Submitted:
25 January 2024
Posted:
26 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Theoretical background
3. Finite element model
4. Results
5. Discussion
6. Conclusions
Contributions
References
- Jønsson S, Schuhmacher A, Ingerslev H. Wideband impedance measurement in the human ear canal; In vivo study on 32 subjects. Physics arXiv: Medical Physics. 2018. [CrossRef]
- Keefe DH, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP. Wideband aural acoustic absorbance predicts conductive hearing loss in children. Int J Audiol. 2012 Dec;51(12):880–91. [CrossRef]
- Niemczyk E, Lachowska M, Tataj E, Kurczak K, Niemczyk K. Wideband acoustic immitance – Absorbance measurements in ears after stapes surgery. Auris Nasus Larynx. 2020 Dec 1;47(6):909–23. [CrossRef]
- Chris S., Lisa H., Patrick F., Hideko H. Wideband Acoustic Immittance: Tympanometric Measures. Ear Hear. 2013. [CrossRef]
- Keefe DH, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP. Wideband aural acoustic absorbance predicts conductive hearing loss in children. Int J Audiol. 2012 Dec;51(12):880–91. [CrossRef]
- Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones. Hear Res. 2018 Sep 1;367:17–31. [CrossRef]
- Doğan E, Közen MA, Mungan Durankaya S, Kenar G, Birlik AM. Evaluation of middle ear and hearing status of ankylosing spondylitis patients with wideband tympanometry and pure tone audiometry tests. European Archives of Oto-Rhino-Laryngology. 2023 May 1;280(5):2273–81. [CrossRef]
- Allen JB, Jeng PS, Levitt H. Evaluation of human middle ear function via an acoustic power assessment. Vol. 42, Journal of Rehabilitation Research and Development. 2005. p. 63–77. [CrossRef]
- Madahana MCI, Nyandoro OTC, Ekoru JED. A Human Inner Ear Model for assessment of Noise Induced Hearing Loss via energy methods. In: IFAC-PapersOnLine. Elsevier B.V.; 2020. p. 16424–9. [CrossRef]
- Allen JB, Jeng PS, Levitt H. Evaluation of human middle ear function via an acoustic power assessment. Vol. 42, Journal of Rehabilitation Research and Development. 2005. p. 63–77. [CrossRef]
- Yilmaz N, Soylemez E, Sanuc MB, Bayrak MH, Sener V. Sound energy absorbance changes in the elderly with presbycusis with normal outer and middle ear. European Archives of Oto-Rhino-Laryngology. 2023 May 1;280(5):2265–71. [CrossRef]
- Møller AR. Improved Technique for Detailed Measurements of the Middle Ear Impedance. J Acoust Soc Am. 1960 Feb;32(2). [CrossRef]
- Rabinowitz WM. Measurement of the acoustic input immittance of the human ear. J Acoust Soc Am. 1981 Oct;70(4). [CrossRef]
- Larson VD, Nelson JA, Cooper WA, Egolf DP. Measurements of acoustic impedance at the input to the occluded ear canal. J Rehabil Res Dev. 1993;30(1).
- Voss SE, Allen JB. Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am. 1994 Jan;95(1). [CrossRef]
- Sanborn PE. Predicting hearing aid response in real ears. J Acoust Soc Am. 1998 Jun;103(6). [CrossRef]
- Keefe DH, Ling R, Bulen JC. Method to measure acoustic impedance and reflection coefficient. J Acoust Soc Am. 1992 Jan;91(1). [CrossRef]
- Keefe DH, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP. Wideband aural acoustic absorbance predicts conductive hearing loss in children. Int J Audiol. 2012 Dec 16;51(12). [CrossRef]
- Ellison JC, Gorga M, Cohn E, Fitzpatrick D, Sanford CA, Keefe DH. Wideband acoustic transfer functions predict middle-ear effusion. Laryngoscope. 2012 Apr;122(4). [CrossRef]
- Shahnaz N, Bork K, Polka L, Longridge N, Bell D, Westerberg BD. Energy Reflectance and Tympanometry in Normal and Otosclerotic Ears. Ear Hear. 2009 Apr;30(2). [CrossRef]
- Lawton BW, Shaw EAG. Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. Journal of the Acoustical Society of America. 1982;72(3):766–73. [CrossRef]
- Utsuno H, Tanaka T, Fujikawa T, Seybert AF. Transfer function method for measuring characteristic impedance and propagation constant of porous materials. J Acoust Soc Am. 1989 Aug;86(2). [CrossRef]
- Lanoye R, Vermeir G, Lauriks W, Kruse R, Mellert V. Measuring the free field acoustic impedance and absorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor. J Acoust Soc Am. 2006 May;119(5). [CrossRef]
- Hudde H, Letens U. Scattering matrix of a discontinuity with a nonrigid wall in a lossless circular duct. J Acoust Soc Am. 1985 Nov;78(5). [CrossRef]
- Fletcher NH, Smith J, Tarnopolsky AZ, Wolfe J. Acoustic impedance measurements—correction for probe geometry mismatch. J Acoust Soc Am. 2005 May;117(5). [CrossRef]
- Stinson MR, Daigle GA. Transverse pressure distributions in a simple model ear canal occluded by a hearing aid test fixture. J Acoust Soc Am. 2007;121(6). [CrossRef]
- Brass D, Locke A. The effect of the evanescent wave upon acoustic measurements in the human ear canal. J Acoust Soc Am. 1997 Apr;101(4). [CrossRef]
- Rasetshwane DM, Neely ST. Inverse solution of ear-canal area function from reflectance. J Acoust Soc Am. 2011 Dec;130(6). [CrossRef]
- Shahnaz N, Bork K, Polka L, Longridge N, Bell D, Westerberg BD. Energy Reflectance and Tympanometry in Normal and Otosclerotic Ears. Ear Hear. 2009 Apr;30(2). [CrossRef]
- Allen JB, Jeng PS, Levitt H. Evaluation of human middle ear function via an acoustic power assessment. The Journal of Rehabilitation Research and Development. 2005;42(4s). [CrossRef]
- Rosowski JJ, Nakajima HH, Hamade MA, Mahfoud L, Merchant GR, Halpin CF, et al. Ear-Canal Reflectance, Umbo Velocity, and Tympanometry in Normal-Hearing Adults. Ear Hear. 2012 Jan;33(1). [CrossRef]
- Sebothoma B, Khoza-Shangase K, Mol D, Masege D. The sensitivity and specificity of wideband absorbance measure in identifying pathologic middle ears in adults living with HIV. South African Journal of Communication Disorders. 2021 Sep 30;68(1). [CrossRef]
- Piskorski P, Keefe DH, Simmons JL, Gorga MP. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory. J Acoust Soc Am. 1999 Mar;105(3). [CrossRef]
- Keefe DH, Simmons JL. Energy transmittance predicts conductive hearing loss in older children and adults. J Acoust Soc Am. 2003 Dec;114(6). [CrossRef]
- Garcia-Gonzalez A, Castro-Egler C, Gonzalez-Herrera A. Analysis of the mechano-acoustic influence of the tympanic cavity in the auditory system. Biomed Eng Online. 2016 Dec 31;15(1). [CrossRef]
- Garcia-Gonzalez A, Gonzalez-Herrera A. Effect of the middle ear cavity on the response of the human auditory system. J Acoust Soc Am. 2013 May;133(5). [CrossRef]
- Castro-Egler C, García-González A. Semiautomatic algorithm for 3D modelling of finite elements of the cochlea. J Med Imaging Health Inform. 2017;7(5). [CrossRef]
- A. García-González, A. Durán-Escalante, C. Castro-Egler. 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method. International Journal of Computer and Information Engineering. 2016;10(3):596–606. [CrossRef]
- Garcia-Gonzalez A, Castro-Egler C, Gonzalez-Herrera A. Influence of the auditory system on pressure distribution in the ear canal. J Mech Med Biol. 2018 Mar 15;18(02). [CrossRef]
- Gan RZ, Reeves BP, Wang X. Modeling of Sound Transmission from Ear Canal to Cochlea. Ann Biomed Eng. 2007 Nov 14;35(12). [CrossRef]
- Gan RZ, Sun Q, Feng B, Wood MW. Acoustic–structural coupled finite element analysis for sound transmission in human ear—Pressure distributions. Med Eng Phys. 2006 Jun;28(5). [CrossRef]
- Gan RZ, Feng B, Sun Q. Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission. Ann Biomed Eng. 2004 Jun;32(6). [CrossRef]
- Brown MA, Bradshaw JJ, Gan RZ. Three-Dimensional Finite Element Modeling of Blast Wave Transmission From the External Ear to a Spiral Cochlea. J Biomech Eng. 2022 Jan 1;144(1). [CrossRef]
- Zhang X, Gan RZ. Finite element modeling of energy absorbance in normal and disordered human ears. Hear Res. 2013 Jul;301. [CrossRef]
- Nørgaard KR, Fernandez-Grande E, Laugesen S. Compensating for oblique ear-probe insertions in ear-canal reflectance measurements. J Acoust Soc Am. 2019 Jun;145(6):3499–509. [CrossRef]
- Hudde H, Engel A. Measuring and Modeling Basic Properties of the Human Middle Ear and Ear Canal. Part III: Eardrum Impedances, Transfer Functions and Model Calculations. Vol. 84, ACUSTICA. acta acustica. 1998.
- Hudde H, Engel A. Measuring and Modeling Basic Properties of the Human Middle Ear and Ear Canal. Part II: Ear Canal, Middle Ear Cavities, Eardrum, and Ossicles. Vol. 84, ACUSTlCA· acta acustica. 1998.
- Hudde H, Engel A. Measuring and Modeling Basic Properties of the Human Middle Ear and Ear Canal. Part I: Model Structure and Measuring Techniques. Vol. 84. 1998.
- Hudde H. Measurement of the eardrum impedance of human ears. J Acoust Soc Am. 1983 Jan;73(1). [CrossRef]
- Fletcher NH, Smith J, Tarnopolsky AZ, Wolfe J. Acoustic impedance measurements—correction for probe geometry mismatch. J Acoust Soc Am. 2005 May;117(5). [CrossRef]
- Ramos Valero JP. Modelado y análisis numérico con el método de los elementos finitos del canal auditivo externo y membrana timpánica. Málaga: [s.n.]; 2013.
- Castro Egler C. Modelado 3D & Análisis Numérico del Oído Interno mediante Elementos Finitos. 2020 Mar 9 [cited 2022 Jul 28]; Available from: https://hdl.handle.net/10630/19420.
- Garcia-Gonzalez A, Castro-Egler C, Gonzalez-Herrera A. Influence of the auditory system on pressure distribution in the ear canal. J Mech Med Biol. 2018;18(2). [CrossRef]








| Model | Subsystem modelled | Name |
![]() |
External auditory canal Tympanic membrane |
CATI |
![]() |
External auditory canal Tympanic membrane Ossicular chain Cochlea simplified |
CATIOS |
![]() |
External auditory canal Tympanic membrane Ossicular chain Choclea Vestibuli Semi-circular canals |
CATIOSCO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).



