Sci Rep 2019, 9, 12978. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in Food and the Human Body: A Review. Science of the Total Environment 2008, 400, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Keane, K.N.; Carlessi, R.; Cruzat, V. Oxidative Stress Pathways in Pancreatic-Cells and Insulin-Sensitive Cells and Tissues: Importance to Cell Metabolism, Function, and Dysfunction. Am J Physiol Cell Physiol 2019, 317, C420–C433. [Google Scholar] [CrossRef]
- Mainville, A.M.; Odongo, N.E.; Bettger, W.J.; McBride, B.W.; Osborne, V.R. Selenium Uptake by Ruminal Microorganisms from Organic and Inorganic Sources in Dairy Cows. Can. J. Anim. Sci. 2009, 89, 105–110. [Google Scholar] [CrossRef]
- Masuda, T.; Inaba, Y.; Takeda, Y. Antioxidant Mechanism of Carnosic Acid: Structural Identification of Two Oxidation Products. J Agric Food Chem 2001, 49, 5560–5565. [Google Scholar] [CrossRef]
- Czauderna, M.; Białek, M.; Krajewska, K.A.; Ruszczyńska, A.; Bulska, E. Selenium Supplementation into Diets Containing Carnosic Acid, Fish and Rapeseed Oils Affects the Chemical Profile of Whole Blood in Lambs. J Anim Feed Sci 2017, 26, 192–203. [Google Scholar] [CrossRef]
- Morán, L.; Andrés, S.; Bodas, R.; Benavides, J.; Prieto, N.; Pérez, V.; Giráldez, F.J. Antioxidants Included in the Diet of Fattening Lambs: Effects on Immune Response, Stress, Welfare and Distal Gut Microbiota. Anim Feed Sci Technol 2012, 173, 177–185. [Google Scholar] [CrossRef]
- Morán, L.; Giráldez, F.J.; Panseri, S.; Aldai, N.; Jordán, M.J.; Chiesa, L.M.; Andrés, S. Effect of Dietary Carnosic Acid on the Fatty Acid Profile and Flavour Stability of Meat from Fattening Lambs. 2013, 138, 2407–2414. [CrossRef]
- Galbraith, M.L.; Vorachek, W.R.; Estill, C.T.; Whanger, P.D.; Bobe, G.; Davis, T.Z.; Hall, J.A. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements. Biol Trace Elem Res 2016, 171, 338–343. [Google Scholar] [CrossRef]
- Miltko, R.; Rozbicka Wieczorek J., A.; Wiesyk, E.; Czauderna, M. The Influence of Different Chemical Forms of Selenium Added to the Diet Including Carnosic Acid, Fish Oil and Rapeseed Oil on the Formation of Volatile Fatty Acids and Methane in the Rumen, and Fatty Acid Profiles in the Rumen Content and Muscles of Lambs. Acta Veterinaria- Beograd 2016, 66, 373–391. [Google Scholar] [CrossRef]
- Czauderna, M.; Ruszczyńska, A.; Bulska, E.; Krajewska, K.A. Seleno-Compounds and Carnosic Acid Added to Diets with Rapeseed and Fish Oils Affect Concentrations of Selected Elements and Chemical Composition in the Liver, Heart and Muscles of Lambs. Biol Trace Elem Res 2018, 184, 378–390. [Google Scholar] [CrossRef]
- Krajewska-Bienias, K.A.; Czauderna, M.; Marounek, M.; Rozbicka-Wieczorek, A.J. Diets Containing Selenized Yeast, Selenate, Carnosic Acid and Fish Oil Change the Content of Fatty Acids, Tocopherols and Cholesterol in the Subcutaneous Fat of Lambs. The J. Anim. Plant Sci 2017, 27, 2017. [Google Scholar]
- Białek, M.; Czauderna, M. Composition of Rumen-Surrounding Fat and Fatty Acid Profile in Selected Tissues of Lambs Fed Diets Supplemented with Fish and Rapeseed Oils, Carnosic Acid, and Different Chemical Forms of Selenium. Livest Sci 2019, 226, 122–132. [Google Scholar] [CrossRef]
- Rozbicka-Wieczorek, A.J.; Krajewska-Bienias, K.A.; Czauderna, M. Dietary Carnosic Acid, Selenized Yeast, Selenate and Fish Oil Affected the Concentration of Fatty Acids, Tocopherols, Cholesterol and Aldehydes in the Brains of Lambs. Arch Anim Breed 2016, 59, 215–226. [Google Scholar] [CrossRef]
- Białek, M.; Czauderna, M.; Zaworski, K.; Karpińska, M.; Marounek, M. Changes in the Content and Intensity of Oxidation of Lipid Compounds in the Kidneys of Lambs Fed Diets with Rapeseed and Fish Oils – Effect of Antioxidant Supplementation. J Anim Feed Sci 2021, 30, 223–237. [Google Scholar] [CrossRef]
- Białek, M.; Czauderna, M.; Zaworski, K.; Krajewska, K. Dietary Carnosic Acid and Seleno-Compounds Change Concentrations of Fatty Acids, Cholesterol, Tocopherols and Malondialdehyde in Fat and Heart of Lambs. Animal Nutrition 2021, 7, 812–822. [Google Scholar] [CrossRef]
- Białek, M.; Karpińska, M.; Czauderna, M. Enrichment of Lamb Rations with Carnosic Acid and Seleno-Compounds Affects the Content of Selected Lipids and Tocopherols in the Pancreas. J Anim Feed Sci 2022, 31, 161–174. [Google Scholar] [CrossRef]
- Rozbicka-Wieczorek, A.J.; Więsyk, E.; Brzóska, F.; Śliwiński, B.; Kowalczyk, J.; Czauderna, M. Efficiency of Fatty Acid Accumulation into Breast Muscles of Chickens Fed Diets with Lycopene, Fish Oil and Different Chemical Selenium Forms. Afr J Biotechnol 2014, 13, 1604–1613. [Google Scholar] [CrossRef]
- National Institute of Standard and Technology NIST 2007.
- Morán, L.; Giráldez, F.J.; Panseri, S.; Aldai, N.; Jordán, M.J.; Chiesa, L.M.; Andrés, S. Effect of Dietary Carnosic Acid on the Fatty Acid Profile and Flavour Stability of Meat from Fattening Lambs. Food Chem 2013, 138, 2407–2414. [Google Scholar] [CrossRef]
- Zu, K.; Ip, C. Synergy between Selenium and Vitamin E in Apoptosis Induction Is Associated with Activation of Distinctive Initiator Caspases in Human Prostate Cancer Cells 1. Cancer Res 2003, 63, 6988–6995. [Google Scholar]
- Yan, Z.; Liu, S.; Liu, Y.; Zheng, M.; Peng, J.; Chen, Q. Effects of Dietary Superoxide Dismutase on Growth Performance, Antioxidant Capacity and Digestive Enzyme Activity of Yellow-Feather Broilers during the Early Breeding Period (1-28d). J Anim Feed Sci 2022, 31, 232–240. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; Hoz, L. de la Fatty Acid Compositions of Selected Varieties of Spanish Dry Ham Related to Their Nutritional Implications. Food Chem 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Rozbicka-Wieczorek, A.J.; Wiesyk, E.; Krajewska-Bienias, K.A.; Wereszka, K.; Czauderna, M. Supplementation Effects of Seleno-Compounds, Carnosic Acid, and Fish Oil on Concentrations of Fatty Acids, Tocopherols, Cholesterol, and Amino Acids in the Livers of Lambs. Turk J Vet Anim Sci 2016, 40, 681–693. [Google Scholar] [CrossRef]
- Vargas, J.E.; Andrés, S.; Snelling, T.J.; López-Ferreras, L.; Yáñez-Ruíz, D.R.; García-Estrada, C.; López, S. Effect of Sunflower and Marine Oils on Ruminal Microbiota, in Vitro Fermentation and Digesta Fatty Acid Profile. Front Microbiol 2017, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Eun, J.S.; Davis, T.Z.; Vera, J.M.; Miller, D.N.; Panter, K.E.; ZoBell, D.R. Addition of High Concentration of Inorganic Selenium in Orchardgrass (Dactylis Glomerata L.) Hay Diet Does Not Interfere with Microbial Fermentation in Mixed Ruminal Microorganisms in Continuous Cultures. Professional Animal Scientist 2013, 29, 39–45. [Google Scholar] [CrossRef]
- Raymond, L.J.; Deth, R.C.; Ralston, N.V.C. Potential Role of Selenoenzymes and Antioxidant Metabolism in Relation to Autism Etiology and Pathology. Autism Res Treat 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Mangiapane, E.; Pessione, A.; Pessione, E. Selenium and Selenoproteins: An Overview on Different Biological Systems. Curr Protein Pept Sci 2014, 15, 598–607. [Google Scholar] [CrossRef]
- Poledne, R. A New Atherogenic Effect of Saturated Fatty Acids. Physiol Res 2013, 62, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Solsona-Vilarrasa, E.; Fucho, R.; Torres, S.; Nuñez, S.; Nuño-Lámbarri, N.; Enrich, C.; García-Ruiz, C.; Fernández-Checa, J.C. Cholesterol Enrichment in Liver Mitochondria Impairs Oxidative Phosphorylation and Disrupts the Assembly of Respiratory Supercomplexes. Redox Biol 2019, 24, 101214. [Google Scholar] [CrossRef]
- Stranges, S.; Laclaustra, M.; Ji, C.; Cappuccio, F.P.; Navas-Acien, A.; Ordovas, J.M.; Rayman, M.; Guallar, E. Higher Selenium Status Is Associated with Adverse Blood Lipid Profile in British Adults. Journal of Nutrition 2010, 140, 81–87. [Google Scholar] [CrossRef]
- Ibarra, A.; Cases, J.; Roller, M.; Chiralt-Boix, A.; Coussaert, A.; Ripoll, C. Carnosic Acid-Rich Rosemary (Rosmarinus Officinalis L.) Leaf Extract Limits Weight Gain and Improves Cholesterol Levels and Glycaemia in Mice on a High-Fat Diet. British Journal of Nutrition 2011, 106, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wan, X.; Zhong, L.; Yang, H.; Li, P.; Xu, X. Carnosic Acid Alleviates Hyperlipidemia and Insulin Resistance by Promoting the Degradation of SREBPs via the 26S Proteasome. J Funct Foods 2017, 31, 217–228. [Google Scholar] [CrossRef]
- Nagao, K.; Murakami, A.; Umeda, M. Structure and Function of Δ9-Fatty Acid Desaturase. Chem. Pharm. Bull 2019, 67, 327–332. [Google Scholar] [CrossRef]
- Quilliot, D.; Walters, E.; Böhme, P.; Lacroix, B.; Bonte, J.P.; Fruchart, J.C.; Drouin, P.; Duriez, P.; Ziegler, O. Fatty Acid Abnormalities in Chronic Pancreatitis: Effect of Concomitant Diabetes Mellitus. Eur J Clin Nutr 2003, 57, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Tian, J.; Wang, J.; Khan, M.A.; Wang, Y.; Zhang, L.; Wang, T. Effects of Dietary Sodium Selenite and Selenium Yeast on Antioxidant Enzyme Activities and Oxidative Stability of Chicken Breast Meat. J Agric Food Chem 2012, 60, 7111–7120. [Google Scholar] [CrossRef] [PubMed]
- Infante, J.P. Vitamin E and Selenium Participation in Fatty Acid Desaturation A Proposal for an Enzymatic Function of These Nutrients. Mol Cell Biochem 1986, 69, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione Peroxidases. Biochim Biophys Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef]
| The experimental scheme | The live weight (LW) | Spleen weight | FCE 5 kg/kg |
||||
|---|---|---|---|---|---|---|---|
| Group/diet | Ingredients added to 1 kg of the basal diet (BD) |
Initial LW kg1 | Final LW kg2 |
BWG kg |
g3 | Spleen index4 | |
| g/kg final LW | |||||||
| Control6 | 20 g R-O and 10 g F-O | 30.6 ± 2.4 | 37.7 ± 2.1ab | 7.1 ± 0.4ab | 75.8 ± 3.3a | 2.01a | 0.189ab |
| CA7 | 20 g R-O, 10 g F-O and 1 g CA | 30.6 ± 2.6 | 37.2 ± 2.3b | 6.6 ± 0.4b | 75.5 ± 3.1a | 2.03a | 0.174b |
| SeYeCA7 | 20 g R-O, 10 g F-O, 1 g CA and 0.35 mg Se as SeYe | 30.3 ± 2.7 | 36.8 ± 2.7b | 6.5 ± 0.4b | 88.6 ± 3.5b | 2.41b | 0.174b |
| Se6CA 7 | 20 g R-O, 10 g F-O, 1 g CA and 0.35 mg Se as Se6 | 30.3 ± 3.0 | 38.5 ± 3.1a | 8.2 ± 0.4a | 72.0 ± 3.1a | 1.87a | 0.215a |
| Additive: Group/diet: |
- | CA | CA and SeYe | CA and Se6 | SEM | p value | |
|---|---|---|---|---|---|---|---|
| Item | Control | CA | SeYeCA | Se6CA | |||
| C10:0 | 0.9 | 0.5 | 1.0 | 0.9 | 0.3 | 0.41 | |
| C12:0 | 1.0 | 0.7 | 0.6 | 1.1 | 0.4 | 0.29 | |
| C14:0 | 56.1 | 48.2 | 61.6 | 57.3 | 1.9 | 0.37 | |
| C15:0 | 0.4 | 0.2 | 0.3 | 0.3 | 0.2 | 0.19 | |
| C16:0 | 4452 | 3796 | 3968 | 3566 | 97 | 0.09 | |
| C17:0 | 112c | 49a | 84b | 85b | 5 | 0.04 | |
| C18:0 | 6119b | 5183a | 5284a | 5086a | 49 | 0.04 | |
| C20:0 | 1.0 | 0.8 | 0.7 | 1.1 | 0.1 | 0.29 | |
| C22:0 | 16.4c | 8.6a | 14.1b | 19.5c | 0.3 | 0.03 | |
| C24:0 | 56.4b | 39.2a | 45.7a | 60.7b | 0.5 | 0.04 | |
| A-SFA | 4 509b | 3 845a | 4 031ab | 3 625a | 98 | 0.04 | |
| A-SFA/ΣFA | 0.2106 | 0.2171 | 0.2191 | 0.2000 | 0.0022 | 0.13 | |
| T-SFA | 10 627 | 9 028 | 9 314 | 8 709 | 198 | 0.13 | |
| T-SFA/ΣFA | 0.5009b | 0.5099c | 0.5062bc | 0.4806a | 0.0017 | 0.04 | |
| indexASFA | 0.4585b | 0.4700c | 0.4762c | 0.4179a | 0.0007 | 0.04 | |
| indexTSFA | 1.0399c | 0.9925bc | 0.8737b | 0.7852a | 0.0010 | 0.03 | |
| ΣSFA | 10 816 | 9 127 | 9 460 | 8 877 | 223 | 0.09 | |
| ΣFA | 20 959 | 17 655 | 18 350 | 18 150 | 667 | 0.11 | |
| ΣSFA/ΣUFA | 1.0660bc | 1.0697c | 1.0636b | 0.9567a | 0.0014 | 0.04 | |
| ΣSFA/ΣPUFA | 2.3420a | 2.6507c | 2.5652b | 2.2345a | 0.0041 | 0.03 | |
| ΣSFA/ΣMUFA | 1.8919c | 1.7787b | 1.8039b | 1.6728a | 0.0059 | 0.04 | |
| ΣSFA/ΣFA | 0.5102 | 0.5156 | 0.5143 | 0.4898 | 0.0082 | 0.37 | |
| Additive: Group/diet: |
- | CA | CA and SeYe | CA and Se6 | SEM | p value | |
|---|---|---|---|---|---|---|---|
| Item | Control | CA | SeYeCA | Se6CA | |||
| c9C14:1 | 62.9c | 33.9a | 48.2b | 67.3c | 3 | 0.03 | |
| c9C16:1 | 115a | 99a | 143b | 153b | 7 | 0.04 | |
| c10C16:1 | 7.08 | 7.58 | 7.08 | 8.24 | 0.83 | 0.53 | |
| t11C18:1 | 263c | 155a | 210b | 237bc | 11 | 0.03 | |
| c9C18:1 | 4 698 | 4 317 | 4 151 | 4 137 | 159 | 0.32 | |
| c12C18:1 | 537a | 471a | 622b | 639b | 20 | 0.04 | |
| c11C20:1 | 33a | 36a | 62b | 65b | 5 | 0.03 | |
| ΣMUFA 1 | 5 716 | 5 130 | 5 243 | 5 305 | 51 | 0.37 | |
| ΣMUFA/ΣFA | 0.274a | 0.291b | 0.287b | 0.292b | 0.003 | 0.03 | |
| C18:0∆9index2 | 0.436 | 0.453 | 0.441 | 0.449 | 0.004 | 0.13 | |
| C16:0∆9index3 | 0.0274a | 0.0265a | 0.0346b | 0.0407b | 0.0010 | 0.02 | |
| C14:0∆9index4 | 0.529b | 0.413a | 0.439a | 0.540b | 0.003 | 0.03 | |
| t11C18:1∆9index5 | 0.103a | 0.201d | 0.133b | 0.167c | 0.002 | 0.02 | |
| ∑∆9index6 | 0.310a | 0.328b | 0.315a | 0.330b | 0.002 | 0.04 | |
| Σ∆9,6,5,4FAindex7 | 0.502a | 0.516b | 0.527b | 0.516b | 0.002 | 0.03 | |
| Additive: Group/diet: |
- | CA | CA and SeYe | CA and Se6 | SEM | p value | |
|---|---|---|---|---|---|---|---|
| Item | Control | CA | SeYeCA | Se6CA | |||
| c9t11CLA | 30.3a | 38.9b | 32.1ab | 47.6c | 0.6 | 0.04 | |
| c9c12C18:2 (LA) | 682c | 550a | 600ab | 645bc | 13 | 0.03 | |
| c9c12c15C18:3 (αLNA) | 10.6b | 5.5a | 7.2a | 17.0c | 0.5 | 0.02 | |
| c11c14C20:2 | 41.0b | 21.6a | 18.4a | 37.9b | 0.8 | 0.02 | |
| c8c11c14C20:3 | 68.4bc | 49.9a | 61.6ab | 76.0c | 2.9 | 0.03 | |
| c5c8c11c14C20:4 (AA) | 2,904b | 2,141a | 2,203a | 2,389a | 32 | 0.05 | |
| c5c8c11c14c17C20:5 (EPA) | 91.4c | 54.4a | 72.7b | 75.9b | 4.1 | 0.04 | |
| c7c10c13c16c19C22:5 (DPA) | 438 | 404 | 443 | 478 | 12 | 0.17 | |
| c4c 7c10c13c16c19C22:5 (DHA) | 164a | 135a | 211b | 204b | 8 | 0.04 | |
| Σn-3PUFA1 | 704b | 599a | 734bc | 774c | 12 | 0.04 | |
| Σn-6PUFA2 | 3,653c | 2,741a | 2,865ab | 3,111b | 29 | 0.04 | |
| ΣPUFA3 | 4,428c | 3,400a | 3,649ab | 3,971b | 34 | 0.03 | |
| Σn-6PUFA/Σn-3PUFA | 9.258c | 4.911b | 3.960a | 4.013a | 0.005 | 0.02 | |
| Σn-6LPUFA | 2,972b | 2,191a | 2,265a | 2466ab | 36 | 0.04 | |
| Σn-3LPUFA | 693 | 593 | 727 | 757 | 14 | 0.27 | |
| ΣLPUFA4 | 3,665b | 2,784a | 2,992a | 3,223ab | 24 | 0.04 | |
| Σn-6LPUFA/Σn-3LPUFA | 4.286c | 3.695b | 3.117a | 3.256a | 0.009 | 0.02 | |
| Σn-3LPUFA/ΣFA | 0.0359ab | 0.0340a | 0.0395c | 0.0417d | 0.0002 | 0.04 | |
| ΣLPUFA/ΣFA | 0.175b | 0.158a | 0.163a | 0.178b | 0.002 | 0.02 | |
| ∑PUFA/∑FA | 0.215 | 0.194 | 0.200 | 0.218 | 0.002 | 0.06 | |
| ∑PUFA/∑SFA | 0.427b | 0.377a | 0.390a | 0.448b | 0.003 | 0.04 | |
| ∑UFA/∑SFA | 0.938 | 0.935 | 0.940 | 1.045 | 0.007 | 0.07 | |
| n−6ElongC20/C18index5 | 0.0567c | 0.0378b | 0.0298a | 0.0555c | 0.0002 | 0.03 | |
| n−3ElongC22/C20index6 | 0.721a | 0.888c | 0.862b | 0.864bc | 0.003 | 0.05 | |
| ∆4index7 | 0.272b | 0.250a | 0.323d | 0.297c | 0.001 | 0.02 | |
| ∆5index8 | 0.977 | 0.977 | 0.973 | 0.969 | 0.002 | 0.43 | |
| h/H-Ch ratio) [45] | 2.250b | 2.219a | 2.207a | 2.600c | 0.003 | 0.02 | |
| Item | Group/diets | SEM | p value | |||
|---|---|---|---|---|---|---|
| Control | CA | SeYeCA | Se6CA | |||
| TCh | 223b | 120a | 308c | 260bc | 23 | 0.04 |
| δ-tocopherol (δ-T) | 1.07 | 0.33 | 0.38 | 0.65 | 0.05 | 0.09 |
| γ-tocopherol (γ-T) | 0.36 | 0.23 | 0.17 | 0.24 | 0.04 | 0.42 |
| α-tocopherol (α-T) | 3.83a | 4.65a | 12.11b | 10.93b | 0.06 | 0.04 |
| α-tocopheryl acetate (α-TAc) | 0.11 | 0.11 | 0.28 | 0.28 | 0.04 | 0.19 |
| Σ(α-T+α-TAc) | 3.93a | 4.75a | 12.39b | 11.22b | 0.07 | 0.03 |
| Σall-Ts2 | 5.36a | 5.31a | 12.93b | 12.10b | 0.07 | 0.03 |
| indexASFA/ΣToc[39] | 0.0769c | 0.0659b | 0.0258a | 0.0250a | 0.0005 | 0.03 |
| MDA | 4.52 | 4.45 | 3.97 | 3.62 | 0.12 | 0.37 |
| ΣPUFAMDAindex3 | 1.021b | 1.309d | 1.087c | 0.911a | 0.014 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
