Submitted:
16 October 2023
Posted:
17 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling
2.4. Determination of Soil Aggregate
2.5. Soil Chemical Property Analysis
2.6. Determination of Crop Yields
2.7. Calculations
2.7.1. Stability Index of Soil Aggregates
2.7.2. Land Equivalent Ratio
2.8. Statistical Analyses
3. Results
3.1. Effects of Long-Term M||P and P Application on the Proportion and Stability of Aggregates
3.2. Effects of Long-Term M||P and P Application on Concentration and Contribution Rates of SOC in Aggregates
3.3. Effects of Long-Term M||P and P Application on Organic C and Nutrients
3.4. Effects of Long-Term M||P and P Application on Farmland Productivity
3.5. Relationships between Farmland Productivity and Soil Physical and Chemical Properties
4. Discussion
4.1. Long-term M||P and P Application Strengthened the Soil Aggregate Stability, Increased the Topsoil SOC Concentration in Macroaggregates
4.2. Long-term M||P and P Application Improved Topsoil TP and AP Concentration in Aggregate Fractions
4.3. Long-term M||P and P Application Could Maintain Sustainable Farmland Productivity
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience. 2017, 67, 386–391. [Google Scholar] [CrossRef]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food. 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.S. , Neff, J.C.; Im, Y.; Doro, L.; Herrick, J.E. The hidden costs of land degradation in US maize agriculture. Earths Future. 2021, 9, e2020EF001641. [Google Scholar] [CrossRef]
- Cappelli, S.L.; Domeignoz-Horta, L.A.; Loaiza, V.; Laine, A.L. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends Plant Sci. 2022, 27, 674–687. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, Z.G.; Bao, X.G.; Sun, J.H.; Yang, S.C.; Wang, P.; Wang, C.B.; Wu, J.P.; Liu, X.R.; Tian, X.L.; Wang, Y.; Li, J.P.; Wang, Y.; Xia, H.Y.; Mei, P.P.; Wang, X.F.; Zhao, J.H.; Yu, R.P.; Zhang, W.P.; Che, Z.X.; Gui, L.G.; Callaway, R.M.; Tilman, D.; Li, L. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Chapagain, T.; Riseman, A. Nitrogen and carbon transformations, water use efficiency and ecosystem productivity in monocultures and wheat-bean intercropping systems. Nutr Cycl Agroecosys. 2015, 101, 107–121. [Google Scholar] [CrossRef]
- Sun, X.Z.; Zhang, C.C.; Bei, S.K.; Wang, G.Z.; Geisen, S.; Bedoussac, L.; Christie, P.; Zhang, J.L. High bacterial diversity and siderophore-producing bacteria collectively suppress Fusarium oxysporum in maize/faba bean intercropping. Front Microbiol. 2022, 13, 972587. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.S.; Li, X.L.; Christie, P.; Sun, J.H.; Yang, S.C.; Tang, C.X. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr cycl agroecosys. 2003, 65, 61–71. [Google Scholar] [CrossRef]
- Li, H.G.; Zhang, F.S.; Rengel, Z.; Shen, J.B. Rhizosphere properties in monocropping and intercropping systems between faba bean (Vicia faba L.) and maize (Zea mays L.) grown in a calcareous soil. Crop Pasture Sci. 2013, 64, 976–984. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W.; Wu, J.; Jiang, X.; Zhu, X. Can intercropping with the cash crop help improve the soil physico-chemical properties of rubber plantations? Geoderma. 2019, 335, 149–160. [Google Scholar] [CrossRef]
- Lian, T.X.; Mu, Y.H.; Jin, J.; Ma, Q.B.; Cheng, Y.B.; Cai, Z.D.; Nian, H. Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. PeerJ. 2019, 7, e6412. [Google Scholar] [CrossRef]
- Peng, Y.M.; Xu, H.S.; Wang, Z.; Li, L.; Shang, J.Y.; Li, B.G.; Wang, X. Effects of intercropping and drought on soil aggregation and associated organic carbon and nitrogen. Soil Use Manag. 2023, 39, 316–328. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Garland, G.; Bunemann, E.K.; Oberson, A.; Frossard, E.; Six, J. Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant Soil. 2017, 415, 37–55. [Google Scholar] [CrossRef]
- Chamkhi I, Cheto S, Geistlinger J, Zeroual Y, Kouisni L, Bargaz A, Ghoulam C. Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Ind Crop Prod. 2022, 183, 114958. [CrossRef]
- Tripathi, S.C.; Venkatesh, K.; Meena, R.P.; Chander, S.; Singh, G.P. Sustainable intensification of maize and wheat cropping system through pulse intercropping. Scientific Reports. 2021, 11, 18805. [Google Scholar] [CrossRef]
- Jiao, N.Y.; Ning, T.Y.; Yang, M.K.; Fu, G.Z.; Yin, F.; Xu, G.W.; Li, Z.J. Effects of maize||peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta ecologica sinica. 2013, 33, 4324–4330. [Google Scholar] [CrossRef]
- Jiao, N.Y.; Wang, J.T.; Ma, C.; Zhang, C.C.; Guo, D.Y.; Zhang, F.S.; Jensen, E.S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. Crop J. 9, 1460–1469. [CrossRef]
- Jiao, N.Y.; Wang, F.; Ma, C.; Zhang, F.S.; Jensen, E.S. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil. Eur J Agron 2021, 128, 126303. [Google Scholar] [CrossRef]
- Jiao, N.Y.; Ning, T.Y.; Zhao, C.; Wang, Y.; Shi, Z.Q.; Hou, L.T.; Fu, G.Z.; Jiang, X.D.; Li, Z.J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agronomica Sinica. 2006, 17, 2332–2336. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Wu, Y.Y.; Li, X.; Sun, Z.G.; Yin, F.; Jiao, N.Y. Mechanism of maize intercropping peanut improving iron nutrition to increase photosynthetic performance of peanut. J Plant Nutr Fert. 2020, 26, 901–913. [Google Scholar] [CrossRef]
- Blankinship, J.C.; Fonte, S.J.; Six, J.; Schimela, J.P. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma. 2016, 272, 39–50. [Google Scholar] [CrossRef]
- Benbi, D.K.; Singh, P.; Toor, A.S.; Gayatri, V. Manure and fertilizer application effects on aggregate and mineral-associated organic carbon in a loamy soil under rice-wheat system. Commun Soil Sci Plan. 2016, 47, 1828–1844. [Google Scholar] [CrossRef]
- Chaplot, V.; Cooper, M. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma. 2014, 243, 205–213. [Google Scholar] [CrossRef]
- Tian, X.L.; Wang, C.B.; Bao, X.G.; Wang, P.; Li, X.F.; Yang, S.C.; Ding, G.C.; Christie, P.; Li, L. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant Soil. 2019, 436, 173–192. [Google Scholar] [CrossRef]
- Liao, D.; Zhang, C.; Li, H.; Lambers, H.; Zhang, F. Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil. Plant Soil. 2020, 448, 587–601. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Wang, Y.; Zhang, H.; Zhu, Q.; Yan, B.; Luo, G. Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crop Res. 2022, 287, 108666. [Google Scholar] [CrossRef]
- Marcos-Pérez, M.; Sánchez-Navarro, V.; Zornoza, R. Intercropping fava bean with broccoli can improve soil properties while maintaining crop production under Mediterranean conditions. In EGU General Assembly Conference Abstracts. 2020, 11058. [Google Scholar] [CrossRef]
- Zhang, Y.; Shengzhe, E.; Wang, Y.N.; Su, S.M.; Bai, L.Y.; Wu, C.X.; Zeng, X.B. Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics. Catena. 2021, 203, 105342. [Google Scholar] [CrossRef]
- Roohi, M.; Arif, M.S.; Guillaume, T.; Yasmeen, T.; Riaz, M.; Shakoor, A.; Farooq, T.H.; Shahzad, S.M.; Bragazza, L. Role of fertilization regime on soil carbon sequestration and crop yield in a maize-cowpea intercropping system on low fertility soils. Geoderma. 2022, 428, 116152. [Google Scholar] [CrossRef]
- Zheng, B.C.; Chen, P.; Du, Q.; Yang, H.; Luo, K.; Wang, X.C.; Yang, F.; Yong, T.W.; Yang, W.Y. Soil organic matter, aggregates, and microbial characteristics of intercropping soybean under straw incorporation and N input. Agriculture. 2022, 12, 1409. [Google Scholar] [CrossRef]
- Chai, Y.J.; Zeng, X.B.; Sheng-zhe, E.; Huang, T.; Che, Z.X.; Su, S.M.; Bai, L.Y. Response of soil organic carbon and its aggregate fractions to long term fertilization in irrigated desert soil of China. J Integr Agr. 2014, 13, 2758–2767. [Google Scholar] [CrossRef]
- Grunwald, D.; Kaiser, M.; Ludwig, B. Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures. Soil Till Res. 2016, 164, 11–17. [Google Scholar] [CrossRef]
- Liu, X.R. Effects of intercropping and P fertilization on crop yields and soil fertility in Orthic Antrosols. Dissertation, Shihezi University, 2016. 2016. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, W.; Wu, F.; Xu, H.B.; Gu, F.W.; Hu, Z.C. Determination of planting pattern and screening of agricultural machineries for maize-peanut strip intercropping: A Case Study in Henan Province of China. Sustainability. 2023, 15, 8289. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and agriculture chemistry analysis, third ed.; China Agriculture Press: Beijing, China, 2015. [Google Scholar]
- Soinne, H.; Hovi. J.; Tammeorg, P.; Turtola, E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma. 2014, 219, 162–167. [Google Scholar] [CrossRef]
- Bai, Y.X.; Zhou, Y.C.; He, H.Z. Effects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical China. Geoderma. 2020, 376, 114548. [Google Scholar] [CrossRef]
- Dou, Y.X.; Yang, Y.; An, S.S.; Zhu, Z.L. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena. 2020, 185, 104294. [Google Scholar] [CrossRef]
- Zuo, F.L.; Li, X.Y.; Yang, X.F.; Wang, Y.; Ma, Y.J.; Huang, Y.H.; Wei, C.F. Soil particle-size distribution and aggregate stability of new reconstructed purple soil affected by soil erosion in overland flow. J Soil Sediment. 2020, 20, 272–283. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agr. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- Liu, K.; Xu, Y.; Feng, W.; Zhang, X.; Yao, S.; Zhang, B. Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation. Soil Biol Biochem. 2020, 151, 108039. [Google Scholar] [CrossRef]
- Cong, W.F.; Hoffland, E.; Li, L.; Six, J.; Sun, J.H.; Bao, X.G.; Zhang, F.S.; Van Der Werf, W. Intercropping enhances soil carbon and nitrogen. Global Change Biol. 2014, 21, 1715–1726. [Google Scholar] [CrossRef]
- Hu, L.N.; Huang, R.; Deng, H.; Li, K.; Peng, J.Y.; Zhou, L.Q.; Ou, H.P. Effects of different intercropping methods on soil organic carbon and aggregate stability in sugarcane field. Pol J Environ Stud. 2022, 31, 3587–3596. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: a review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Tisdall, J.M.; OADES, J.M. Organic matter and water-stable aggregates in soils. Eur J Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, L.C.; Xing, Y.; Ma, S.M.; Zhang, X.D.; Chen, J.; Shi, C. Effects of Chinese milk vetch intercropped with rape under straw mulching on soil aggregate and organic carbon character. J Appl Ecol. 2019, 30, 1235–1242. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Hobbie, S.E.; Reich, P.B.; Knops, J.M. Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant Soil 2005, 272, 41–52. [Google Scholar] [CrossRef]
- Jin, V.L.; Wienhold, B.J.; Mikha, M.M.; Schmer, M.R. Cropping system partially offsets tillage-related degradation of soil organic carbon and aggregate properties in a 30-yr rainfed agroecosystem. Soil Till Res. 2021, 209, 104968. [Google Scholar] [CrossRef]
- Wan, W.; Li, X.; Han, S.; Wang, L.; Luo, X.; Chen, W.; Huang, Q. Soil aggregate fractionation and phosphorus fraction driven by long-term fertilization regimes affect the abundance and composition of P-cycling-related bacteria. Soil Till Res. 2020, 196, 104475. [Google Scholar] [CrossRef]
- Prakash, D.; Benbi, D.K.; Saroa, G.S. Effect of rate and source of phosphorus application on soil organic carbon pools under rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian J Agr Sci. 2016, 86, 1127–1132. [Google Scholar] [CrossRef]
- Bansal, S.; Yin, X.; Savoy, HJ.; Jagadamma, S.; Lee, J.; Sykes, V. Long-term influence of phosphorus fertilization on organic carbon and nitrogen in soil aggregates under no-till corn-wheat-soybean rotations. Agron J. 2020, 112, 2519–2534. [Google Scholar] [CrossRef]
- Mahmoud, E.; Ibrahim, M.; Abd El-Rahman, L.; Khader, A. Effects of biochar and phosphorus fertilizers on phosphorus fractions, wheat yield and microbial biomass carbon in Vertic Torrifluvents. Commun Soil Sci Plan. 2019, 50, 362–372. [Google Scholar] [CrossRef]
- Soudzilovskaia, N.A. , van der Heijden, M.G.A.; Cornelissen, J.H.C.; Makarov, M.I.; Onipchenko, V.G.; Maslov, M.N.; Akhmetzhanova, A.A.; Bodegom, P.M. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol. 2015, 208, 280–293. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, B.F.; Lu, F.; Wang, X.K.; Zhuang, T.; Zhang, G.; Ouyang, Z.Y. Roles of nitrogen, phosphorus, and potassium fertilizers in carbon sequestration in a Chinese agricultural ecosystem. Clim Change. 2017, 142, 587–596. [Google Scholar] [CrossRef]
- Ludewig, U.; Yuan, L.X.; Neumann, G. Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels in the agronomic system. Front. Agr. Sci. Eng. 2019, 6, 357–365. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.Y.; Chang, S.X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nat Ecol Evol. 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Tang, M.; Xu, X.; Luo, S.; Condron, L.M.; Lambers, H.; Wang, J. Soybean (Glycine max (L.) Merrill) intercropping with reduced nitrogen input influences rhizosphere phosphorus dynamics and phosphorus acquisition of sugarcane (Saccharum officinarum). Biol Fert Soils. 2020, 56, 1063–1075. [Google Scholar] [CrossRef]
- Cui, H.; Ou, Y.; Wang, L.X.; Wu, H.T.; Yan, B.X.; Li, Y.X. Distribution and release of phosphorus fractions associated with soil aggregate structure in restored wetlands. Chemosphere. 2019, 223, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Fonte, S.J.; Nesper, M.; Hegglin, D.; Velásquez, J.E.; Ramirez, B.; Rao, I.M.; Bernasconi, S.M.; Bünemann, E.K.; Frossard, E.; Oberson, A. Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biol Biochem. 2014, 68, 150–157. [Google Scholar] [CrossRef]
- Latati, M.; Blavet, D.; Alkama, N.; Laoufi, H.; Drevon, J.J.; Gerard, F.; Ounane, S.M. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant Soil. 2014, 385, 181–191. [Google Scholar] [CrossRef]
- Latati, M.; Bargaz, A.; Belarbi, B.; Lazali, M.; Benlahrech, S.; Tellah, S.; Kaci, G.; Drevon, J.J.; Ounane, S.M. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur. J Agron. 2016, 72, 80–90. [Google Scholar] [CrossRef]
- Li, L.; Li, S.M.; Sun, J.H.; Zhou, L.L.; Bao, X.G.; Zhang, H.G.; Zhang, F.S. Diversity enhance agricultural productivity via rhizophere phosphorus facilitation on phosphorus-deficient soils. PNAS. 2007, 104, 11192–11196. [Google Scholar] [CrossRef]
- Li, L.; Tilman, D.; Lambers, H.; Zhang, F.S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New phytol. 2014, 203, 63–69. [Google Scholar] [CrossRef]
- Tang, X.Y.; Placella, S.A.; Daydé, F.; Bernard, L.; Robin, A.; Journet, E.P.; Justes, E.; Hinsinger, P. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant Soil. 2016, 407, 119–134. [Google Scholar] [CrossRef]
- An R, Yu RP, Xing Y, Zhang JD, Bao XG, Lambers H, Li L. Enhanced phosphorus-fertilizer-use efficiency and sustainable phosphorus management with intercropping. Agron Sustain Dev. 2023, 43, 57. [CrossRef]
- Wang, X.C.; Deng, X.Y.; Pu, T.; Song, C.; Yong, T.W.; Yang, F.; Sun, X.; Liu, W.G.; Yan, Y.H.; Du, J.B.; Liu, J.; Su, K.; Yang, W.Y. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crop Res. 2017, 204, 12–22. [Google Scholar] [CrossRef]
- Jensen, E.S.; Chongtham, I.R.; Dhamala, N.R.; Rodriguez, C.; Carton, N.; Carlsson, G. Diversifying European agricultural systems by intercropping grain legumes and cereals. Int J Agric Nat Resour. 2020, 47, 174–186. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Yadav, A.K.; Choudhary, V.; Sharma, P.C.; Gathala, M.K.; Jat, M.L.; McDonald, A. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil Till Res. 2019, 190, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.Z.; Gan, Y.T.; Yu, A.Z. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron Sustain Dev. 2013, 34, 535–543. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Shi, X.X.; Han, X.; Chen, X.Y.; Wei, Y.F.; Xiong, F. Effects of belowground interactions on crop yields and nutrient uptake in maize-faba bean relay intercropping systems. Arch Agron Soil Sci. 2023, 69, 314–325. [Google Scholar] [CrossRef]
- Tang, X.Y.; Bernard, L.; Brauman, A.; Daufresne, T.; Deleporte, P.; Desclaux, D.; Souche, G.; Placella, S.A.; Hinsinger, P. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biol Biochem. 2014, 75, 86–93. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
