Submitted:
18 October 2023
Posted:
19 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
- It critically analyzes the degraded outputs of soiled PV modules from most of the reported work for different environmental conditions.
- It also discusses the effect of atmospheric parameters accounted for in soiling as well as on PV module output characteristics in different climatic conditions around the globe.
- It presents a review of soiling loss investigations in outdoor (outdoor exposure) conditions.
- It also presents the importance of soiling loss investigations in artificial environmental (emulator based) conditions.
- It compares mitigation approaches as developed so far with practicality.
2. Dust belt areas
3. Physical factors influencing soiling on PV modules
3.1. Effect of wind
3.2. Effect of humidity and dew
3.3. Effect of rainfall
3.4. Effect of tilt on dust deposition
3.5. Effect of properties of dust
4. Power loss of PV modules due to soiling
4.1. Study of soiling in outdoors
4.2. Study of soiling in an artificial environment
5. Prevention and restoration from soiling of PV modules
5.1. Manual cleaning
5.2. Natural cleaning
5.3. Passive cleaning
5.3.1. Anti-soiling coatings
5.3.2. Electrodynamics screens (EDS)
5.3.3. Electrostatic cleaning
5.3.4. Robotics-based cleaning
5.3.5. High-pressure water jet
6. Recommendation for the future direction of research
7. Conclusion
Data Availability Statement
Acknowledgments
Nomenclature
| ∂M | Deposition density (g/m2) |
| ∆m | Weight of dust collected (gm) |
| Ac | Area of module surface (m2) |
| AOD | Aerosol optical depth |
| Cd | Particle mass concentration |
| E | Energy (J) |
| FF | Fill factor |
| G | Irradiance over PV module surface |
| G0 | Irradiance at Standard Test Conditions (STC) |
| Isc | Short circuit current (A) |
| Isc at STC of the dusty module (A) | |
| Isc at STC of the clean module (A) | |
| Isc of the clean PV module (A) | |
|
Md MSE |
Dust accumulation density (g/m2) Maximum mean squared error |
| PM | Particulate Matter (PMx) |
| Pmax | Maximum power (W) |
| Maximum power at clean condition (W) | |
| Maximum power of the soiled PV module (W) | |
| Pout | Output power (W) |
| RM | Relative humidity |
| SEM | Scanning Electron Microscope |
| SR | Soiling Ratio |
| SRIsc | Short circuit current on soiling (A) |
| SRPmax | Maximum power output on soiling (W) |
| T | Transmission of light |
| cleaned module temperature (°C) | |
| soiled module temperature (°C) | |
| T0 | Temperature at 25°C |
| Ti | Cleaning interval time (Day) |
| Vd | Dust deposition velocity (m/s) |
| Voc | Open circuit voltage |
| α | Short-circuit temperature correction coefficient |
| γ | Maximum power temperature correction coefficient |
| η | Efficiency PV module (%) |
References
- Ghosh, A. Soiling losses: A barrier for India’s energy security dependency from photovoltaic power. Challenges 2020, 11, 9. [Google Scholar] [CrossRef]
- Cabanillas, R.; Munguía, H. Dust accumulation effect on efficiency of Si photovoltaic modules. Journal of Renewable and Sustainable Energy 2011, 3, 043114. [Google Scholar] [CrossRef]
- Comello, S.; Reichelstein, S.; Sahoo, A. The road ahead for solar PV power. Renewable and Sustainable Energy Reviews 2018, 92, 744–756. [Google Scholar] [CrossRef]
- Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and sustainable energy Reviews 2013, 22, 698–733. [Google Scholar] [CrossRef]
- Toth, S.; Muller, M.; Miller, D.C.; Moutinho, H.; To, B.; Micheli, L.; Linger, J.; Engtrakul, C.; Einhorn, A.; Simpson, L. Soiling and cleaning: Initial observations from 5-year photovoltaic glass coating durability study. Solar Energy Materials and Solar Cells 2018, 185, 375–384. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Tang, Y.; Zheng, F.; Meng, M.; Miao, C. Criteria for particles to be levitated and to move continuously on traveling-wave electric curtain for dust mitigation on solar panels. Renewable energy 2018, 119, 410–420. [Google Scholar] [CrossRef]
- Laarabi, B.; Sankarkumar, S.; Rajasekar, N.; El Baqqal, Y.; Barhdadi, A. Modeling investigation of soiling effect on solar photovoltaic systems: New findings. Sustainable Energy Technologies and Assessments 2022, 52, 102126. [Google Scholar] [CrossRef]
- Dahlioui, D.; Laarabi, B.; Barhdadi, A. Review on dew water effect on soiling of solar panels: Towards its enhancement or mitigation. Sustainable Energy Technologies and Assessments 2022, 49, 101774. [Google Scholar] [CrossRef]
- Raillani, B.; Chaatouf, D.; Salhi, M.; Amraqui, S.; Mezrhab, A. Effect of wind barrier height on the dust deposition rate of a ground-mounted photovoltaic panel. Sustainable Energy Technologies and Assessments 2022, 52, 102035. [Google Scholar] [CrossRef]
- Khodakaram-Tafti, A.; Yaghoubi, M. Experimental study on the effect of dust deposition on photovoltaic performance at various tilts in semi-arid environment. Sustainable Energy Technologies and Assessments 2020, 42, 100822. [Google Scholar] [CrossRef]
- Derakhshandeh, J.F.; AlLuqman, R.; Mohammad, S.; AlHussain, H.; AlHendi, G.; AlEid, D.; Ahmad, Z. A comprehensive review of automatic cleaning systems of solar panels. Sustainable Energy Technologies and Assessments 2021, 47, 101518. [Google Scholar] [CrossRef]
- Tsoar, H. Bagnold, RA 1941: The physics of blown sand and desert dunes. London: Methuen. Progress in physical geography 1994, 18, 91–96. [Google Scholar] [CrossRef]
- Said, S. Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors. Applied Energy 1990, 37, 73–84. [Google Scholar] [CrossRef]
- Al-Alawy, I.T. Wind and other factor requirements to solar energy applications in Iraq. Solar & Wind Technology 1990, 7, 597–600. [Google Scholar] [CrossRef]
- Biryukov, S. An experimental study of the dry deposition mechanism for airborne dust. Journal of Aerosol Science 1998, 29, 129–139. [Google Scholar] [CrossRef]
- Arabatzis, I.; Todorova, N.; Fasaki, I.; Tsesmeli, C.; Peppas, A.; Li, W.X.; Zhao, Z. Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Solar Energy 2018, 159, 251–259. [Google Scholar] [CrossRef]
- Asl-Soleimani, E.; Farhangi, S.; Zabihi, M. The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renewable Energy 2001, 24, 459–468. [Google Scholar] [CrossRef]
- Ghazi, S.; Sayigh, A.; Ip, K. Dust effect on flat surfaces–A review paper. Renewable and Sustainable Energy Reviews 2014, 33, 742–751. [Google Scholar] [CrossRef]
- Li, X.; Mauzerall, D.L.; Bergin, M.H. Global reduction of solar power generation efficiency due to aerosols and panel soiling. Nature Sustainability 2020, 3, 720–727. [Google Scholar] [CrossRef]
- Vuollekoski, H.; Vogt, M.; Sinclair, V.; Duplissy, J.; Järvinen, H.; Kyrö, E.; Makkonen, R.; Petäjä, T.; Prisle, N.; Räisänen, P. Estimates of global dew collection potential. Hydrol. Earth Syst. Sci. Discuss 2014, 11, 9519–9549. [Google Scholar] [CrossRef]
- Sulaiman, S.A.; Singh, A.K.; Mokhtar, M.M.M.; Bou-Rabee, M.A. Influence of dirt accumulation on performance of PV panels. Energy Procedia 2014, 50, 50–56. [Google Scholar] [CrossRef]
- Kaldellis, J.; Fragos, P.; Kapsali, M. Systematic experimental study of the pollution deposition impact on the energy yield of photovoltaic installations. Renewable energy 2011, 36, 2717–2724. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews 2016, 59, 1307–1316. [Google Scholar] [CrossRef]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and sustainable energy reviews 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Said, S.A.; Hassan, G.; Walwil, H.M.; Al-Aqeeli, N. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renewable and Sustainable Energy Reviews 2018, 82, 743–760. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and sustainable energy reviews 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- Goossens, D.; Offer, Z.Y.; Zangvil, A. Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors. Solar energy 1993, 50, 75–84. [Google Scholar] [CrossRef]
- Said, S.A.; Walwil, H.M. Fundamental studies on dust fouling effects on PV module performance. Solar Energy 2014, 107, 328–337. [Google Scholar] [CrossRef]
- Ramli, M.A.; Prasetyono, E.; Wicaksana, R.W.; Windarko, N.A.; Sedraoui, K.; Al-Turki, Y.A. On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions. Renewable Energy 2016, 99, 836–844. [Google Scholar] [CrossRef]
- Corn, M. The adhesion of solid particles to solid surfaces, I. A review. Journal of the Air Pollution Control Association 1961, 11, 523–528. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Johnson, D.; Ackermann, L.; Figgis, B.; Ayoub, M. Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces. Solar Energy Materials and Solar Cells 2019, 191, 413–421. [Google Scholar] [CrossRef]
- Simsek, E.; Williams, M.J.; Pilon, L. Effect of dew and rain on photovoltaic solar cell performances. Solar Energy Materials and Solar Cells 2021, 222, 110908. [Google Scholar] [CrossRef]
- Beysens, D. Estimating dew yield worldwide from a few meteo data. Atmospheric research 2016, 167, 146–155. [Google Scholar] [CrossRef]
- Ilse, K.; Micheli, L.; Figgis, B.W.; Lange, K.; Daßler, D.; Hanifi, H.; Wolfertstetter, F.; Naumann, V.; Hagendorf, C.; Gottschalg, R. Techno-economic assessment of soiling losses and mitigation strategies for solar power generation. Joule 2019, 3, 2303–2321. [Google Scholar] [CrossRef]
- Pedersen, H.; Strauss, J.; Selj, J. Effect of soiling on photovoltaic modules in Norway. Energy Procedia 2016, 92, 585–589. [Google Scholar] [CrossRef]
- Mejia, F.; Kleissl, J.; Bosch, J. The effect of dust on solar photovoltaic systems. Energy Procedia 2014, 49, 2370–2376. [Google Scholar] [CrossRef]
- Valerino, M.; Ratnaparkhi, A.; Ghoroi, C.; Bergin, M. Seasonal photovoltaic soiling: Analysis of size and composition of deposited particulate matter. Solar Energy 2021, 227, 44–55. [Google Scholar] [CrossRef]
- Del Pero, C.; Aste, N.; Leonforte, F. The effect of rain on photovoltaic systems. Renewable Energy 2021, 179, 1803–1814. [Google Scholar] [CrossRef]
- Conceição, R.; Silva, H.G.; Mirão, J.; Collares-Pereira, M. Organic soiling: the role of pollen in PV module performance degradation. Energies 2018, 11, 294. [Google Scholar] [CrossRef]
- Souza, G.; Santos, R.; Saraiva, E. A Log-Logistic Predictor for Power Generation in Photovoltaic Systems. Energies 2022, 15, 5973. [Google Scholar] [CrossRef]
- Negash, T.; Tadiwose, T. Experimental investigation of the effect of tilt angle on the dust photovoltaic module. Int. J. Energy Power Eng 2015, 4, 227–231. [Google Scholar] [CrossRef]
- Qasem, H.; Betts, T.R.; Müllejans, H.; AlBusairi, H.; Gottschalg, R. Dust-induced shading on photovoltaic modules. Progress in Photovoltaics: Research and Applications 2014, 22, 218–226. [Google Scholar] [CrossRef]
- Costa, S.C.S.; Kazmerski, L.L.; Diniz, A.S.A. Impact of soiling on Si and CdTe PV modules: Case study in different Brazil climate zones. Energy Conversion and Management: X 2021, 10, 100084. [Google Scholar] [CrossRef]
- Hegazy, A.A. Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renewable energy 2001, 22, 525–540. [Google Scholar] [CrossRef]
- Xu, R.; Ni, K.; Hu, Y.; Si, J.; Wen, H.; Yu, D. Analysis of the optimum tilt angle for a soiled PV panel. Energy Conversion and Management 2017, 148, 100–109. [Google Scholar] [CrossRef]
- El-Shobokshy, M.S.; Hussein, F.M. Degradation of photovoltaic cell performance due to dust deposition on to its surface. Renewable energy 1993, 3, 585–590. [Google Scholar] [CrossRef]
- Adinoyi, M.J.; Said, S.A. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Ali, H.; Al-Aqeeli, N.; Khaled, M.M.; Said, S.; Abu-Dheir, N.; Merah, N.; Youcef-Toumi, K.; Varanasi, K.K. Characterization of environmental dust in the Dammam area and mud after-effects on bisphenol-A polycarbonate sheets. Scientific reports 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Agnihotri, R.; Yadav, P.K.; Singh, S.; Prasad, M.; Praveen, P.S.; Tawale, J.S.; Mishra, N.D.; Arya, B.C.; Sharma, C. Morphology of atmospheric particles over Semi-Arid region (Jaipur, Rajasthan) of India: Implications for optical properties. Aerosol and air quality research 2015, 15, 974–984. [Google Scholar] [CrossRef]
- Appels, R.; Lefevre, B.; Herteleer, B.; Goverde, H.; Beerten, A.; Paesen, R.; De Medts, K.; Driesen, J.; Poortmans, J. Effect of soiling on photovoltaic modules. Solar energy 2013, 96, 283–291. [Google Scholar] [CrossRef]
- Abderrezek, M.; Fathi, M. Experimental study of the dust effect on photovoltaic panels’ energy yield. Solar Energy 2017, 142, 308–320. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kapsali, M. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements. Energy 2011, 36, 5154–5161. [Google Scholar] [CrossRef]
- Conceicao, R.; Silva, H.G.; Mirao, J.; Gostein, M.; Fialho, L.; Narvarte, L.; Collares-Pereira, M. Saharan dust transport to Europe and its impact on photovoltaic performance: A case study of soiling in Portugal. Solar Energy 2018, 160, 94–102. [Google Scholar] [CrossRef]
- Rao, A.; Pillai, R.; Mani, M.; Ramamurthy, P. Influence of dust deposition on photovoltaic panel performance. Energy Procedia 2014, 54, 690–700. [Google Scholar] [CrossRef]
- Fernández-Solas, Á.; Montes-Romero, J.; Micheli, L.; Almonacid, F.; Fernández, E.F. Estimation of soiling losses in photovoltaic modules of different technologies through analytical methods. Energy 2022, 244, 123173. [Google Scholar] [CrossRef]
- Bessa, J.G.; Micheli, L.; Almonacid, F.; Fernández, E.F. Monitoring photovoltaic soiling: assessment, challenges, and perspectives of current and potential strategies. Iscience 2021, 24, 102165. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B.; Figgis, B.; Aïssa, B. Dust potency in the context of solar photovoltaic (PV) soiling loss. Solar Energy 2021, 220, 1040–1052. [Google Scholar] [CrossRef]
- Micheli, L.; Theristis, M.; Livera, A.; Stein, J.S.; Georghiou, G.E.; Muller, M.; Almonacid, F.; Fernández, E.F. Improved PV soiling extraction through the detection of cleanings and change points. IEEE Journal of Photovoltaics 2021, 11, 519–526. [Google Scholar] [CrossRef]
- Nimmo, B.; Said, S.A. Effects of dust on the performance of thermal and photovoltaic flat plate collectors in Saudi Arabia: preliminary results. Altern. Energy Sources;(United States) 1981, 1. [Google Scholar]
- Oh, W.; Kang, B.; Choi, S.; Bae, S.; Jeong, S.; Kim, S.M.; Lee, H.-S.; Kim, D.; Hwang, H.; Chan, S.-I. Evaluation of anti-soiling and anti-reflection coating for photovoltaic modules. Journal of Nanoscience and Nanotechnology 2016, 16, 10689–10692. [Google Scholar] [CrossRef]
- Pavan, A.M.; Mellit, A.; De Pieri, D. The effect of soiling on energy production for large-scale photovoltaic plants. Solar energy 2011, 85, 1128–1136. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, L.; Sun, K. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmospheric environment 2011, 45, 4299–4304. [Google Scholar] [CrossRef]
- Lopez-Garcia, J.; Pozza, A.; Sample, T. Long-term soiling of silicon PV modules in a moderate subtropical climate. Solar Energy 2016, 130, 174–183. [Google Scholar] [CrossRef]
- Al Shehri, A.; Parrott, B.; Carrasco, P.; Al Saiari, H.; Taie, I. Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Solar Energy 2016, 135, 317–324. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Seasonal effect of dust on the degradation of PV modules performance deployed in different climate areas. Renewable Energy 2017, 111, 105–115. [Google Scholar] [CrossRef]
- Hussain, N.; Shahzad, N.; Yousaf, T.; Waqas, A.; Javed, A.H.; Khan, S.; Ali, M.; Liaquat, R. Designing of homemade soiling station to explore soiling loss effects on PV modules. Solar Energy 2021, 225, 624–633. [Google Scholar] [CrossRef]
- Fernández-Solas, Á.; Micheli, L.; Almonacid, F.; Fernández, E.F. Indoor validation of a multiwavelength measurement approach to estimate soiling losses in photovoltaic modules. Solar Energy 2022, 241, 584–591. [Google Scholar] [CrossRef]
- Rahman, M.; Hasanuzzaman, M.; Rahim, N.A. Effects of various parameters on PV-module power and efficiency. Energy Conversion and Management 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Al-Kouz, W.; Al-Dahidi, S.; Hammad, B.; Al-Abed, M. Modeling and analysis framework for investigating the impact of dust and temperature on PV systems’ performance and optimum cleaning frequency. Applied Sciences 2019, 9, 1397. [Google Scholar] [CrossRef]
- Simal Pérez, N.; Alonso-Montesinos, J.; Batlles, F.J. Estimation of soiling losses from an experimental photovoltaic plant using artificial intelligence techniques. Applied Sciences 2021, 11, 1516. [Google Scholar] [CrossRef]
- KHOSHAIM, B.H. Performance characteristics of 350 kW photovoltaic power system for Saudi Arabian villages. International Journal of Solar Energy 1982, 1, 91–103. [Google Scholar] [CrossRef]
- Riaz, M.H.; Mahmood, T. Experimental Analysis of Soiling Loss on PV Module in Cement Plant Environment. Engineering Proceedings 2022, 20, 13. [Google Scholar] [CrossRef]
- Sayyah, A.; Horenstein, M.N.; Mazumder, M.K. Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy 2014, 107, 576–604. [Google Scholar] [CrossRef]
- Romero-Fiances, I.; Muñoz-Cerón, E.; Espinoza-Paredes, R.; Nofuentes, G.; De la Casa, J. Analysis of the performance of various pv module technologies in Peru. Energies 2019, 12, 186. [Google Scholar] [CrossRef]
- Bajpai, S.; Gupta, R. Performance of Silicon solar-cells under Hot and dusty environmental-conditions. Indian Journal of Pure & Applied Physics 1988, 26, 364–369. [Google Scholar]
- Alghamdi, A.S.; Bahaj, A.S.; Blunden, L.S.; Wu, Y. Dust removal from solar PV modules by automated cleaning systems. Energies 2019, 12, 2923. [Google Scholar] [CrossRef]
- Yahya, H.; Sambo, A. The effect of dust on the performance of photovoltaic modules in Sokoto. Nigerian Journal of Renewable Energy 1991, 2, 36–42. [Google Scholar]
- Ketjoy, N.; Konyu, M. Study of dust effect on photovoltaic module for photovoltaic power plant. Energy Procedia 2014, 52, 431–437. [Google Scholar] [CrossRef]
- Som, A.; Al-Alawi, S. Evaluation of efficiency and degradation of mono-and polycrystalline PV modules under outdoor conditions. Renewable energy 1992, 2, 85–91. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E.; Rudnicka, M. The analysis of working parameters decrease in photovoltaic modules as a result of dust deposition. Energies 2020, 13, 4138. [Google Scholar] [CrossRef]
- Vásquez, P.; Devoto, I.; Ferrada, P.; Taquichiri, A.; Portillo, C.; Palma-Behnke, R. Inspection data collection tool for field testing of photovoltaic modules in the atacama desert. Energies 2021, 14, 2409. [Google Scholar] [CrossRef]
- López, G.; Ramírez, D.; Alonso-Montesinos, J.; Sarmiento, J.; Polo, J.; Martín-Chivelet, N.; Marzo, A.; Batlles, F.J.; Ferrada, P. Design of a low-cost multiplexer for the study of the impact of soiling on PV panel performance. Energies 2021, 14, 4186. [Google Scholar] [CrossRef]
- Sengupta, S.; Ghosh, A.; Mallick, T.K.; Chanda, C.K.; Saha, H.; Bose, I.; Jana, J.; Sengupta, S. Model based generation prediction of SPV power plant due to weather stressed soiling. Energies 2021, 14, 5305. [Google Scholar] [CrossRef]
- Elminir, H.K.; Ghitas, A.E.; Hamid, R.; El-Hussainy, F.; Beheary, M.; Abdel-Moneim, K.M. Effect of dust on the transparent cover of solar collectors. Energy conversion and management 2006, 47, 3192–3203. [Google Scholar] [CrossRef]
- Abdallah, R.; Juaidi, A.; Abdel-Fattah, S.; Qadi, M.; Shadid, M.; Albatayneh, A.; Çamur, H.; García-Cruz, A.; Manzano-Agugliaro, F. The effects of soiling and frequency of optimal cleaning of PV panels in Palestine. Energies 2022, 15, 4232. [Google Scholar] [CrossRef]
- Alquthami, T.; Menoufi, K. Soiling of photovoltaic modules: Comparing between two distinct locations within the framework of developing the photovoltaic soiling index (PVSI). Sustainability 2019, 11, 4697. [Google Scholar] [CrossRef]
- Shah, A.H.; Hassan, A.; Laghari, M.S.; Alraeesi, A. The influence of cleaning frequency of photovoltaic modules on power losses in the desert climate. Sustainability 2020, 12, 9750. [Google Scholar] [CrossRef]
- Kaldellis, J.; Kokala, A. Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal. Energy 2010, 35, 4862–4869. [Google Scholar] [CrossRef]
- Aldihani, A. Performance and cost assessment of three different crystalline silicon PV modules in Kuwait environments. International Journal of Renewable Energy Research (IJRER) 2017, 7, 128–136. [Google Scholar] [CrossRef]
- Urrejola, E.; Antonanzas, J.; Ayala, P.; Salgado, M.; Ramírez-Sagner, G.; Cortés, C.; Pino, A.; Escobar, R. Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile. Energy Conversion and Management 2016, 114, 338–347. [Google Scholar] [CrossRef]
- Ibrahim, A. Effect of shadow and dust on the performance of silicon solar cell. Journal of Basic and applied scientific research 2011, 1, 222–230. [Google Scholar]
- Al Hanai, T.; Hashim, R.B.; El Chaar, L.; Lamont, L.A. Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system. Renewable energy 2011, 36, 2615–2622. [Google Scholar] [CrossRef]
- Zeedan, A.; Barakeh, A.; Al-Fakhroo, K.; Touati, F.; Gonzales Jr, A.S. Quantification of PV power and economic losses due to soiling in Qatar. Sustainability 2021, 13, 3364. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Baig, H.; Sundaram, S.; Mallick, T.K. Soiling on PV performance influenced by weather parameters in Northern Nigeria. Renewable Energy 2021, 180, 874–892. [Google Scholar] [CrossRef]
- Mohamed, A.O.; Hasan, A. Effect of dust accumulation on performance of photovoltaic solar modules in Sahara environment. Journal of Basic and applied scientific Research 2012, 2, 11030–11036. [Google Scholar]
- Rahman, M.M.; Islam, M.A.; Karim, A.; Ronee, A.H. Effects of natural dust on the performance of PV panels in Bangladesh. International Journal of Modern Education and Computer Science 2012, 4, 26. [Google Scholar] [CrossRef]
- Rehman, S.; El-Amin, I. Performance evaluation of an off-grid photovoltaic system in Saudi Arabia. Energy 2012, 46, 451–458. [Google Scholar] [CrossRef]
- Sanusi, Y. The performance of amorphous silicon PV system under Harmattan dust conditions in a tropical area. Pacific Journal of Science and Technology 2012, 13, 168–175. [Google Scholar]
- Zorrilla-Casanova, J.; Piliougine, M.; Carretero, J.; Bernaola-Galván, P.; Carpena, P.; Mora-López, L.; Sidrach-de-Cardona, M. Losses produced by soiling in the incoming radiation to photovoltaic modules. Progress in photovoltaics: Research and applications 2013, 21, 790–796. [Google Scholar] [CrossRef]
- Liqun, L.; Zhiqi, L.; Chunxia, S.Z.L. Degraded output characteristic at atmospheric air pollution and economy analysis of PV power system: a case study. Przeglad Elektrotechniczny 2012, 88, 281–284. [Google Scholar]
- Kalogirou, S.A.; Agathokleous, R.; Panayiotou, G. On-site PV characterization and the effect of soiling on their performance. Energy 2013, 51, 439–446. [Google Scholar] [CrossRef]
- Caron, J.R.; Littmann, B. Direct monitoring of energy lost due to soiling on first solar modules in California. IEEE Journal of Photovoltaics 2012, 3, 336–340. [Google Scholar] [CrossRef]
- Piliougine, M.; Canete, C.; Moreno, R.; Carretero, J.; Hirose, J.; Ogawa, S.; Sidrach-de-Cardona, M. Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates. Applied energy 2013, 112, 626–634. [Google Scholar] [CrossRef]
- Moharram, K.; Abd-Elhady, M.; Kandil, H.; El-Sherif, H. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energy Conversion and Management 2013, 68, 266–272. [Google Scholar] [CrossRef]
- Weber, B.; Quiñones, A.; Almanza, R.; Duran, M.D. Performance reduction of PV systems by dust deposition. Energy Procedia 2014, 57, 99–108. [Google Scholar] [CrossRef]
- Ndiaye, A.; Kébé, C.M.; Charki, A.; Ndiaye, P.A.; Sambou, V.; Kobi, A. Degradation evaluation of crystalline-silicon photovoltaic modules after a few operation years in a tropical environment. Solar energy 2014, 103, 70–77. [Google Scholar] [CrossRef]
- Semaoui, S.; Arab, A.H.; Boudjelthia, E.K.; Bacha, S.; Zeraia, H. Dust effect on optical transmittance of photovoltaic module glazing in a desert region. Energy Procedia 2015, 74, 1347–1357. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E. Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renewable Energy 2015, 78, 418–426. [Google Scholar] [CrossRef]
- Rajput, P.; Tiwari, G.; Sastry, O.; Bora, B.; Sharma, V. Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India. Solar Energy 2016, 135, 786–795. [Google Scholar] [CrossRef]
- Paudyal, B.R.; Shakya, S.R. Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu. Solar Energy 2016, 135, 103–110. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Dust effect and its economic analysis on PV modules deployed in a temperate climate zone. Energy Procedia 2016, 100, 65–68. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T. Experimental analysis of the effect of dust’s physical properties on photovoltaic modules in Northern Oman. Solar Energy 2016, 139, 68–80. [Google Scholar] [CrossRef]
- Touati, F.; Al-Hitmi, M.; Chowdhury, N.A.; Hamad, J.A.; Gonzales, A.J.S.P. Investigation of solar PV performance under Doha weather using a customized measurement and monitoring system. Renewable Energy 2016, 89, 564–577. [Google Scholar] [CrossRef]
- Saidan, M.; Albaali, A.G.; Alasis, E.; Kaldellis, J.K. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renewable Energy 2016, 92, 499–505. [Google Scholar] [CrossRef]
- Olivares, D.; Ferrada, P.; de Matos, C.; Marzo, A.; Cabrera, E.; Portillo, C.; Llanos, J. Characterization of soiling on PV modules in the Atacama Desert. Energy Procedia 2017, 124, 547–553. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, H.; Xiao, B.; Zhou, Z.; Yan, X. In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules. Renewable energy 2017, 101, 1273–1284. [Google Scholar] [CrossRef]
- Fraga, M.M.; de Oliveira Campos, B.L.; de Almeida, T.B.; da Fonseca, J.M.F.; Lins, V.d.F.C. Analysis of the soiling effect on the performance of photovoltaic modules on a soccer stadium in Minas Gerais, Brazil. Solar Energy 2018, 163, 387–397. [Google Scholar] [CrossRef]
- Gholami, A.; Khazaee, I.; Eslami, S.; Zandi, M.; Akrami, E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Solar Energy 2018, 159, 346–352. [Google Scholar] [CrossRef]
- Ilse, K.K.; Figgis, B.W.; Werner, M.; Naumann, V.; Hagendorf, C.; Pöllmann, H.; Bagdahn, J. Comprehensive analysis of soiling and cementation processes on PV modules in Qatar. Solar Energy Materials and Solar Cells 2018, 186, 309–323. [Google Scholar] [CrossRef]
- Syafiq, A.; Pandey, A.; Adzman, N.; Abd Rahim, N. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Solar Energy 2018, 162, 597–619. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, L.; Lu, H. A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment. Solar Energy 2016, 140, 236–240. [Google Scholar] [CrossRef]
- Kawamoto, H.; Guo, B. Improvement of an electrostatic cleaning system for removal of dust from solar panels. Journal of Electrostatics 2018, 91, 28–33. [Google Scholar] [CrossRef]
- Bake, A.; Merah, N.; Matin, A.; Gondal, M.; Qahtan, T.; Abu-Dheir, N. Preparation of transparent and robust superhydrophobic surfaces for self-cleaning applications. Progress in Organic Coatings 2018, 122, 170–179. [Google Scholar] [CrossRef]
- Sueto, T.; Ota, Y.; Nishioka, K. Suppression of dust adhesion on a concentrator photovoltaic module using an anti-soiling photocatalytic coating. Solar Energy 2013, 97, 414–417. [Google Scholar] [CrossRef]
- Adak, D.; Ghosh, S.; Chakrabarty, P.; Mondal, A.; Saha, H.; Mukherjee, R.; Bhattacharyya, R. Self-cleaning V-TiO2: SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications. Solar Energy 2017, 155, 410–418. [Google Scholar] [CrossRef]
- de Jesus, M.A.M.L.; Timò, G.; Agustín-Sáenz, C.; Braceras, I.; Cornelli, M.; de Mello Ferreira, A. Anti-soiling coatings for solar cell cover glass: Climate and surface properties influence. Solar Energy Materials and Solar Cells 2018, 185, 517–523. [Google Scholar] [CrossRef]
- Gholami, A.; Alemrajabi, A.A.; Saboonchi, A. Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications. Solar Energy 2017, 157, 559–565. [Google Scholar] [CrossRef]
- Bhaduri, S.; Farkade, M.; Bajhal, R.; Mallick, S.; Shiradkar, N.; Kottantharayil, A. Abrasion resistance of spray coated anti-soiling coatings during waterless cleaning of PV modules. Materials Today Communications 2023, 35, 106168. [Google Scholar] [CrossRef]
- Khan, M.Z.; Ghaffar, A.; Bahattab, M.A.; Mirza, M.; Lange, K.; Abaalkheel, I.M.S.; Alqahtani, M.H.M.; Aldhuwaile, A.A.A.; Alqahtani, S.H.; Qasem, H. Outdoor performance of anti-soiling coatings in various climates of Saudi Arabia. Solar Energy Materials and Solar Cells 2022, 235, 111470. [Google Scholar] [CrossRef]
- Hossain, M.I.; Ali, A.; Bermudez Benito, V.; Figgis, B.; Aïssa, B. Anti-soiling coatings for enhancement of PV panel performance in desert environment: a critical review and market overview. Materials 2022, 15, 7139. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, K.; Zhang, J.; Feng, J. Transparent and superhydrophobic FHA/SiO2 coatings with obvious anti-soiling performance for photovoltaic modules. Progress in Organic Coatings 2023, 183, 107679. [Google Scholar] [CrossRef]
- Saeidpour, S.; Khoshnevisan, B.; Boroumand, Z.; Ahmady, N. Effect of electrode design and dust particle size on electrodynamics dust shield procedure. Physics Open 2023, 14, 100131. [Google Scholar] [CrossRef]
- Nomeir, B.; Lakhouil, S.; Boukheir, S.; Ali, M.A.; Naamane, S. Recent progress on transparent and self-cleaning surfaces by superhydrophobic coatings deposition to optimize the cleaning process of solar panels. Solar Energy Materials and Solar Cells 2023, 257, 112347. [Google Scholar] [CrossRef]
- Sayyah, A.; Crowell, D.R.; Raychowdhury, A.; Horenstein, M.N.; Mazumder, M.K. An experimental study on the characterization of electric charge in electrostatic dust removal. Journal of Electrostatics 2017, 87, 173–179. [Google Scholar] [CrossRef]
- Chesnutt, J.K.; Ashkanani, H.; Guo, B.; Wu, C.-Y. Simulation of microscale particle interactions for optimization of an electrodynamic dust shield to clean desert dust from solar panels. Solar Energy 2017, 155, 1197–1207. [Google Scholar] [CrossRef]
- Guo, B.; Javed, W.; Pett, C.; Wu, C.-Y.; Scheffe, J.R. Electrodynamic dust shield performance under simulated operating conditions for solar energy applications. Solar Energy Materials and Solar Cells 2018, 185, 80–85. [Google Scholar] [CrossRef]
- Patel, S.; Veerasamy, V.; John, J.S.; Orlov, A. A comprehensive review on dust removal using electrodynamic shield: Mechanism, influencing factors, performance, and progress. Renewable and Sustainable Energy Reviews 2023, 183, 113471. [Google Scholar] [CrossRef]
- Costa, S.C.; Diniz, A.S.A.; Kazmerski, L.L. Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015. Renewable and Sustainable Energy Reviews 2016, 63, 33–61. [Google Scholar] [CrossRef]
- Kumar, N.M.; Sudhakar, K.; Samykano, M.; Sukumaran, S. Dust cleaning robots (DCR) for BIPV and BAPV solar power plants-A conceptual framework and research challenges. Procedia Computer Science 2018, 133, 746–754. [Google Scholar] [CrossRef]
- Zainuddin, N.; Abdullah, M.N. Development of Solar Panel Cleaning Robot for Residential Sector. Evolution in Electrical and Electronic Engineering 2023, 4, 606–614. [Google Scholar] [CrossRef]
- Parrott, B.; Zanini, P.C.; Shehri, A.; Kotsovos, K.; Gereige, I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Solar energy 2018, 171, 526–533. [Google Scholar] [CrossRef]
- Amin, A.; Wang, X.; Alroichdi, A.; Ibrahim, A. Designing and Manufacturing a Robot for Dry-Cleaning PV Solar Panels. International Journal of Energy Research 2023, 2023. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, X.; Gao, Y.; Guo, R.; Zhao, J. Research on Mechanism Design and Kinematic Characteristics of Self-Propelled Photovoltaic Cleaning Robot. Applied Sciences 2023, 13, 6967. [Google Scholar] [CrossRef]
- Figgis, B.; Bermudez, V.; Garcia, J.L. PV module vibration by robotic cleaning. Solar Energy 2023, 250, 168–172. [Google Scholar] [CrossRef]
- Costa, S.C.; Diniz, A.S.A.; Kazmerski, L.L. Solar energy dust and soiling R&D progress: Literature review update for 2016. Renewable and Sustainable Energy Reviews 2018, 82, 2504–2536. [Google Scholar] [CrossRef]
- Song, Z.; Liu, J.; Yang, H. Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review. Applied Energy 2021, 298, 117247. [Google Scholar] [CrossRef]






| Dust Types | Measured particle sizes (in µm) | Reference particle sizes (in µm) | References |
|---|---|---|---|
| Cement | 10 | 10 | [50] |
| Soil | 128.466 | 100-300 | [52] |
| Sand | 230.50 | 250 | [52] |
| Salt (NaCl) | 3191 | >210 | [50] |
| Gypsum | 18.332 | <60 | [52] |
| Ash | 9.696 | <10 | [52] |
| Experiment Sites (Latitude & Longitude) | Climate | Mounting configuration | Experiment Period (days) | Observed Parameter | Observed loss (%) | References |
| Jordan, (32.1029° N, 36.1811° E) | Subtropical arid | 26° South | 179 | ηav/day | 0.768 | [69] |
| Spain, (36.8°N, 2.4°W) | Mild oceanic | 22° South | 230 | Isc | 15 | [70] |
| Saudi Arabia (24.71°°N, 46.72°E) | Desert | Solar tracking | 30 | Isc | 35 | [71] |
| Pakistan (33.766°N, 72.8232°E) | Continental | 15° South | 30 | T | 60(Coal dust) 31(Module dust) |
[72] |
| Kuwait (29.36°N, 47.97°E) | Desert | 30° South | 420 | Pout | 55 | [73] |
| Arequipa (16.40°S, 71.53°W) | Subtropical desert | 16° South | 730 | E | ≈8 | [74] |
| Nigeria (12.5°N,4.3°E) | Tropical semi-arid | 12.5° South | 120 | Pmax | 60 | [75] |
| Jeddah (21.4933°N, 39.2391°E) | Desert | 10° South | 20 | E | 27 | [76] |
| Saudi Arabia(26.28°N,50.11°E) | Desert | 26° South | 180 | η | 60 | [13] |
| Nigeria (12.5°N,4.3°E) | Tropical semi-arid | 13° South | 14 | Isc | 4.7 | [77] |
| Thailand (16.8211° N, 100.2659° E) | Semi-arid | 17° East | 60 | Isc | 2.83-6.03 | [78] |
| Bahrain (26.17°N, 50.54°E) | Desert | 0° | 60 | Isc | 41.4 | [79] |
| Northern Poland (54.37°N, 18.62°E) | Moderate | 34° | 365 | η | 10 | [80] |
| Atacama Desert (23.8634°S, 69.1328°W) | Desert | 20° South | 365 | Isc | 15-55 | [81] |
| Spain (36.8296°N, 2.4048° W) | Mediterranean | 22° South | >30 | E | 10 | [82] |
| India (22.57°N, 88.36°E) | Tropical wet-and-dry | 20° South | 30 | η | 43.3 | [83] |
| Iran (35.69° N, 51.42°E) | Cold semi-arid | 45° South | 8 | Pout | 43 | [17] |
| Egypt (28.07°N, 30.76°E) | Subtropical | 20°,40°,60°, South | 30 | T | 11-21 | [44] |
| Egypt (29.84°N, 31.33°E) | Arid | 15° Northeast | 210 | T | 20.9 | [84] |
| Palestine (32.370°N, 35.108° E) | Mediterranean | 29° South | 365 | Pout | 13.1 | [85] |
| Cairo (30.0444°N, 31.2357°E) | Desert | 20° South | 21 |
Isc Voc |
268 | [86] |
| UAE (24.9°N and 55.5°E) | Desert | 22° South | 90 | Pout | 13 | [87] |
| Greece (37.98°N, 23.72°E) | Hot summerMediterranean | 30° South | 60 | E | 6.5 | [88] |
| Kuwait (29.3117° N, 47.4818° E) | Desert | 30° North | 365 | T | 5 | [89] |
| Mexico (29.09 °-110.96°) | Desert | Sun tracker | 20 | Pout | 8.5 | [2] |
| Santiago, Chile (33.4489° S, 70.6693° W) | Mild | 32°South | 365 | Pout | 1.29-2.77 | [90] |
| Saudi Arabia (30.98°N ,41°E) | Continental | 31° North | 10 | Isc | 27.8 | [91] |
| UAE (24.46°N, 54.36°E) | Desert | 25° South | 18 | Pout | 13 | [92] |
| Italy (40.79°N, 17.10°E) | Mediterranean | 25° South | 240 | Pout | 6.9 | [61] |
| Qatar (27.92°N,15.54°W) | Desert | 28° South | 180 | Pout | 43 | [93] |
| China (49.7448°N and 116° 21’ 49.0500’’ E) | Simulator | 50° tilt | On 22 g/m2 dust | η | 26 | [62] |
| Northern Nigeria (11° 59’ 02.1’’N, 8° 28’ 52.5’’E) | Tropical semi-arid | 12° South | 365 | η | 78 | [94] |
| Libya (26.33°N, 17.22°E) | Desert | 40° North | 120 | Pout | 2.5 | [95] |
| Bangladesh (23.70°N, 90.40°E) | Tropical | 23.5° South | 30 | Isc | 33 | [96] |
| Arabia (26.28° N,50.11°E) | Desert | 30° South | 30 | Pout | 5.9 | [97] |
| Nigeria (8.13°N, 4.25°E) | Tropical | 0° | 70 | Pout | 25 | [98] |
| Spain (36.72°N, 4.42°W) | Hot summerMediterranean | 30° South | 365 | E | 20 | [99] |
| China (37.87°N,112.56° E) | Semi-arid | 45° South | 14 | Pout | 18.2 | [100] |
| Cyprus (34.70°N, 33.02°E) | Mediterranean | 31° South | 70 | Pout | 8 | [101] |
| USA (37.42° N, 120.59°W) | Desert | 25° South | 480 | Isc | 8.6 | [102] |
| Saudi Arabia (26.28°N, 50.11°E) | Desert | 26° South | 240 | Pmax | 45.4 | [47] |
| Spain (36.72°N, 4.42°W) | Hot summerMediterranean | 21° South | 300 | Isc | 12.5 | [103] |
| Egypt (26.8206° N, 30.8025° E) | Hot summer | 27° South | 120 | η | 50 | [104] |
| Toluca, México (19° 21’ 54.36” N ; 99° 9’ 24.84W) | Cold, Mild | 20.3° South | 60, 365 | η | 15,3.6 | [105] |
| India, latitude 12.97°N, longitude 77.56°E). | Semi-arid | 13° South | 30 | Isc | 4-5 | [54] |
| UK (55.3781° N, 3.4360° W) | Mediterranean | 55° North | 30 | T | 5-6 | [18] |
| Senegal, (12.5°& 16.5°North latitude and 12°and 17°West longitude) | Tropical | 4.43° North | 365 | Pmax | 2.6 | [106] |
| Algeria (28.0339° N, 1.6596° E) | Desert | 32° South | 210 | T | 8 | [107] |
| Northern Poland | Indoor | 37° tilt | 365 | Pmax | 3 | [108] |
| Gurgaon, India (28° 37’N,77°14’ E) | Composite climate | 28° South | 365 | Voc& FF, Isc &Pmax | 1.4 & 2.6, 1.8 & 4.1 | [109] |
| Kathmandu, Nepal (27° 40’51’’N,85° 14’29’’E) | Composite climate, Dry winter | 27° North | 150 | η | 29.76 | [110] |
| Perth, Western Australia (31.95°S & 115.85°E) | Temperate climate | 32° South | 365 | Pmax | 2.3-2.7 | [111] |
| Oman (Northern) (16°40’, 26°20’) N, (51°50’, 59°40’) E | Tropical Desert | 16° North | 90 | Pmax | 40 | [112] |
| Dhahran (Saudi Arabia) (26.2361° N, 50.0393° E) | Desert | 26° North | 7 | η | 7.34 | [64] |
| Doha, Qatar (25.2854° N, 51.5310° E) | Semi-Arid | 25° North | 150 | Pmax | 30 | [113] |
| Ispra, Northern Italy (45° 48’ 43.4’ N - 8° 37’ 37.4’ E) | Moderate Subtropical | 45° North | 10950 | Pmax, Isc | 19.4, 6.7 | [63] |
| Surabaya, Indonesia (7.2575° S, 112.7521° E) | Tropical Savannah | 7° &23°, South | 14 | Pmax | 10.8; in dry season. | [29] |
| Baghdad, Iraq (33.3152° N, 44.3661° E) | Desert | 30˚North | 7 | Isc | 6.9- 16.4 | [114] |
| Atacama Desert (23.8634° S, 69.1328° W) | Desert | 24° South | 120 | T | 55 | [115] |
| China (49.7448’’ N and 116° 21’ 49.0500’’ E) | Semi-arid | 45° South | 8 | T | 20 | [116] |
| Minas Gerais, Brazil (18.5122°S, 44.5550°W) | Tropical | 8° South | 43 | Pmax | 6.5-13.7 | [117] |
| Tehran, Iran (35.6892°N, 51.3890° E) | Cold semi-arid | 35° North | 70 | Pmax | 21.47 | [118] |
| Doha Qatar (25.2854° N, 51.5310° E) | Desert | 22° North | 01 | Pmax | 0.5 | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
