Submitted:
06 November 2023
Posted:
06 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Genome-wide identification and phylogenetic analysis of the Bmtret1s in B. mori
2.2. Chromosomal localization of Bmtret1s
2.3. Sequence analysis of the Bmtret1s
2.4. Gene organization and promoter analysis of Bmtret1s
2.5. Expression profile of Bmtret1s in different tissues of silkworm
2.6. Transcriptional level responses of Bmtret1s to BmNPV stress
3. Discussion
4. Materials and Methods
4.1. Sericulture breeding and virus preparation
4.2. Identification of the Bmtret1 gene family in B. mori
4.3. Chromosomal localization and homology analysis of Bmtret1s
4.4. Sequence alignment
4.5. Phylogenetic analysis of Bmtret1s
4.6. RNA extraction and quantitative Real-Time PCR (qRT-PCR) analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, K.; Dong, Z.; Pan, M. Common strategies in silkworm disease resistance breeding research. Pest Manag Sci 2023, 10, 1002. [Google Scholar] [CrossRef] [PubMed]
- Luan, JB.; Li, JM.; Varela, N.; et al. Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol 2011, 85, 3330–3340. [Google Scholar] [CrossRef] [PubMed]
- Chen, HQ.; Yao, Q.; Bao, F.; et al. Comparative proteome analysis of silkworm in its susceptibility and resistance responses to Bombyx mori densonucleosis virus. Intervirology 2012, 55, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Fei, S.; Xia, J.; et al. Sirt5 Inhibits BmNPV Replication by Promoting a Relish-Mediated Antiviral Pathway in Bombyx mori. Front Immunol 2022, 13, 906738. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Dong, ZQ.; Dong, FF.; et al. Gene editing the BmNPV inhibitor of apoptosis protein 2 (iap2) as an antiviral strategy in transgenic silkworm. Int J Biol Macromol 2021, 166, 529-537. [CrossRef]
- Cao, HH.; Zhang, SZ.; Zhu, LB.; et al. The digestive proteinase trypsin, alkaline A contributes to anti-BmNPV activity in silkworm (Bombyx mori). Dev Comp Immunol 2021, 119, 104035. [CrossRef]
- Katsuma, S.; Mita, K.; Shimada, T. ERK and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. J Virol 2007, 81, 13700-13709. [CrossRef]
- Rahman, MM.; Gopinathan, Kp. Systemic and in vitro infection process of Bombyx mori nucleopolyhedrovirus. Virus Res 2004, 101, 109-118. [CrossRef]
- Braunagel, SC.; Summers, MD. Molecular biology of the baculovirus occlusion-derived virus envelope. Curr Drug Targets 2007, 8, 1084-1095. [CrossRef]
- Blissard, GW. Baculovirus--insect cell interactions. Cytotechnology 1996, 20, 73-93. [CrossRef]
- Wang, Y.; Wang, Q.; Liang, C.; et al. Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein BV/ODV-C42 mediates the nuclear entry of P78/83. J Virol 2008, 82, 4554-4561. [CrossRef]
- Bao, YY.; Tang, XD.; Lv, ZY.; et al. Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels. Genomics 2009, 82, 138-145. [CrossRef]
- Mei, X.; Li, C.; Peng, P.; et al. Bombyx mori C-Type Lectin (BmIML-2) Inhibits the Proliferation of B.mori Nucleopolyhedrovirus (BmNPV) through Involvement in Apoptosis. Int J Mol Sci 2022, 23, 8369. [CrossRef]
- Elbein, AD.; Pan, YT.; Pastuszak, I.; Carroll, D.; et al. New insights on trehalose: a multifunctional molecule. Glycobiology 2003, 13, 17-27. [CrossRef]
- Chen, A.; Tapia, H.; Goddard, JM.; Gibney, PA.; et al. Trehalose and its applications in the food industry. Compr Rev Food Sci Food Saf 2022, 21, 5004-5037. [CrossRef]
- Crowe, JH.; Carpenter, JF.; Crowe, LM. The role of vitrification in anhydrobiosis. Annu Rev Physiol 1998, 60, 73-103. [CrossRef]
- Wyatt, GR.; Kale, GF. The chemistry of insect hemolymph.II.Trehalose and other carbohydrates. J Gen Physiol 1957, 40, 833-847. [CrossRef]
- Candy, DJ.; Kilby, BA. Site and mode of trehalose biosynthesis in the locust. Nature 1959, 183, 1594-1595. [CrossRef]
- Murphy, TA.; Wyatt, GR. The enzymes of glycogen and trehalose synthesis in silk moth fat body. J Biol Chem 1965, 240, 1500-1508. [CrossRef]
- Kikuta, S.; Nakamura, Y.; Hattori, M.; et al. Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 2015, 64, 60-67. [CrossRef]
- Ashford, DA.; Smith, WA.; Douglas, AE. Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum. J Insect Physiol 2000, 46, 335-341. [CrossRef]
- Fraga, A.; Ribeiro, L.; Lobato, M.; Santos, V.; Silva, J.R.; Gomes, H.; da Cunha Moraes, J.L.; de Souza Menezes, J.; de Oliveira, C.J.; et al. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum. PloS one 2013, 8, e65125. [CrossRef]
- Tang, B.; Wang, S.; Wang, SG.; Wang, HJ.; et al. Invertebrate trehalose-6-phosphate synthase gene: Genetic architecture, biochemistry, physiological function, and potential applications. Front Physiol 2018, 9, 30. [CrossRef]
- García de Castro, A.; Tunnacliffe, A. Intracellular trehalose improves osmotolerance but not desiccation tolerance in mammalian cells. FEBS Lett 2000, 487, 199-202. [CrossRef]
- Stambuk, BU.; Panek, AD.; Crowe, JH.; Crowe, LM.; et al. Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochim Biophys Acta 1998, 1379, 118-128. [CrossRef]
- Kanamori, Y.; Saito, A.; Hagiwara-Komoda, Y.; et al. The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochem Mol Biol 2010, 40, 30-37. [CrossRef]
- Kikawada, T.; Saito, A.; Kanamori, Y.; et al. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci U S A 2007, 104, 11585-11590. [CrossRef]
- Takiguchi, M.; Niimi, T.; Su, ZH.; Yaginuma, T. Trehalase from male accessory gland of an insect, Tenebrio molitor. cDNA sequencing and developmental profile of the gene expression. Biochem J 1992, 266, 19-22. [CrossRef]
- Tang, B.; Yang, M.; Shen, Q.; Xu, Y.; Wang, H.; Wang, S.; et al. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pestic Biochem Physiol 2017, 137, 81-90. [CrossRef]
- Harrison, RL.; Herniou, EA.; Jehle, JA.; et al. ICTV Virus Taxonomy Profile: Baculoviridae. J Gen Virol 2018, 99, 1185-1186. [CrossRef]
- Lange, M.; Wang, H.; Zhihong, H.; Jehle, JA. Towards a molecular identification and classification system of lepidopteran-specific baculoviruses. Virology 2004, 325, 36-47. [CrossRef]
- Buhroo, Z. A review: Disease resistance in mulberry silkworm Bombyx mori.L. Asian Journal of Science and Technology 2013, 4, 157-166.
- Zhou, Y.; Gao, L.; Shi, H.; et al. Microarray analysis of gene expression profile in resistant and susceptible Bombyx mori strains reveals resistance-related genes to nucleopolyhedrovirus. Genomics 2013, 101, 256-262. [CrossRef]
- Jiaping, Xu.; et al. Identification and characterization of Bms3a in Bombyx mori L. African Journal of Biotechnology 2008, 34, 24-30.
- Xu, JP.; Chen, KP.; Yao, Q.; et al. Identification and characterization of an NPV infection-related gene Bmsop2 in Bombyx mori L. Journal of Applied Entomology 2005, 129, 425-431. [CrossRef]
- Kanamori, Y.; Saito, A.; Hagiwara-Komoda, Y.; Tanaka, D.; Mitsumasu, K.; Kikuta, S.; et al. The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochem Mol Biol 2010, 40, 30-37. [CrossRef]
- Kikawada, T.; Saito, A.; Kanamori, Y.; et al. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci U S A 2007, 104, 11585-11590. [CrossRef]
- Weidong, YU.; Biying, PAN.; Lingyu, QIU.; et al. The structure characteristics and biological functions on regulating trehalose metabolism of two NlTret1s in Nilaparvata lugens. Scientia Agricultura Sinica 2020, 53, 4802-4812. [CrossRef]
- Jianhua, Yang. Transcriptome analysis of midgut tissue infected by BmNPV and functional identification of BmTret1-like gene. MA thesis, Jiangsu University of Science and Technology, Zhenjiang, China, 2017.
- Qiuyun, Song. Identification of resistance of silkworm BmTret1-X1 gene to Bombyx mori nucleopolyhedrovirus (BmNPV). MA thesis, Jiangsu University of Science and Technology, Zhenjiang, China, 2022.






| Gene ID | CDS Size (bp) | Protein physicochemical characteristics | TMHs | Subcellular localization* |
|||
|---|---|---|---|---|---|---|---|
| Length (aa) | MW (kDa) | pI | Aliphatic index | ||||
| BMSK0011410 | 1443 | 480 | 51.74 | 9.31 | 116.67 | 12 | PM |
| BMSK0011573 | 1155 | 384 | 42.90 | 6.02 | 107.16 | 7 | PM |
| BMSK0011404 | 1401 | 466 | 50.77 | 8.31 | 111.33 | 12 | PM |
| BMSK0011446 | 1632 | 543 | 58.85 | 7.84 | 100.72 | 9 | PM |
| BMSK0003818 | 1524 | 507 | 56.44 | 7.55 | 112.76 | 11 | PM |
| BMSK0009966 | 615 | 204 | 23.18 | 8.28 | 101.18 | 4 | EX |
| BMSK0015122 | 1635 | 544 | 58.66 | 9.48 | 113.86 | 11 | PM |
| BMSK0015774 | 1233 | 410 | 44.81 | 8.17 | 108.24 | 10 | PM |
| BMSK0015118 | 1275 | 424 | 46.07 | 4.83 | 115.26 | 11 | PM |
| BMSK0015120 | 1374 | 457 | 49.34 | 6.59 | 117.13 | 12 | PM |
| BMSK0002683 | 1353 | 450 | 49.19 | 8.61 | 116.42 | 11 | PM |
| BMSK0002685 | 1776 | 591 | 65.47 | 9.15 | 98.65 | 10 | PM |
| BMSK0008304 | 1359 | 452 | 49.90 | 8.74 | 102.23 | 10 | PM |
| BMSK0012519 | 1368 | 455 | 49.99 | 9.42 | 100.26 | 10 | PM |
| BMSK0015674 | 1494 | 497 | 54.72 | 9.05 | 107.95 | 10 | MT |
| BMSK0007748 | 1398 | 465 | 51.74 | 9.05 | 108.04 | 12 | PM |
| BMSK0015633 | 1608 | 535 | 58.76 | 8.92 | 103.20 | 12 | PM |
| BMSK0015729 | 684 | 227 | 26.00 | 5.21 | 92.69 | 2 | CY |
| BMSK0015627 | 1368 | 455 | 50.32 | 9.08 | 125.34 | 11 | PM |
| BMSK0015638 | 1512 | 503 | 56.54 | 9.28 | 104.10 | 12 | PM |
| BMSK0015673 | 1515 | 504 | 55.87 | 9.08 | 113.57 | 10 | PM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).