Submitted:
19 October 2023
Posted:
23 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Factors concerning feed pellet pneumatic conveyance
2.1. Particle breakage
2.2. Pipe wear and abrasive erosion
2.3. Energy dissipation
2.4. Electrification
3. Evaluation of pneumatic conveying performance
3.1. Perspective of experiment
3.2. Flow measurements
4. Modelling and simulation of key pneumatic conveying characteristics
4.1. Framework for mathematical modelling
4.2. Particle attrition and breakage
4.3. Pipe wear
4.4. Electrostatic and moisture effects
5. Emerging new techniques
5.1. Large-scale simulation
5.2. Application of machine learning theory
6. Conclusions and remarks
Abbreviations
| PSD | Particle Size Distribution |
| TFM | Two-Fluid Method |
| CFD | Computational Fluid Dynamics |
| DEM | Discrete Element Method |
| TACI | Time-Averaged Collision Intensity |
| GPU | Graphic Processing Unit |
| ECT | Electrical Capacitance Tomography |
| ANN | Artificial Neural Network |
| ML | Machine Learning |
References
- Zhou, J.W.; Liu, Y.; Du, C.L.; Liu, S.Y. Effect of the particle shape and swirling intensity on the breakage of lump coal particle in pneumatic conveying. Powder Technology 2017, 317, 438–448. [Google Scholar] [CrossRef]
- Klinzing, G.E. A review of pneumatic conveying status, advances and projections. Powder Technology 2018, 33, 78–90. [Google Scholar] [CrossRef]
- Kuang, S.B.; Zhou, M.M.; Yu, A.B. CFD-DEM modelling and simulation of pneumatic conveying: A review. Powder Technology 2020, 365, 186–207. [Google Scholar] [CrossRef]
- Aas, T.S.; Oehme, M.; Sorensen, M.; He, G.J.; Lygren, I.; Asgard, T. Analysis of pellet degradation of extruded high energy fish feeds with different physical qualities in a pneumatic feeding system. Aquacultural Engineering 2011, 44, 25–34. [Google Scholar] [CrossRef]
- Oehme, M.; Aas, T.S.; Sorensen, M.; Lygren, I.; Asgard, T. Feed pellet distribution in a sea cage using pneumatic feeding system with rotor spreader. Aquacultural Engineering 2012, 51, 44–52. [Google Scholar] [CrossRef]
- Halstensen, M.; Ihunegbo, F.N.; Ratnayake, C.; Sveinsvold, K. Online acoustic chemometric monitoring of fish feed pellet velocity in a pneumatic conveying system. Powder Technology 2014, 263, 104–111. [Google Scholar] [CrossRef]
- Rajabnia, H.; Orozovi, O.; Williams, K.; Lavrinec, A.; andM. Jones, D.I.; Klinzing, G. Investigating the Relationship between the Time Constant Ratio and Plug-Flow Behaviour in the Pneumatic Conveyance of Biomass Material. Processes 2023, 11, 104–111. [Google Scholar] [CrossRef]
- Ghafori, H. Computational fluid dynamics (CFD) analysis of pipeline in the food pellets cooling system. Journal of Stored Products Research 2020, 87. [Google Scholar] [CrossRef]
- Kong, X.R.; Liu, J.; Yang, T.Y.; Su, Y.C.; Geng, J.; Niu, Z.Y. Numerical simulation of feed pellet breakage in pneumatic conveying. Biosystems Engineering 2022, 218, 31–42. [Google Scholar] [CrossRef]
- Kong, X.R.; Cao, Q.; Zhao, Z.H.; Niu, Z.Y.; Liu, J. Breakage probability of feed pellet under repeated compression and impacts. Granular Matter 2023, 25. [Google Scholar] [CrossRef]
- Song, J.P.; Wang, T.; Hu, G.S.; Zhang, Z.J.; Zhao, W.J.; Wang, Z.P.; Zhang, Y.A. Conveying characteristics of shrimp feed pellets in pneumatic conveying system and minimum power consumption dissipation factor. Aquacultural Engineering 2023, 102. [Google Scholar] [CrossRef]
- Han, J.; Fitzpatrick, J.; Cronin, K.; Miao, S. Dairy powder breakage: Mechanisms, characterization methods, impacted properties and influencing factors. Trends in Food Science & Technology 2021, 114, 608–624. [Google Scholar]
- Bika, D.; Tardos, G.I.; Panmai, S.; Farber, L.; Michaels, J. Strength and morphology of solid bridges in dry granules of pharmaceutical powders. Powder Technology 2005, 150, 104–116. [Google Scholar] [CrossRef]
- Salman.; Russel, A.; Aman, S.; Tomas, J. Breakage probability of granules during repeated loading. Powder Technology 2015, 269, 541–547. [CrossRef]
- Zhang, Z.; Ghadiri, M. Impact attrition of particulate solids. Part 2: Experimental work. Chemical Engineering Science 2002, 57, 3671–3686. [Google Scholar] [CrossRef]
- Aarseth, K.A. Attrition of feed pellets during pneumatic conveying: The influence of velocity and bend radius. Biosystem Engineering 2004, 89, 197–213. [Google Scholar] [CrossRef]
- Laarhoven, B.V.; Schaafsma, S.H.; Meesters, G.M.H. Toward a desktop attrition tester; validation with dilute phase pneumatic conveying. Chemical Engineering Science 2012, 73, 321–328. [Google Scholar] [CrossRef]
- Little, L.; Mainza, A.N.; Becker, M.; Wiese, J.G. Using mineralogical and particle shape analysis to investigate enhanced mineral liberation through phase boundary fracture. Powder Technology 2016, 301, 794–804. [Google Scholar] [CrossRef]
- Materic, V.; Holt, R.; Hyland, M.; Jones, M.I. An internally circulating fluid bed for attrition test of Ca looping sorbents. Fuel 2014, 127, 116–123. [Google Scholar] [CrossRef]
- Bayham, S.C.; Breault, R.; Monazam, E. Particulate solid attrition in CFB systems – an assessment for emerging technologies. Powder Technology 2016, 302, 42–62. [Google Scholar] [CrossRef]
- Han, J.; Fitzpatrick, J.; Cronin, K.; Maidannyk, V.; Miao, S. Particle size, powder properties and the breakage behaviour of infant milk formula. Journal of Food Engineering 2021, 292. [Google Scholar] [CrossRef]
- Salman, A.D.; Fu, J.; Gorham, D.A.; Hounslow, M.J. Impact breakage of fertiliser granules. Powder Technology 2003, 130, 359–366. [Google Scholar] [CrossRef]
- Scala, F.; Chirone, R.; Salatino, P. attrition phenomena relevant to fluidized bed combustion and gasification systems; Woodhead Publish, 2013; chapter 6, pp. 254–315.
- Paluszny, A.; Tang, X.; Nejati, M.; Zimmerman, R.W. A direct fragmentation method with Weibull function distribution of sizes based on finite- and discrete element simulations. International Journal of Solids and Structures 2016, 80, 35–51. [Google Scholar] [CrossRef]
- Wu, F.; Wu, D. Attrition resistances and mechanisms of three types of FCC catalysts. Powder Technology 2017, 305, 289–296. [Google Scholar] [CrossRef]
- Ghadiri, M.; Zhang, Z. Impact attrition of particulate solids. Part 1: A theoretical model of chipping. Chemical Engineering Science 2002, 57, 3659–3669. [Google Scholar] [CrossRef]
- P.King, R. Modeling and simulation of mineral processing systems; Society for mining, metallurgy, and exploration (SME), 2001.
- Xiao, F.; Luo, M.; Kuang, S.; Zhou, M.; Jing, J.; Li, J.; An, J. Numerical investigation of elbow erosion in the conveying of dry and wet particles. Powder Technology 2021, 393, 265–279. [Google Scholar] [CrossRef]
- Zhao, X.; Cao, X.; Cao, H.; Zhang, J.; Peng, W.; Bian, J. Numerical study of elbow erosion due to sand particles under annular flow considering liquid entrainment. Particuology 2023, 76, 122–139. [Google Scholar] [CrossRef]
- Majid, Z.A.; Mohsin, R.; Yaacob, Z.; Hassan, Z. Failure analysis of natural gas pipes. Engineering Failure Analysis 2010, 17, 818–837. [Google Scholar] [CrossRef]
- Peng, W.; Ma, L.; Wang, P.; Cao, X.; Ku, K.; Miao, Y. Experimental and CFD investigation of flow behavior and sand erosion pattern in a horizontal pipe bend under annular flow. Particuology 2023, 75, 11–25. [Google Scholar] [CrossRef]
- Pereira, G.C.; de Souza, F.J.; de Moro Martins, D.A. Numerical prediction of the erosion due to particles in elbows. Powder Technology 2014, 261, 105–117. [Google Scholar] [CrossRef]
- Peng, W.; Cao, X. Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow. Journal of Natural Gas Science Engineering 2016, 30, 455–470. [Google Scholar] [CrossRef]
- Zamani, M.; Seddighi, S.; Nazif, H.R. Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow. Journal of Natural Gas Science Engineering 2017, 40, 91–113. [Google Scholar] [CrossRef]
- Kosinska, A.; Balakin, B.; Kosinski, P. Theoretical analysis of erosion in elbows due to flows with nano- and micro-size particles. Powder Technology 2020, 364, 484–493. [Google Scholar] [CrossRef]
- Li, R.; Sun, Z.; Li, A.; Li, Y.; Wang, Z. Design optimization of hemispherical protrusion for mitigating elbow erosion via CFD-DPM. Powder Technology 2022, 398, 117128. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Li, H.; He, H. A comprehensive evaluation of the anti-erosion characteristics of several new structural elbows in the pneumatic conveying system. Powder Technology 2022, 412, 117976. [Google Scholar] [CrossRef]
- Duarte, C.A.R.; de Souza, F.J.; dos Santos, V. Mitigating elbow erosion with a vortex chamber. Powder Technology 2016, 288, 6–25. [Google Scholar] [CrossRef]
- Kuang, S.B.; Zou, R.P.; Pan, R.H.; Yu, A.B. Gas solid flow and energy dissipation in inclined pneumatic conveying. Industrial & Engineering Chemistry Research 2012, 51, 14289–302. [Google Scholar]
- Smeltzer, E.E.; Weaver, M.L.; Klinzing, G.E. Individual electrostatic particle interaction in pneumatic transport. Powder Technology 1982, 33, 31–42. [Google Scholar] [CrossRef]
- Zhang, L.; Bi, X.; Grace, J.R. Measurement of electrostatic charging of powder mixtures in a free-fall test device. 7th World Congress of Particle Technology, Procedia Engineering 2015, 102, 295–304. [Google Scholar] [CrossRef]
- Zaltash, A.; Myley, C.A.; Klinzing, G.E. Stability analysis of gas-solid transport with electrostatics. Journal of Pipelines 1988, 7, 85–100. [Google Scholar]
- Dhodapkar, S.V. Flow Pattern Classification in Gas-Solid Suspensions. Ph.D. thesis, University of Pittsburgh, 1991.
- Larouere, P.J.; Joseph, S.; Klinzing, G.E. Some stability concepts in relation to electrostatics and pneumatic transport. Powder Technology 1984, 38, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, E.W.C.; Wang, C.H. Pneumatic transport of granular materials in an inclined conveying pipe: Comparison of computational fluid dynamics-discrete element method (CFD-DEM), electrical capacitance tomography (ECT), and particle image Velocimetry (PIV) results. Industrial & Engineering Chemistry Research 2007, 46, 6066–6083. [Google Scholar]
- Lim, E.W.C.; Yao, J.; Zhao, Y. Pneumatic transport of granular materials with electrostatic effects. AIChE Journal 2011, 58, 1040–1059. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, E.W.C.; Wang, C.H. Numerical study of the influence of the powder and pipe properties on electrical charging during pneumatic conveying. Powder Technology 2017, 315, 227–235. [Google Scholar]
- Lim, E.W.C.; Zhang, Y.; Wang, C.H. Effects of an electrostatic field in pneumatic conveying of granular materials through inclined and vertical pipes. Chemical Engineering Science 2006, 61, 7889–7908. [Google Scholar] [CrossRef]
- Watano, S. Mechanism and control of electrification in pneumatic conveying of powders. Chemical Engineering Science 2006, 61, 2271–2278. [Google Scholar] [CrossRef]
- Korevaar, M.W.; Padding, J.T.; Hoef, M.A.V.D.; Kuipers, J.A.M. Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders. Powder Technology 2014, 258, 144–156. [Google Scholar] [CrossRef]
- Alizadeh, S.T.; Leblicq, T.; Saeys, W. IAerodynamic properties of harvested perennial ryegrass: Effects of particle mass, size and moisture content. Biosystems Engineering 2023, 228, 67–79. [Google Scholar] [CrossRef]
- Huang, F.X.; Jin, S.P. Experimental study on the horizontal dense-phase pneumatic conveying of sawdust. Particulate Science and Technology 2020, 38, 883–891. [Google Scholar] [CrossRef]
- Liang, C.; Cai, J.Y.; Xu, G.L.; Xu, P.; Chen, X.P.; Zhao, C.S. Experimental investigation and stability analysis on dense-phase pneumatic conveying of coal and biomass at high pressure. Korean Journal of Chemical Engineering 2013, 30, 295–305. [Google Scholar]
- Guo, Z.G.; Chen, X.L.; Xu, Y.; Liu, H.F. Study of flow characteristics of biomass and biomass-coal blends. Fuel 2015, 141, 207–213. [Google Scholar] [CrossRef]
- Dhodapkar, S.V.; Solt, P.; Klinzing, G.E. Understanding bends in pneumatic conveying systems. Chemical Engineering 2009, 53–60. [Google Scholar]
- Gomes, T.L.C.; Lourenco, G.A.; Ataide, C.H.; Duarte, C.R. Biomass feeding in a dilute pneumatic conveying system. Powder Technology 2021, 391, 321–333. [Google Scholar] [CrossRef]
- Lourenco, G.A.; Gomes, T.L.C.; Duarte, C.R.; Ataide, C.H. Experimental study of efficiency in pneumatic conveying system’s feeding rate. Powder Technology 2019, 343, 262–269. [Google Scholar] [CrossRef]
- Wang, X.; Si, H. Conveying Characteristics of Dual Pneumatic Feeder Used for Biomass Pyrolysis. Bioresources 2017, 12, 5970–5983. [Google Scholar] [CrossRef]
- Chen, J.; Chu, K.W.; Zou, R.P.; Yu, A.B.; Vince, A. Prediction of the performance of dense medium cyclones in coal preparation. Mineral Engineering 2012, 31, 59–70. [Google Scholar] [CrossRef]
- Ji, L.; Chen, J.; Kuang, S.B.; Qi, Z.; Chu, K.W.; Yu, A.B. Prediction of separation performance of hydrocyclones by a PC-based model. Separation and Purification Technology 2019, 211, 141–150. [Google Scholar] [CrossRef]
- Klinzing, G.E.; Rizk, F.; Marcus, M.D.; Leung, L.S. 3rd Edition-Pneumatic Conveying of Solids, - Theory and Practice; Springer, 2010.
- Tallon, S.; Davies, C.E. Advances in fluidization and fluid-particle systems. AIChe. Symposium Series 1997, 317, 136–140. [Google Scholar]
- Tallon, S.; Davies, C.E.; Barry, B. Slip velocity and axial dispersion measurements in a gas-solid pipeline using particle tracer analysis. Powder Technology 1999, 99, 125–131. [Google Scholar] [CrossRef]
- Tallon, S.; Davies, C.E. Velocity measurements in dense down flow of bulk solids using a non-restrictive acoustic method. Flow Measurement and Instrumentation 2000, 11, 171–176. [Google Scholar] [CrossRef]
- Tallon, S.; Davies, C.E. Use of the attenuation of acoustic pulsed measurement of gas-solid pipeline flow, advances in fluidization and fluid-particle systems. AIChe. Symposium Series 1997, 317, 136–140. [Google Scholar]
- Sun, D.; Yan, Y.; Carter, R.M.; Gao, L.J.; Lu, G.; Riley, G.; Wood, M. On-Line Nonintrusive Detection of Wood Pellets in Pneumatic Conveying Pipelines Using Vibration and Acoustic Sensors. IEEE Transactions on Instrumentation and Measurement 2014, 63, 993–1001. [Google Scholar] [CrossRef]
- Ihunegbo, F.N.; Wagner, C.; Esbensen, K.H.; Halstensen, M. Acoustic Chemometric At-Line Characterization for Monitoring Particle Size Fractions in Pneumatically Conveyed Biomass. Particulate Science and Technology 2014, 32, 70–79. [Google Scholar] [CrossRef]
- Coombes, J.R.; Yan, Y. Experimental investigations into the flow characteristics of pneumatically conveyed biomass particles using an electrostatic sensor array. Fuel 2015, 151, 11–20. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.L.; Dong, J.; Yan, Y. Concentration measurement of biomass/coal/air three-phase flow by integrating electrostatic and capacitive sensors. Flow Measurement and Instrumentation 2012, 24, 43–49. [Google Scholar] [CrossRef]
- Qian, X.C.; Yan, Y. Flow Measurement of Biomass and Blended Biomass Fuels in Pneumatic Conveying Pipelines Using Electrostatic Sensor-Arrays. Ieee Transactions on Instrumentation and Measurement 2012, 61, 1343–1352. [Google Scholar] [CrossRef]
- Qian, X.C.; Yan, Y.; Shao, J.Q.; Wang, L.J.; Zhou, H.; Wang, C. Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques. Measurement Science and Technology 2012, 23. [Google Scholar] [CrossRef]
- Qian, X.C.; Yan, Y.; Wang, L.J.; Shao, J.Q. An integrated multi-channel electrostatic sensing and digital imaging system for the on-line measurement of biomass-coal particles in fuel injection pipelines. Fuel 2015, 151, 2–10. [Google Scholar] [CrossRef]
- Shao, J.Q.; Krabicka, J.; Yan, Y. Velocity Measurement of Pneumatically Conveyed Particles Using Intrusive Electrostatic Sensors. Ieee Transactions on Instrumentation and Measurement 2010, 59, 1477–1484. [Google Scholar] [CrossRef]
- Patro, P.; Dash, S.K. Two-fluid modeling of turbulent particle-gas suspensions in vertical pipes. Powder Technology 2014, 264, 320–331. [Google Scholar] [CrossRef]
- Behera, N.; Agarwal, V.K.; Jones, M.G.; Williams, K.C. Modeling and analysis of dilute phase pneumatic conveying of fine particles. Powder Technology 2013, 249, 196–204. [Google Scholar] [CrossRef]
- Rao, A.; Curtis, J.S.; Hancock, B.C.; Wassgren, C. Numerical simulation of dilute turbulent gas-particle flow with turbulence modulation. AIChE Journal 2012, 58, 1381–1396. [Google Scholar] [CrossRef]
- Pu, W.; Zhao, C.; Xiong, Y.; Liang, C.; Chen, X.; Lu, P.; Fan, C. Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure. Chemical Engineering Science 2010, 65, 2500–2512. [Google Scholar] [CrossRef]
- Hadinoto, K.; Curtis, J.S. Reynolds number dependence of gas-phase turbulence in particle-laden flows: Effects of particle inertia and particle loading. Powder Technology 2009, 195, 119–127. [Google Scholar] [CrossRef]
- McGlinchey, D.; Cowell, A.; Knight, E.A.; Pugh, J.R.; A. Mason.; Foster, B. Bend pressure drop predictions using the Euler-Euler model in dense phase pneumatic conveying. Particulate Science and Technology 2007, 25, 495–506. [Google Scholar] [CrossRef]
- Henthorn, K.H.; Park, K.; Curtis, J.S. Measurement and prediction of pressure drop in pneumatic conveying: Effect of particle characteristics, mass loading, and Reynolds number. Industrial & Engineering Chemistry Research 2005, 44, 5090–5098. [Google Scholar]
- Zhu, K.W.; Wong, C.K.; Rao, S.M.; Wang, C.H. Pneumatic conveying of granular solids in horizontal and inclined pipes. AIChE Journal 2005, 50, 1729–1745. [Google Scholar] [CrossRef]
- Lee, L.Y.; Quek, T.Y.; Deng, R.S.; Ray, M.B.; Wang, C.H. Pneumatic transport of granular materials through a 90 degrees bend. Chemical Engineering Science 2004, 59, 4637–4651. [Google Scholar] [CrossRef]
- Levy, A. Two-fluid approach for plug flow simulations in horizontal pneumatic conveying. Powder Technology 2000, 112, 263–272. [Google Scholar] [CrossRef]
- Kuan, B.; Yang, W.; Schwarz, M. Dilute gas–solid two-phase flows in a curved 90 duct bend: CFD simulation with experimental validation. Chemical Engineering Science 2007, 62, 2066–2068. [Google Scholar] [CrossRef]
- Manjula, E.V.P.J.; Ariyaratne, W.K.H.; Ratnayake, C.; Melaaen, M.C. A review of CFD modelling studies on pneumatic conveying and challenges in modelling offshore drill cuttings transport. Powder Technology 2017, 305, 782–793. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: A review of major applications and findings. Chemical Engineering Science 2008, 63, 5728–5770. [Google Scholar] [CrossRef]
- Tsuji, Y.; Tanaka, T.; Ishida, T. Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology 1992, 71, 239–250. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technology 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Xu, B.H.; Yu, A.B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chemical Engineering Science 1997, 52, 2785–2809. [Google Scholar] [CrossRef]
- Xu, B.H.; Yu, A.B. Comments on the paper Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chemical Engineering Science 1998, 53, 2645–2646. [Google Scholar]
- Kruggel-Emden, H.; Simsek, E.; Rickelt, S.; WWirtz, S.; Scherer, V. Review and extension of normal force models for the discrete element method. Powder Technology 2007, 171, 157–173. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Kuang, S.B.; Chu, K.W.; Yu, A.B. Discrete particle simulation of particle-fluid flow: model formulations and their applicability. Journal of Fluid Mechanics 2010, 661, 482–510. [Google Scholar] [CrossRef]
- Chu, K.W.; Kuang, S.B.; Zhou, Z.Y.; Yu, A.B. Model A vs. Model B in the modelling of particle-fluid flow. Powder Technology 2018, 329, 47–54. [Google Scholar] [CrossRef]
- Ferziger, J.; Peric, M. 3rd Edition-Computational methods for fluid dynamics; Springer, 2002.
- Imaichi, K.; Ohmi, K. Processing of Flow-Visualization Pictures Measurement of Two-Dimensional Vortex Flow. Journal of Fluid Mechanics 1983, 129, 283–311. [Google Scholar] [CrossRef]
- Lim, E.W.C.; Wang, C.H.; Yu, A.B. Discrete element simulation for pneumatic conveying of granular material. AIChE Journal 2006, 52, 496–509. [Google Scholar]
- Su, J.; Gu, Z.; Chen, C.; Xu, X.Y. A two-layer mesh method for discrete element simulation of gas-particle systems with arbitrarily polyhedral mesh. International Journal for Numerical Methods in Engineering 2015, 103, 759–780. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhan, J.M.; Li, Y.S.; Lam, K.S.; Berrouk, A.S. Accurate void fraction calculation for three-dimensional discrete particle model on unstructured mesh. Chemical Engineering Science 2009, 64, 1260–1266. [Google Scholar] [CrossRef]
- Hilton, J.E.; Mason, L.R.; Cleary, P.W. Dynamics of gas-solid fluidised beds with non-spherical particle geometry. Chemical Engineering Science 2010, 65, 1584–1596. [Google Scholar] [CrossRef]
- Peng, Z.; Moghtaderi, B.; Doroodchi, E. A modified direct method for void fraction calculation in CFD-DEM simulations. Advanced Powder Technology 2016, 27, 19–32. [Google Scholar] [CrossRef]
- Kuang, S.B.; Chu, K.W.; Yu, A.B.; Zou, Z.S.; Feng, Y.Q. Computational investigation of horizontal slug flow in pneumatic conveying. Industrial & Engineering Chemistry Research 2008, 47, 470–480. [Google Scholar]
- Deb, S.; Tafti, D.K. A novel two-grid formulation for fluid-particle systems using the discrete element method. Powder Technology 2013, 246, 601–616. [Google Scholar] [CrossRef]
- Sun, R.; Xiao, H. Diffusion-based coarse graining in hybrid continuum-discrete solvers: Theoretical formulation and a priori tests. International Journal of Multiphase Flow 2015, 77, 142–157. [Google Scholar] [CrossRef]
- Gui, N.; Yang, X.; Tu, J.; Jiang, S. A fine LES-DEM coupled simulation of gas-large particle motion in spouted bed using a conservative virtual volume fraction method. Powder Technology 2018, 330, 174–189. [Google Scholar] [CrossRef]
- Zhou, J.W.; Liu, Y.; Du, C.; Liu, S.; Li, J. Numerical study of coarse coal particle breakage in pneumatic conveying. Particuology 2018, 38, 204–214. [Google Scholar] [CrossRef]
- Han, T.; Levy, A.; Kalman, H. DEM simulation for attrition of salt during dilute-phase pneumatic conveying. Powder Technology 2003, 129, 92–100. [Google Scholar] [CrossRef]
- Lim, E.W.C.; Wang, C.H. Diffusion modeling of bulk granular attrition. Industrial & Engineering Chemistry Research 2006, 45, 2077–2083. [Google Scholar]
- Brosh, T.; Kalman, H.; Levy, A. DEM simulation of particle attrition in dilute-phase pneumatic conveying. Granular Matter 2011, 13, 175–181. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Kalman, H.; Rodnianski, V.; Haim, M. A new method to implement comminution functions into DEM simulation of a size reduction system due to particle-wall collisions. Granular Matter 2009, 11, 253–266. [Google Scholar] [CrossRef]
- Kalman, H.; Rodnianski, V.; Haim, M. Impact velocity and compression force relationship - Equivalence function. Powder Technology 2013, 235, 756–763. [Google Scholar]
- Chu, K.W.; Yu, A.B. Numerical simulation of the gas-solid flow in three-dimensional pneumatic conveying bends. Industrial & Engineering Chemistry Research 2008, 47, 7058–7071. [Google Scholar]
- Kruggel-Emden, H.; Oschmann, T. Numerical study of rope formation and dispersion of non-spherical particles during pneumatic conveying in a pipe bend. Powder Technology 2014, 268, 219–236. [Google Scholar] [CrossRef]
- Acock, A.; Orourke, T.; Shirmboh, D.; Alexander, J.; Andersen, G.; Kaneko, T.; Venkitaraman, A.; Lopez-De-Cardenas, J.; Nishi, M.; Numasawa, M.; Yoshioka, K.; Roy, A.; Wilson, A.; Twynam, A. Practical approaches to sand management. Oilfield Review 2004, 16, 10–27. [Google Scholar]
- Finnie, I. Erosion of surfaces by solid particles. Wear 1960, 3, 87–103. [Google Scholar] [CrossRef]
- Finnie, I. Some observations on erosion of ductile metals. Wear 1972, 19, 81–90. [Google Scholar] [CrossRef]
- Parsi, M.; Najmi, K.; Najafifard, F.; Hassani, S.; Mclaury, B.S.; Shirazi, S.A. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. Journal of Natural Gas Science and Engineering 2014, 21, 850–873. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Q.; Zhao, Y. Numerical prediction of erosion in elbow based on CFD-DEM simulation. Powder Technology 2016, 302, 236–246. [Google Scholar] [CrossRef]
- Zeng, D.; Zhang, E.; Ding, Y.; Yi, Y.; Xian, Q.; Yao, G.; Zhu, H.; Shi, T. Investigation of erosion behaviors of sulfur-particle-laden gas flow in an elbow via a CFD-DEM coupling method. Powder Technology 2018, 329, 115–128. [Google Scholar] [CrossRef]
- Uzi, A.; Ami, Y.B.; Levy, A. Erosion prediction of industrial conveying pipelines. Powder Technology 2017, 309, 49–60. [Google Scholar] [CrossRef]
- Meng, H.C.; Ludema, K.C. Wear models and predictive equations: their form and content. Wear 1995, 181, 443–457. [Google Scholar] [CrossRef]
- Zheng, Q.J.; Zhu, H.P.; Yu, A.B. Finite element analysis of the rolling friction of a viscous particle on a rigid plane. Powder Technology 2011, 207, 401–406. [Google Scholar] [CrossRef]
- Zheng, Q.J.; Zhu, H.P.; Yu, A.B. Finite element analysis of the contact forces between a viscoelastic sphere and rigid plane. Powder Technology 2012, 226, 130–142. [Google Scholar] [CrossRef]
- Zhou, H.J.; Xiong, Y.Q.; Pei, Y. Effect of moisture content on dense-phase pneumatic conveying of pulverized lignite under high pressure. Powder Technology 2012, 226, 130–142. [Google Scholar] [CrossRef]
- Kuang, S.B.; Li, K.; Zou, R.P.; Pan, R.H.; Yu, A.B. Application of periodic boundary condition to CFD-DEM simulation of gas-solid flow in pneumatic conveying. Chemical Engineering Science 2013, 93, 214–228. [Google Scholar] [CrossRef]
- Li, K.; Kuang, S.B.; Pan, R.H.; Yu, A.B. Numerical study of horizontal pneumatic conveying: effect of material properties. Powder Technology 2014, 251, 15–24. [Google Scholar] [CrossRef]
- Sakai, M.; Koshizuka, S. Large-scale discrete element modeling in pneumatic conveying. Chemical Engineering Science 2009, 64, 533–539. [Google Scholar] [CrossRef]
- Chu, K.W.; Chen, J.; Yu, A.B. Applicability of a coarse-grained CFD-DEM model on dense medium cyclone. Mineral Engineering 2016, 90, 43–54. [Google Scholar] [CrossRef]
- Gan, J.Q.; Zhou, Z.Y.; Yu, A.B. A GPU-based DEM approach for modelling of articulate systems. Powder Technology 2016, 301, 1172–1182. [Google Scholar] [CrossRef]
- Xu, J.; Qi, H.; Fang, X.; Lu, L.; Ge, W.; Wang, X.; Xu, M.; Chen, F.; He, X.; Li, J. Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing. Particuology 2011, 9, 446–450. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.Z.; Li, J.M. A gas-solid flow pattern identification algorithm based on cross-rod electrostatic sensor array. Measurement Science and Technology 2023, 34. [Google Scholar] [CrossRef]
- Li, J.; Tang, Z.; Zhang, B.; Xu, C.L. Deep learning-based tomographic imaging of ECT for characterizing particle distribution in circulating fluidized bed. AIChe Journal 2023, 69. [Google Scholar] [CrossRef]
- Sethi, A.K.; Rawat, A.; Srivastava, V.; Sharma, A.K. Artificial neural network models for wall parameters on plug-1 flow characteristics through pipelines. Journal of Engineering Research 2022, 10. [Google Scholar]
- Shijo, J.S.; Behera, N. Prediction of flow mode transition in pneumatic conveying of fine particles using CFD. Particulate Science and Technology 2023, 41, 297–310. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).