Submitted:
09 November 2023
Posted:
10 November 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Results
Bacterial Strains
Prevalence of Carbapenemase-Producing Enterobacterales
Types of carbapenemase Produced
Prevalence and Distribution of AmpC-β-Lactamase Production
Antimicrobial Resistance Patterns
Discussion
Material and Methods
Study Design and Period
Sampling and Sites Description
Bacterial Isolation and Identification
ESBL Production Test
Carbapenemase Production Test
AmpC-β-Lactamase Production
Antimicrobial Susceptibility Test
Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgements
Conflict of Interest
Ethical Aspects
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55. doi: 10.1016/S0140-6736(21)02724-0. Erratum in: Lancet. 2022;400(10358):1102. [CrossRef]
- World Bank. World Bank. 2017. “Drug-resistant Infections: a threat to our economic future.” Washington, DC: World Bank. License: Creative Commons Attribution CC BY 3.0 IGO 2017. [CrossRef]
- Armstrong T, Fenn SJ, Hardie KR. JMM Profile: Carbapenems: a broad-spectrum antibiotic. J Med Microbiol. 2021;70(12):001462. [CrossRef]
- Centers for Disease Control and Prevention (CDC). Vital Signs : carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep. 2013;62(9):165–70.
- Zhou R, Fang X, Zhang J, Zheng X, Shangguan S, Chen S, et al. Impact of carbapenem resistance on mortality in patients infected with Enterobacteriaceae: A systematic review and meta-analysis. BMJ Open. 2021;11(12):e054971. [CrossRef]
- Hu Q, Chen J, Sun S, Deng S. Mortality-related risk factors and novel antimicrobial regimens for carbapenem-resistant Enterobacteriaceae infections: a systematic review. Infect Drug Resist. 2022;15:6907–26. [CrossRef]
- Garbati MA, Sakkijha H, Abushaheen A. Infections due to carbapenem resistant Enterobacteriaceae among Saudi Arabian hospitalized patients: a matched case-control study. Biomed Res Int. 2016;2016:3961684. [CrossRef]
- Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis. 2021;40(10):2053–68. [CrossRef]
- Iovleva A, Doi Y. Carbapenem-resistant Enterobacteriaceae. Clin Lab Med. 2017:303–15. [CrossRef]
- Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): An emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010;65(6):1119–25. [CrossRef]
- Iskandar K, Molinier L, Hallit S, Sartelli M, Hardcastle TC, Haque M, et al. Surveillance of antimicrobial resistance in low- and middle-income countries: a scattered picture. Antimicrob Resist Infect Control. 2021;10(1):1–19. [CrossRef]
- Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(Suppl_1):S28–36. [CrossRef]
- Yehouenou CL, Soleimani R, Kpangon AA, Simon A, Dossou FM, Dalleur O. Carbapenem-resistant organisms isolated in surgical site infections in Benin: a public health problem. Trop Med Infect Dis. 2022;7(8):200. [CrossRef]
- Ibrahim Y, Sani Y, Saleh Q, Saleh A, Hakeem G. Phenotypic detection of extended spectrum beta lactamase and carbapenemase co-producing clinical isolates from two tertiary hospitals in Kano, north west Nigeria. Ethiop J Health Sci. 2017;27(1):3–10. [CrossRef]
- Walkty A, Gilmour M, Simner P, Embil JM, Boyd D, Mulvey M, et al. Isolation of multiple carbapenemase-producing Gram-negative bacilli from a patient recently hospitalized in Nigeria. Diagn Microbiol Infect Dis. 2015;81(4):296–8. [CrossRef]
- Ssekatawa K, Byarugaba DK, Nakavuma JL, Kato CD, Ejobi F, Tweyongyere R, et al. Prevalence of pathogenic Klebsiella pneumoniae based on PCR capsular typing harbouring carbapenemases encoding genes in Uganda tertiary hospitalsmodee. Antimicrob Resist Infect Control. 2021;10(1):1–10. [CrossRef]
- Nabti LZ, Sahli F, Radji N, Mezaghcha W, Semara L, Aberkane S, et al. High prevalence of multidrug-resistant Escherichia coli in urine samples from inpatients and outpatients at a tertiary care hospital in sétif, Algeria. Microb Drug Resist. 2019;25(3):386–93. [CrossRef]
- Sanou S, Ouedraogo AS, Aberkane S, Vendrell J, Ouchar O, Bouzimbi N, et al. Prevalence and molecular characterization of extended spectrum β-Lactamase, plasmid-mediated quinolone resistance, and carbapenemase-producing Gram-negative bacilli in Burkina Faso. Microb Drug Resist. 2021;27(1):18–24. [CrossRef]
- Ballot DE, Bandini R, Nana T, Bosman N, Thomas T, Davies VA, et al. A review of -multidrug-resistant Enterobacteriaceae in a neonatal unit in Johannesburg, South Africa. BMC Pediatr. 2019;19(1):320. [CrossRef]
- Dirar M, Bilal N, Ibrahim ME, Hamid M. Resistance patterns and phenotypic detection of β-lactamase enzymes among Enterobacteriaceae isolates from referral hospitals in Khartoum State, Sudan. Cureus. 2020;12(3):6–13. [CrossRef]
- Kaboré B, Ouédraogo HS, Zongo O, Ouédraogo GA, Tapsoba F, Bougma S, et al. Emergence of New Delhi metallo- β -Lactamase (NDM) genes detected from clinical strains of Escherichia coli isolated in Ouagadougou, Burkina Faso. Int J Microbiol. 2023;2023:4813225. [CrossRef]
- Markkanen MA, Haukka K, Pärnänen KMM, Dougnon VT, Bonkoungou IJO, Garba Z, et al. Metagenomic analysis of the abundance and composition of antibiotic resistance genes in hospital wastewater in Benin, Burkina Faso, and Finland. MSphere. 2023;8(1). [CrossRef]
- Kagambèga AB, Dembélé R, Bientz L, M’Zali F, Mayonnove L, Mohamed AH CH et al. Detection and characterization of carbapenemase-producing detection and characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae from Hospital effluents of Ouagadougou, Burkina Faso. Antibiotics. 2023;12:1494. [CrossRef]
- Tekele SG, Teklu DS, Tullu KD, Birru SK, Legese MH. Extended-spectrum beta-lactamase and AmpC beta-lactamases producing gram negative bacilli isolated from clinical specimens at international clinical laboratories, Addis Ababa, Ethiopia. PLoS One. 2020;15(11):e0241984. [CrossRef]
- Kazemian H, Heidari H, Ghanavati R, Ghafourian S, Yazdani F, Sadeghifard N, et al. Phenotypic and genotypic characterization of ESBL-, AmpC-, and carbapenemase-producing Klebsiella pneumoniae and Escherichia coli isolates. Med Princ Pract. 2019;28(6):547–51. [CrossRef]
- Salvia T, Dolma KG, Dhakal OP, Khandelwal B, Singh LS. Phenotypic Detection of ESBL, AmpC, MBL, and Their Co-occurrence among MDR Enterobacteriaceae Isolates. J Lab Physicians. 2022;14(03):329–35. [CrossRef]
- Khalifa SM, Abd El-Aziz AM, Hassan R, Abdelmegeed ES. β-lactam resistance associated with β-lactamase production and porin alteration in clinical isolates of E. coli and K. pneumoniae. PLoS One. 2021;16(5):e0251594. [CrossRef]
- Rubee Chanu T, K Shah P, Soni S, Ghosh A. Phenotypic detection of extended spectrum, AmpC, metallo beta-lactamases and their coexistence in clinical isolates of commonly isolated gram negativebacteria in GKGH hospital, Bhuj. IP Int J Med Microbiol Trop Dis. 2019;5(1):52–6. [CrossRef]
- Ogefere HO, Osikobia JG, Omoregie R. Prevalence of AmpC β-lactamase among Gram-negative bacteria recovered from clinical specimens in Benin City, Nigeria. Trop J Pharm Res Sept. 2016;15(9):1947–53. [CrossRef]
- Manenzhe RI, Zar HJ, Nicol MP, Kaba M. The spread of carbapenemase-producing bacteria in Africa: A systematic review. J Antimicrob Chemother. 2015;70(1):23–40. [CrossRef]
- Awoke T, Teka B, Aseffa A, Sebre S, Seman A, Yeshitela B, et al. Detection of blaKPC and blaNDM carbapenemase genes among Klebsiella pneumoniae isolates in Addis Ababa, Ethiopia: dominance of blaNDM. PLoS One. 2022;17(4):e0267657. [CrossRef]
- Ouedraogo AS, Jean-Pierre H, Banuls AL, Ouedraogo R, Godreuil S. Émergence et diffusion de la résistance aux antibiotiques en Afrique de l’Ouest : facteurs favorisants et évaluation de la menace. Med Sante Trop. 2017;27(2):147–54.
- Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Heal. 2014;2:145. [CrossRef]
- Phenotypic and Genotypic Characterization of Isolates. Hossein Kazemian, Hamid Heidari, Roya Ghanavati , Sobhan Ghafourian , Fateme Yazdani, Nourkhod Sade , Hasan Valadbeigi , Abbas Maleki Iraj Pakzad. 2019;28:547–51. [CrossRef]
- Nakaye M, Bwanga F, Itabangi H, Stanley IJ, Bashir M BJ. AmpC-BETA Lactamases among Enterobacteriaceae isolated at a tertiary hospital, south western Uganda. Br Biotechnol J. 2014;4(9):1026–1036. [CrossRef]
- Rizi KS, Mosavat A, Youssefi M, Jamehdar SA, Ghazvini K, Safdari H, et al. High prevalence of blaCMY AmpC beta-lactamase in ESBL co-producing Escherichia coli and Klebsiella spp. clinical isolates in the northeast of Iran. J Glob Antimicrob Resist. 2020;22:477–82. [CrossRef]
- Perera PDVM, Gamage S, De Silva HSM, Jayatilleke SK, de Silva N, Aydin A, et al. Phenotypic and genotypic distribution of ESBL, AmpC β-lactamase and carbapenemase-producing Enterobacteriaceae in community-acquired and hospital-acquired urinary tract infections in Sri Lanka. J Glob Antimicrob Resist. 2022;30:115–22. [CrossRef]
- Ita T, Luvsansharav UO, Smith RM, Mugoh R, Ayodo C, Oduor B, et al. Prevalence of colonization with multidrug-resistant bacteria in communities and hospitals in Kenya. Sci Rep. 2022;12(1):22290. [CrossRef]
- Asamoah B, Labi AK, Gupte HA, Davtyan H, Peprah GM, Adu-Gyan F, et al. High Resistance to Antibiotics Recommended in Standard Treatment Guidelines in Ghana: A Cross-Sectional Study of Antimicrobial Resistance Patterns in Patients with Urinary Tract Infections between 2017–2021. Int J Environ Res Public Health. 2022;19(24):1–12. [CrossRef]
- Silago V, Moremi N, Mtebe M, Komba E, Masoud S, Mgaya FX, et al. Multidrug-Resistant Uropathogens Causing Community Acquired Urinary Tract Infections among Patients Attending Health Facilities in Mwanza and Dar es Salaam, Tanzania. Antibiotics. 2022;11(12):1718. [CrossRef]
- Post AS, Guiraud I, Peeters M, Lompo P, Ombelet S, Karama I, et al. E scherichia coli from urine samples of pregnant women as an indicator for antimicrobial resistance in the community: a field study from rural Burkina Faso. Antimicrob Resist Infect Control. 2022;11(1):1–10. [CrossRef]
- Yusuf I, Arzai AH, Haruna M, Sharif AA, Getso MI. Detection of multi drug resistant bacteria in major hospitals in Kano, North-West, Nigeria. Brazilian J Microbiol. 2014;45(3):791–8. [CrossRef]
- BhasKar T, Lahon K. The Beta Lactam Antibiotics as an empirical therapy in a developing country : an update on their current status and recommendations to counter the resistance against them. J Clin Diagnostic Res. 2013;7(6):1207–14. [CrossRef]
- Salah FD, Diagbouga S, Dabire AM. First detection of resistance genes encoding extended spectrum beta-lactamase producing Escherichia coli at Lome, Togo. Arch Clin Microbiol. 2016;07(06):1–7. [CrossRef]
- Obeng-Nkrumah N, Twum-Danso K, Krogfelt KA, Newman MJ. High levels of extended-spectrum beta-lactamases in a major teaching hospital in Ghana: the need for regular monitoring and evaluation of antibiotic resistance. Am J Trop Med Hyg. 2013;89(5):960–4. [CrossRef]
- Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries : causes and control strategies. Antimicrob Resist Infect Control. 2017;6(47):1–8. [CrossRef]
- Koya SF, Ganesh S, Selvaraj S, Wirtz VJ, Galea S, Rockers PC. Antimicrobial resistance antibiotic consumption in India : geographical variations and temporal changes between 2011 and 2019. JAC-Antimicrobial Resist. 2022;4(5):1–8. [CrossRef]
- Khanna DA, Khanna DM, Sharma DS. Detection of various beta lactamases in gram negative bacteria and their resistance pattern in northern India. Trop J Pathol Microbiol. 2016;2(2):70–5. [CrossRef]
- Dadgostar P. Antimicrobial resistance : implications and costs. Infect Drug Resist. 2019;12:3903–10. [CrossRef]
- Burkina Faso; Ministère de la Santé. Annuaire statistique 2014. Available at: www.sante.gov.bf. Accessed October 23, 2023.
| ESBL-E. coli total n= 356 n (%) |
ESBL-Klebsiella spp. total n=117 n (%) |
All total N=473 |
Prevalence (%) | |
| Hospitals | ||||
| CHU-YO | 18/211 | 4/82 | 22/293 | 7.5 |
| CHR-KDG | 1/44 | 0/13 | 1/57 | 1.8 |
| El-Fateh Suka medical clinic | 0/24 | 0/0 | 0/24 | 0 |
| CMA Saint Camille de Nanoro | 0/58 | 2/14 | 2/74 | 2.7 |
| CMA source de vie | 0 /19 | 0/8 | 0/27 | 0 |
| Sample Type | ||||
| Urine | 16/228 | 4/71 | 20/299 | 6.7 |
| Pus and | 2/113 | 2/30 | 4/143 | 2.8 |
| Blood culture | 1/15 | 0/16 | 1/31 | 3.2 |
| Overall prevalence | 19/356 (5.3) | 6 /117(5.1) | 25/473 | 5.3 |
| ESBL- E. coli total n= 356 |
ESBL-Klebsiella spp., total n=117 | All isolates N=473 (%) |
Isolates with carbapenemase n=25 (%) | |
| Carbapenemases | ||||
| NDM | 14 (3.9) | 5 (4.3) | 19 (4.0) | 19/25 (76) |
| OXA-48-like | 3 (0.8) | 0 (0) | 3 (0.6) | 3/25 (12) |
| OXA-48like + NDM | 2 (0.6) | 0 (0) | 2 (0.4) | 2/25 (8) |
| VIM | 0 (0) | 1 (0.9) | 1 (0.2) | 1/25 (4) |
| Total | 19 (5.3) | 6 (5.1) | 25 (5.3) | 25 (100) |
| ESBL- E. coli total n=356 n (%) |
ESBL-Klebsiella spp. total n=117 n (%) |
All total N=473 |
Prevalence (%) | |
|---|---|---|---|---|
| Hospitals | ||||
| CHU-YO | 13/211 | 6 /82 | 19/293 | 6.5 |
| CHR-KDG | 0/44 | 0/13 | 0/57 | 0 |
| El-Fateh Suka medical clinic | 2 /24 | 0/0 | 2/24 | 8.3 |
| CMA Saint Camille de Nanoro | 1/58 | 1/14 | 2/74 | 2.7 |
| CMA évangélique Source de vie | 1/19 | 1/8 | 2/27 | 7.4 |
| Sample Type | ||||
| Urines | 8/228 | 6/71 | 14/299 | 4.7 |
| Pus | 7/113 | 1/30 | 8/143 | 5.6 |
| Bloodculture | 2/15 | 1/16 | 3/31 | 9.7 |
| Overall prevalence | 17/356 (4.8) | 8/117 (6.8) | 25/473 | 5.3 |
| Antibiotics (concentration in µg) | E. coli | Klebsiella spp. | |
|---|---|---|---|
| Resistance | Resistance | ||
| N | n (%) | n (%) | |
| Piperacillin + Tazobactam(110) | 462 | 238 (68.0) | 86 (76.8) |
| Meropenem (10) | 472 | 22 (6.2) | 8 (6.8) |
| Imipenem (10) | 469 | 21 (5.9) | 8 (6.9) |
| Ertapenem (10) | 461 | 68 (19.5) | 14 (12.4) |
| Gentamycin (10) | 473 | 153 (43.0) | 68 (58.1) |
| Amikacin (30) | 466 | 64 (18.3) | 11 (9.5) |
| Tobramycin (10) | 473 | 215 (60.4) | 69 (59.0) |
| Kanamycin (30) | 468 | 300 (85.2) | 100 (86.2) |
| Ciprofloxacin (5) | 465 | 335 (95.7) | 108 (93.9) |
| Sulfamethoxazole + trimethoprim (25) | 449 | 297 (87.9) | 100 (90.1) |
| Nitrofurantoin (300) | 465 | 118 (33.9) | 87 (74.36) |
| Fosfomycin (200) | 466 | 20 (5.7) | 56 (48.7) |
| Chloramphenicol | 463 | 71 (20.4) | 28 (24.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
