Submitted:
11 October 2023
Posted:
12 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Monuments
2.1. Religious Monuments
2.2. Secular Monuments
2.3. Cultural and Knowledge Institutions
2.4. Monumental Artefacts
2.5. Bridges and Aqueducts
2.6. Fountains and Water Structures
3. Materials Used for Building and Decoration
3.1. Building materials
- Stone:
- Wood
- Metal
- Glass
- Clay-based ceramics
- Concrete
3.2. Decorative Arts
- Paintings and Frescoes
- Tapestry
- Furniture
- Other elements
4. Fungal species associated with monument degradation
5. Factors influencing fungal colonization and proliferation
5.1. Moisture
5.2. Temperature
5.3. Material characteristics
5.4. Microenvironment
4.6. Pollution and Contaminants
5.7. Historical Factors:
6. Preservation and restoration techniques
6.1. Prevention and Environmental Control:
6.2. Cleaning and Removal:
6.3. Consolidation and Reinforcement:
6.4. Surface Treatments:
6.5. Replication and Replacement:
6.6. Monitoring:
6.7. Documentation and Research:
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- “World Heritage” . Available online: https://whc.unesco.org/en/about/ (accessed on 23 September 2023).
- Rabbat, N. Identity, Modernity, and the Destruction of Heritage. Int. J. Middle East Stud. 2017, 49, 739–741. [Google Scholar] [CrossRef]
- “Natural World Heritage”, Available online: https://whc.unesco.org/en/natural-world-heritage (accessed on 23 September 2023).
- “World Heritage List”, Available online: http://uis.unesco.org/en/glossary-term/cultural-heritage (accessed on 6 September 2023).
- “Cultural heritage”, Available online: https://whc.unesco.org/en/natural-world-heritage/ (accessed on 6 September 2023).
- Munteanu, A. Valorificarea Patrimoniului Cultural Al Neamului Prin Monumente De Arhitectură De Exterior Și Interior Lăsate Uitării–Vila Urbană Vladimir Herţa, Perla Barocă” Din Chișinău. Stud. Art. Culturologie: istorie, teorie, practică 2022, 1, 105–115. [Google Scholar] [CrossRef]
- Silverman, H.; Ruggles, D. F. Cultural heritage and human rights. In Cultural heritage and human rights; Silverman, H., Ruggles, D. F., Eds.; Springer New York, USA, 2007; pp. 3-29.
- “Damaged cultural sites in Ukraine verified by UNESCO”, Available online: https://www.unesco.org/en/articles/damaged-cultural-sites-ukraine-verified-unesco (accessed on 23 September 2023).
- “Museu Nacional guarda acervo de mais de 20 milhões de itens”. Available online: https://g1.globo.com/rj/rio-de-janeiro/noticia/2018/09/02/museu-nacional-guarda-acervo-de-mais-de-20-milhoes-de-itens.ghtml (accessed on 23 September 2023).
- Tyagi, P.; Verma, R.K.; Jain, N. Fungal degradation of cultural heritage monuments and management options. Curr. Sci. 2021, 121, 1553–1560. [Google Scholar] [CrossRef]
- Ilieș, D.C.; Oneț, A.; Grigore, H.; Liliana, I.; Alexandru, I.; Ligia, B.; Gaceu, O.; Marcu, F.; Baias, Ș.; Caciora, T.; Marcu, A.P.; Oana, I.P.; Costea, M.; Ilieş, M.; Wendt, J.; Dana, M. Exploring the indoor environment of heritage buildings and its role in the conservation of valuable objects. Environ. Eng. Manag. J. 2019, 18. [Google Scholar]
- De Leo, F.; Marchetta, A.; Urzì, C. Black fungi on stone-built heritage: current knowledge and future outlook. Appl. Sci. 2022, 12, 3969. [Google Scholar] [CrossRef]
- Cioban, L.A.; Dochia, M.; Muresan, C.; Chambre, D. R. Weathering and deterioration of carbonate stones from historical monuments: a review. Sci. Tech. Bull., Series: Chem., Food Sci. Eng. 2022, 19, 15–33. [Google Scholar]
- Branysova, T.; Demnerova, K.; Durovic, M.; Stiborova, H. Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades. J. Cult. Herit. 2022, 55, 245–260. [Google Scholar] [CrossRef]
- Bass, D.B. The practicing congregation: Imagining a new old church. Rowman & Littlefield Publisher: Lanham, Maryland, USA, 2004, 128 pp.
- Kieckhefer, R. Theology in stone: Church architecture from Byzantium to Berkeley. Oxford University Press: Oxford, England, 2008, 386 pp.
- Haider, M. The role and importance of mosque as an educational institution. Res. Hub 2021, 9, 7–15. [Google Scholar]
- Weiner, R.S. Islamic Architecture: Form, function, and meaning. Middle East J. 2004, 58, 533. [Google Scholar]
- Kassim, N.; Taib, Z.B.M. Decoration in Praying Hall of Mosque: A review of current literature. Procedia Soc. Behav. Sci. 2014, 153, 55–60. [Google Scholar] [CrossRef]
- Kong, L. Negotiating conceptions of 'sacred space': a case study of religious buildings in Singapore. Trans. Inst. Br. Geogr. 1993, 342–358. [Google Scholar] [CrossRef]
- Stocker, D. The Palaces of Medieval England c. 1050–1550. royalty, nobility, the episcopate and their residences from Edward the confessor to Henry VIII. By T. James. Archaeol. J. 1991, 148, 318–319. [Google Scholar] [CrossRef]
- Zaraś-Januszkiewicz, E.; Botwina, J.; Żarska, B.; Swoczyna, T.; Krupa, T. Fortresses as specific areas of urban greenery defining the uniqueness of the urban cultural landscape: Warsaw Fortress—A case study. Sustainability 2020, 12, 1043. [Google Scholar] [CrossRef]
- Bednar, M. J. The Government Building Redefined [Debate on the State of Illinois Center]. Issue: Places 1987, 3 (4).
- Brulon Soares, B. Defining the museum: challenges and compromises of the 21st century. ICOFOM Stud. Ser. 2020, 16–32. [Google Scholar] [CrossRef]
- Pfeifere, D. The Issues of Defining and Classifying Cultural Centres. Econ. Cult. 2022, 19, 28–37. [Google Scholar] [CrossRef]
- Fagbola, O.; Uzoigwe, C.; Ajegbomogun, V. O. Libraries driving access to knowledge in the 21st century in developing coun-tries: an overview. Libr. Philos. Pract. 2011, 1–7. [Google Scholar]
- Bonder, J. On memory, trauma, public space, monuments, and memorials. Places, 2009, 21(1).
- Osmond, G. Shaping lives: Statues as biography. Sport. Trad. 2010, 27, 101–111. [Google Scholar]
- Lee, P. M. The Sculptural Imagination: Figurative, Modernist, Minimalist. Art Bull. 2002, 84, 392–396. [Google Scholar] [CrossRef]
- Frazier, M. T. Monuments: Landmarks and Reflections of the Past. Technol. Eng. Teach. 2008, 68, 12. [Google Scholar]
- Troyano, L. F. (2003). Bridge engineering: a global perspective; Inst of Civil Engineers Pub, 2003; pp. 1-42.
- Juuti, P.S.; Antoniou, G.P.; Dragoni, W.; El-Gohary, F.; De Feo, G.; Katko, T.S.; Rajala, R.P; Zheng, X.Y.; Drusiani, R.; Angelakis, A. N. Short global history of fountains. Water 2015, 7, 2314–2348. [Google Scholar] [CrossRef]
- Rodionov, A.S.; Danilina, M.V.; Pimenov, N.A.; Romanchenko, L.N.; Yarkin, V.V. Comparison and analysis of the main building materials’ characteristics for construction. In Journal of Physics: Conference Series, 1614, 012047. IOP Publishing: Bristol, England, 2020.
- Külekçi, E.A. Investigation of plant designs on water surfaces in terms of landscape design. Int. J. Ecosyst. Ecol. Sci. 2020, 10. [Google Scholar]
- Scheerer, S.; Ortega-Morales, O.; Gaylarde, C. Microbial deterioration of stone monuments—an updated overview. Adv. Appl. Microbiol. 2009, 66, 97–139. [Google Scholar]
- Mason, R. Petrology of the Metamorphic Rocks. 2nd Edition; Unwin Hyman Ltd: London, England, 1990; 398 pp. [Google Scholar]
- Boggs, S. Petrology of sedimentary rocks, 2nd Edition; Cambridge University Press: Cambridge, England, 2009; 610 pp. [Google Scholar]
- Hughes, C.J. Igneous Petrology, 1st Edition; Elsevier Science: New York, USA, 2013; 551 pp. [Google Scholar]
- Smith, I.; Snow, M.A. Timber: An ancient construction material with a bright future. For. Chron. 2008, 84, 504–510. [Google Scholar] [CrossRef]
- Meier, E.W. Identifying and using hundreds of woods worldwide. Wood Database, 2015.
- Wiemann, M.C. Chapter 2: Characteristics and availability of commercially important woods. In: Wood handbook wood as an engineering material, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory Madison, USA, 2021; 45 pp.
- Scott, D.A. Copper and bronze in art: corrosion, colorants, conservation, 1st ed.; Getty Conservation Institute, Los Angeles, USA, 2002; 534 pp.
- Van Dyke, S. The history of wrought and cast iron. Doctoral dissertation, University of Tennessee, Knoxville, USA, 2004, 70 pp.
- Mandal, S. K. Steel metallurgy: Properties, specifications and applications. McGraw Hill Education Private: Uttar Pradesh, India, 2015, 362 pp.
- Konečná, R.; Fintová, S. Copper and copper alloys: casting, classification and characteristic microstructures. In Copper al-loys-early applications and current performance-enhancing processes, Collini, L.; IntechOpen: London, England 2012; pp. 3–30. [Google Scholar]
- Backhouse, A.; Baddoo, N. Recent developments of stainless steels in structural applications. ce/papers 2021, 4(2-4), 2349-2355.
- Dokšanović, T.; Džeba, I.; Markulak, D. Applications of aluminium alloys in civil engineering. Tehnički vjesnik 2017, 24, 1609–1618. [Google Scholar]
- Lyon, S.; Richardson, T.; Cottis, B.; Lindsay, R.; Scantlebury, D.; Graham, M.; Stott, H. Corrosion of lead and its alloys. In Shreir's Corrosion: Volume 3: Corrosion and Degradation of Engineering Materials. Elsevier BV: Amsterdam, Netherlands, 2009.
- Crina Anca Sandu, I.; de Sá, M. H.; Pereira, M. C. Ancient ‘gilded’art objects from European cultural heritage: a review on different scales of characterization. Surf. Interface Anal. 2011, 43, 1134–1151. [Google Scholar] [CrossRef]
- Arbab, M.; Finley, J. J. Glass in architecture. Int. J. Appl. Glass Sci. 2010, 1, 118–129. [Google Scholar] [CrossRef]
- Kennedy, C.J.; Murdoch, K.R. Window Glass. Build. Conserv. J. 2017, 31–31. [Google Scholar]
- Mould, D. A stained glass image filter. In Proceedings of the 14th Eurographics workshop on Rendering, 2003. pp. 20–25.
- Gómez-Morón, M.A.; Palomar, T.; Alves, L.C.; Ortiz, P.; Vilarigues, M.; Schibille, N. Christian-Muslim contacts across the Mediterranean: Byzantine glass mosaics in the Great Umayyad Mosque of Córdoba (Spain). J. Archaeol. Sci. 2021, 129, 105370. [Google Scholar] [CrossRef]
- Warlimont, H. Ceramics. In Springer Handbook of Materials Data, 2nd ed.; Warlimont, H., Martienssen, W., Eds.; Springer: New York, USA, 2018; pp. 445–488. [Google Scholar]
- Fernandes, F. M. Clay bricks. In Long-Term Performance and Durability of Masonry Structures, 1st ed; Ghiassi, B., Lourenço, P.B., Eds.; Woodhead Publishing: Cambridge, England, 2019; pp. 3–19. [Google Scholar]
- Corner, D. B.; Rowell, J. Architectural Terra Cotta: Design Concepts, Techniques and Applications. Routledge: Abingdon, England, 2022; 290 pp.
- Mehta, P.K.; Monteiro, P. J. Concrete: microstructure, properties, and materials, 1st ed. McGraw-Hill Education: New York, USA, 2014.
- Wang, D.; Guan, F.; Feng, C.; Mathivanan, K.; Zhang, R.; Sand, W. Review on Microbially Influenced Concrete Corrosion. Microorganisms 2023, 11, 2076. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.R.; Miller, S.; Pearce, E. Colour and art: A brief history of pigments. Opt. Laser Technol. 2006, 38(4-6), 445-453.
- Hasekamp, U. Frescoes: Art Periods & Movements, 1st ed. Koenemann: Chicago, USA, 2022; 504 pp.
- Fluck, C. (2018). The use of textiles in early Christian churches–evidence from Egypt (fourth to seventh centuries). In church building in Cyprus (Fourth to Seventh Centuries). A mirror of intercultural contacts in the Eastern Mediterranean, 1st ed.; Nicolau, D., Eds.; Waxmann Verlag GmbH: Kornwestheim, Germany, 2018; pp. 29-48.
- Postell J. Furniture Design, 2nd Edition; Wiley: New Jersey, USA, 2012; 416 pp. [Google Scholar]
- Dakal, T. C.; Cameotra, S. S. Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ. Sci. Eur. 2012, 24, 1–13. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweath-ering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24(1-2), 47-55.
- Mohammadi, P.; Krumbein, W. E. Biodeterioration of ancient stone materials from the Persepolis monuments (Iran). Aerobiologia 2008, 24, 27–33. [Google Scholar] [CrossRef]
- Ljaljević-Grbić, M.V.; Vukojević, J. B. Role of fungi in biodeterioration process of stone in historic buildings. Zbornik Matice srpske za prirodne nauke 2009, (116), 245–251. [Google Scholar] [CrossRef]
- Sarita, B. Fungal diversity on the historical monuments of Doon Valley in response to biodeterioration. Indian J. For. 2009, 32, 307–312. [Google Scholar]
- Sharma, K.; Lanjewar, S. Biodeterioration of ancient monument (Devarbija) of Chhattisgarh by fungi. J. Phytol. 2010, 2, 47–49. [Google Scholar]
- la Rosa-García, D.; del Carmen, S.; Ortega-Morales, O.; Gaylarde, C.C.; Beltrán-García, M.; Quintana-Owen, P.; Reyes-Estebanez, M. Influence of fungi in the weathering of limestone of Mayan monuments. Revista Mexicana de Micología 2011, 33, 43–51. [Google Scholar]
- Gupta, S.P.; Sharma, K. The role of fungi in biodeterioration of sandstone with reference to Mahadev temple, Bastar, Chhatisgarh. Recent Res. Sci. Technol. 2012, 4. [Google Scholar]
- Mohammadi, P.; Ma-ghboli-Balasjin, N. Isolation and molecular identification of deteriorating fungi from Cyrus the Great tombstones. Iran. J. Microbiol. 2014, 6, 361. [Google Scholar]
- Farooq, M.; Hassan, M.; Gull, F. Mycobial Deterioration of Stone Monuments of Dharmarajika, Taxila. J. Microbiol. Exp. 2015, 2, 00036. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, B.; He, Z.; Yang, X. Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS One 2016, 11, e0163287. [Google Scholar] [CrossRef]
- Rosado, T.; Silva, M.; Galvão, A.; Mirão, J.; Candeias, A.; Caldeira, A. T. A first insight on the biodegradation of limestone: the case of the World Heritage Convent of Christ. Appl. Phys. A 2016, 122, 1–7. [Google Scholar] [CrossRef]
- Savković, Ž.; Unković, N.; Stupar, M.; Franković, M.; Jovanović, M.; Erić, S.; Šarić, K.; Stanković, S.; Dimkić, I.; Vukojević, J.; Grbić, M. L. Diversity and biodeteriorative potential of fungal dwellers on ancient stone stela. Int. Biodeterior. Biodegradation 2016, 115, 212–223. [Google Scholar] [CrossRef]
- Boniek, D.; de Castro Mendes, I.; Paiva, C.A.O.; de Paula Lana, U.G.; Dos Santos, A.F.B.; de Resende Stoianoff, M.A. Ecology and identification of environmental fungi and metabolic processes involved in the biodeterioration of Brazilian soapstone historical monuments. Lett. App. Microbiol. 2017, 65, 431–438. [Google Scholar] [CrossRef]
- Sirghi, A.C.; Gheorghe, I.; Sarbu, I.; Marutescu, L.; Stoian, G.; Zhiyong, Z.; Chifiriuc, M. C. Identification of fungal strains isolated from buildings of cultural importance in Romania and antagonistic relationships amongst them. Biotechnol. Lett. 2018, 24, 1008–1014. [Google Scholar] [CrossRef]
- Trovão, J.; Portugal, A.; Soares, F.; Paiva, D.S.; Mesquita, N.; Coelho, C.; Pinheiro, A.C.; Catarino, L.; Gil, F.; Tiago, I. Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. Int. Biodeterior. Biodegradation 2019, 142, 91–102. [Google Scholar] [CrossRef]
- Antunes, J.T.L.S. The role of fungi on monumental stone biodeterioration within the UNESCO World heritage site of “University of Coimbra–Alta and Sofia”. Doctoral dissertation, Universidade de Coimbra, 2021.
- Petraretti, M.; Duffy, K.J.; Del Mondo, A.; Pollio, A.; De Natale, A. Community composition and ex situ cultivation of fungi associated with UNESCO heritage monuments in the bay of Naples. App. Sci. 2021, 11, 4327. [Google Scholar] [CrossRef]
- Li, J.; Deng, M.; Gao, L.; Yen, S.; Katayama, Y.; Gu, J.D. The active microbes and biochemical processes contributing to dete-rioration of Angkor sandstone monuments under the tropical climate in Cambodia–a review. J. Cult. Herit. 2021, 47, 218–226. [Google Scholar] [CrossRef]
- Trovao, J.; Soares, F.; Tiago, I.; Catarino, L.; Portugal, A.; Gil, F. A contribution to understand the Portuguese emblematic Ançã limestone bioreceptivity to fungal colonization and biodeterioration. J. Cult. Herit. 2021, 49, 305–331. [Google Scholar] [CrossRef]
- Paiva, D.S.; Fernandes, L.; Trovão, J.; Mesquita, N.; Tiago, I.; Portugal, A. Uncovering the fungal diversity colonizing limestone walls of a forgotten monument in the central region of Portugal by high-throughput sequencing and culture-based methods. App. Sci. 2022, 12, 10650. [Google Scholar] [CrossRef]
- Sazanova, K.V.; Zelenskaya, M. S.; Vlasov, A.D.; Bobir, S.Y.; Yakkonen, K.L.; Vlasov, D.Y. Microorganisms in superficial deposits on the stone monuments in Saint Petersburg. Microorganisms 2022, 10, 316. [Google Scholar] [CrossRef]
- Shilova, O.A.; Vlasov, D.Y.; Khamova, T.V.; Zelenskaya, M.S.; Frank-Kamenetskaya, O.V. Microbiologically induced deterioration and protection of outdoor stone monuments. In Biodegradation and Biodeterioration at the Nanoscale, 1st Edition; Iqbal, H.M.N., Bilal, M., Nguyen, T.A., Yasin, G., Eds.; Elsevier: New York, USA, 2022; pp. 339–367. [Google Scholar]
- Gupta, S.P.; Kurmi, M. K. Impact of fungi on historical monument with reference to Mahadev temple Bastar of Chhatisgarh, IJLSRA 2023, 04, 001–005. 04.
- Zhang, Y.; Su, M.; Wu, F.; Gu, J.D.; Li, J.; He, D.; Guo, Q.; Cui, H.; Zhang, Q.; Feng, H. Diversity and Composition of Culturable Microorganisms and Their Biodeterioration Potentials in the Sandstone of Beishiku Temple, China. Microorganisms 2023, 11, 429. [Google Scholar] [CrossRef]
- Li, T.; Cai, Y.; Ma, Q. Microbial diversity on the surface of historical monuments in Lingyan Temple, Jinan, China. Microbial Ecol. 2023, 85, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, O.; Municchia, A. C. The role of fungi and lichens in the biodeterioration of stone monuments. In The Open Conference Proceedings Journal, 7, 2016.
- de la Torre, M.A.; Gomez-Alarcon, G. , Vizcaino, C.; Garcia, M.T. Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 1992, 19, 129–147. [Google Scholar] [CrossRef]
- Aarti, C.; Arasu, M.V.; Agastian, P. Lignin degradation: a microbial approach. Indian J. Biol. Sci. 2015, 1, 119–127. [Google Scholar]
- Sanchez-Silva, M.; Rosowsky, D. V. Biodeterioration of construction materials: state of the art and future challenges. J. Mater. Civ. Eng. 2008, 20, 352–365. [Google Scholar] [CrossRef]
- Schmidt, O. Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol. Prog. 2007, 6, 261–279. [Google Scholar] [CrossRef]
- Haas, D.; Mayrhofer, H.; Habib, J.; Galler, H.; Reinthaler, F.F.; Fuxjäger, M.L.; Buzina, W. Distribution of building-associated wood-destroying fungi in the federal state of Styria, Austria. Eur. J. Wood Wood Prod. 2019, 77, 527–537. [Google Scholar] [CrossRef]
- Slimen, A.; Barboux, R.; Mihajlovski, A.; Moularat, S.; Leplat, J.; Bousta, F.; Di Martino, P. High diversity of fungi associated with altered wood materials in the hunting lodge of “La Muette”, Saint-Germain-en-Laye, France. Mycol. Prog. 2020, 19, 139–146. [Google Scholar] [CrossRef]
- Marcu, F.; Hodor, N.; Indrie, L.; Dejeu, P.; Ilieș, M.; Albu, A.; Sandor, M.; Sicora, C.; Costea, M.; Ilieș, D.C.; Caciora, T.; Huniadi, A.; Chiș, I.; Barbu-Tudoran, L.; Szabo-Alexi, P.; Grama, V.; Safarov, B. Microbiological, health and comfort aspects of indoor air quality in a Romanian historical wooden church. Int. J. Environ. Res. Public Health 2021, 18, 9908. [Google Scholar] [CrossRef]
- Irbe, I.; Andersone, I. Wood decay fungi in Latvian buildings including cultural monuments. In Proceedings of the International Conference held by COST Action IE0601, Braga; 2008; pp. 94–100. [Google Scholar]
- Irbe, I.; Andersone, I.; Andersons, B. Diversity and distribution of wood decay fungi and wood discoloring fungi in buildings in Latvia. Latvijas Lauksaimniecības Universitāte-Raksti. 2009, (23), 91-102.
- Gamal, R.F.; Nasr, S.A.; Hassan, E.A.; Attia, A.M.; Meligy, D.A. Biological evaluation of fungal deteriorated archaeolog-ical wood (Islamic period) and the impact of using some fungicides. Egypt. J. Microbiol. 2011, 46, 177–192. [Google Scholar]
- Irbe, I.; Karadelev, M.; Andersone, I.; Andersons, B. Biodeterioration of external wooden structures of the Latvian cultural heritage. J. Cult. Herit. 2012, 13, S79–S84. [Google Scholar] [CrossRef]
- Koziróg, A.; Otlewska, A.; Piotrowska, M.; Rajkowska, K.; Nowicka-Krawczyk, P.; Hachułka, M; Wolski, G. J.; Gutarowska, B.; Kunicka-Styczyńska, A.; Libudzisz, Z.; Żakowska, Z.; Żydzik-Białek, A. Colonising organ-isms as a biodegradation factor affecting historical wood materials at the former concentration camp of Auschwitz II–Birkenau. Int. Biodeterior. Biodegradation 2014, 86, 171–178. [Google Scholar] [CrossRef]
- Kozlov, V.; Kisternaya, M. Biodeterioration of historic timber structures: A comparative analysis. Wood Mater. Sci. Eng. 2014, 9, 156–161. [Google Scholar] [CrossRef]
- Cojocariu, A.M.; Tănase, C. Comparative aspects regarding the diversity of wood-destroying macro-mycetes in two open air village museums from Romania. Revista Botanică 2015, 10, 57–64. [Google Scholar]
- Rosado, T.; Silva, M.; Pereira, C.; Mirao, J.; Candeias, A.; Caldeira, A. T. Gilded woodcarving alteration: assessment of filamentous fungi action. Int. J. Conserv. Sci. 2015, 6. [Google Scholar]
- Gheorghe, I.; Sârbu, I.; Pecete, I.; Blăjan, I.; Balotescu, I. Multi-level characterization of microbial consortia involved in the biodeterioration of wooden and stone romanian heritage churches. Conserv. Sci. Cult. Herit. 2020, 20, 289–308. [Google Scholar]
- Kovachovska, L.; Rusevska, K.; Karadelev, M. Diversity of wood-inhabiting fungi (Basidiomycota) in Мacedonian cultural heritage. MJEE 2020, 22, 5–16. [Google Scholar] [CrossRef]
- Rojas, T.I.; Aira, M.J.; Batista, A.; Cruz, I.L.; González, S. Fungal biodeterioration in historic buildings of Havana (Cuba). Grana 2012, 51, 44–51. [Google Scholar] [CrossRef]
- Savković, Ž.; Stupar, M.; Unković, N.; Knežević, A.; Vukojević, J.; Ljaljević Grbić, M. Fungal deterioration of cultural heritage objects. Biodegradation Technology of Organic and Inorganic Pollutants, 2021, pp. 267-288.
- Little, B.J.; Ray, R. The role of fungi in microbiologically influenced corrosion. Naval Research Laboratory, Stennis Space Center 2002, MS, 39529.
- Rao, P.; Mulky, L. Microbially Influenced Corrosion and its Control Measures: A Critical Review. J. Bio-Tribo-Corros. 2023, 9, 57. [Google Scholar] [CrossRef]
- Gadd, G.M.; Rhee, Y.J.; Stephenson, K.; Wei, Z. Geomycology: metals, actinides and biominerals. Environ. Microbiol. Rep. 2012, 4, 270–296. [Google Scholar] [CrossRef]
- Gozdanek, M. Microbiological corrosion in the refining and petrochemical industry-preliminary laboratory tests, Doctoral dissertation, Instytut Chemii, 2020.
- Singh, A.K.; Singh, A.K. Microbial Induced Corrosion and Related Theories. Microbially Induced Corrosion and its Mitigation 2020, 27–43. [Google Scholar]
- Zhao, J.; Csetenyi, L.; Gadd, G.M. Biocorrosion of copper metal by Aspergillus niger. Int. Biodeterior. Biodegradation 2020, 154, 105081. [Google Scholar] [CrossRef]
- Weaver, J.L.; DePriest, P.T.; Plymale, A.E.; Pearce, C. I.; Arey, B.; Koestler, R. J. Microbial interactions with silicate glasses. NPJ Mater. Degrad. 2021, 5, 11. [Google Scholar] [CrossRef]
- Rodrigues, A.; Gutierrez-Patricio, S.; Miller, A. Z.; Saiz-Jimenez, C.; Wiley, R.; Nunes, D.; Vilarigues, M.; Macedo, M. F. Fungal biodeterioration of stained-glass windows. Int. Biodeterior. Biodegradation 2014, 90, 152–160. [Google Scholar] [CrossRef]
- Palomar, T.; Redol, P.; Cruz Almeida, I.; Pereira da Silva, E.; Vilarigues, M. The influence of environment in the alteration of the stained-glass windows in Portuguese monuments. Heritage 2018, 1, 365–376. [Google Scholar] [CrossRef]
- Pinto, A.C.; Palomar, T.; Alves, L.C.; da Silva, S.H.M.; Monteiro, R.C.; Macedo, M.F.; Vilarigues, M. G. Fungal biodeterioration of stained-glass windows in monuments from Belém do Pará (Brazil). Int. Biodeterior. Biodegradation 2019, 138, 106–113. [Google Scholar] [CrossRef]
- Macedo, M.F.; Vilarigues, M.G.; Coutinho, M.L. Biodeterioration of glass-based historical building materials: an overview of the heritage literature from the 21st century. App. Sci. 2021, 11, 9552. [Google Scholar] [CrossRef]
- Carmona, N.; Laiz, L.; Gonzalez, J.M.; Garcia-Heras, M.; Villegas, M.A.; Sáiz-Jiménez, C. Biodeterioration of historic stained glasses from the Cartuja de Miraflores (Spain). Int. Biodeterior. Biodegradation. 2006, 58(3-4), 155-161. [CrossRef]
- Piñar, G.; Garcia-Valles, M.; Gimeno-Torrente, D.; Fernandez-Turiel, J. L.; Ettenauer, J.; Sterflinger, K. Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches. Int. Biodeterior. Biodegradation 2013, 84, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, M.L.; Miller, A.Z.; Macedo, M. F. Biological colonisation and biodeterioration of architectural ceramic materials: An overview. J. Cult. Herit. 2015, 16, 759–777. [Google Scholar] [CrossRef]
- Ma, G.Y.; He, L.Y.; Sheng, X.F. Characterisation of bacterial community inhabiting the surfaces of weathered bricks of Nanjing Ming city walls. Sci. Total Environ. 2011, 409, 756–762. [Google Scholar]
- Wang, D.; Guan, F.; Feng, C.; Mathivanan, K.; Zhang, R.; Sand, W. Review on microbially influenced concrete corrosion. Microorganisms 2023, 11, 2076. [Google Scholar] [CrossRef] [PubMed]
- Grengg, C.; Mittermayr, F.; Ukrainczyk, N.; Koraimann, G.; Kienesberger, S.; Dietzel, M. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Res. 2018, 134, 341–352. [Google Scholar] [CrossRef]
- Wei, S.; Jiang, Z.; Liu, H.; Zhou, D.; Sanchez-Silva, M. Microbiologically induced deterioration of concrete: a review. Braz. J. Microbiol. 2013, 44, 1001–1007. [Google Scholar] [CrossRef]
- Jiang, L. , Pettitt, T. R., Buenfeld, N., & Smith, S. R. A critical review of the physiological, ecological, physical and chemical factors influencing the microbial degradation of concrete by fungi. Build. Environ. 2022, 214, 108925. [Google Scholar]
- Giannantonio, D.J.; Kurth, J.C.; Kurtis, K.E.; Sobecky, P. A. Effects of concrete properties and nutrients on fungal colonization and fouling. Int. Biodeterior. Biodegradation 2009, 63, 252–259. [Google Scholar] [CrossRef]
- George, R.P.; Ramya, S.; Ramachandran, D.; Mudali, U. K. Studies on Biodegradation of normal concrete surfaces by fungus Fusarium sp. Cem. Concr. Res. 2013, 47, 8–13. [Google Scholar] [CrossRef]
- Yakovleva, G.; Sagadeev, E.; Stroganov, V.; Kozlova, O.; Okunev, R.; Ilinskaya, O. Metabolic activity of micromycetes affecting urban concrete constructions. Sci. World 2018. [CrossRef]
- Jiang, L.; Pettitt, T.R.; Buenfeld, N.; Smith, S.R. A critical review of the physiological, ecological, physical and chemical factors influencing the microbial degradation of concrete by fungi. Build. Environ. 2022, 214, 108925. [Google Scholar] [CrossRef]
- Borrego, S.; Molina, A. Fungal assessment on storerooms indoor environment in the National Museum of Fine Arts, Cuba. Air Qual. Atmos. Health 2019, 12, 1373–1385. [Google Scholar] [CrossRef]
- Gorbushina, A.A.; Heyrman, J.; Dornieden, T.; Gonzalez-Delvalle, M.; Krumbein, W. E.; Laiz, L.; Petersen, K.; Saiz-Jimenez, C.; Swings, J. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene–Kreiensen, Germany). Int. Biodeterior. Biodegradation 2004, 53, 13–24. [Google Scholar] [CrossRef]
- Capodicasa, S.; Fedi, S.; Porcelli, A.M.; Zannoni, D. The microbial community dwelling on a biodeteriorated 16th century painting. Int. Biodeterior. Biodegradation 2010, 64, 727–733. [Google Scholar] [CrossRef]
- Pepe, O.; Sannino, L.; Palomba, S.; Anastasio, M.; Blaiotta, G.; Villani, F.; Moschetti, G. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol. Res. 2010, 165, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Vukojević, J.; Grbić, M. L. Moulds on paintings in Serbian fine art museums. Afr. J. Microbiol. Res. 2010, 4, 1453–1456. [Google Scholar]
- Moza, M.I.; Mironescu, M.; Georgescu, C.; Florea, A.; Bucşa, L. Isolation and characterisation of moulds degrading mural paintings. Ann. RSCB 2012, 17, 136–142. [Google Scholar]
- Biswas, J.; Sharma, K.; Harris, K. K.; Rajput, Y. Biodeterioration agents: Bacterial and fungal diversity dwelling in or on the pre-historic rock-paints of Kabra-pahad, India. Iran. J. Microbiol. 2013, 5, 309. [Google Scholar]
- López-Miras, M.D.M.; Martín-Sánchez, I.; Yebra-Rodríguez, Á.; Romero-Noguera, J.; Bolívar-Galiano, F.; Ettenauer, J.; Ster-flinger, K.; Piñar, G. Contribution of the microbial communities detected on an oil painting on canvas to its biodeterioration. PloS One 2013, 8, e80198. [Google Scholar] [CrossRef] [PubMed]
- Giustetto, R. : Gonella, D.; Bianciotto, V.; Lumini, E.; Voyron, S.; Costa, E.; Diana, E. Transfiguring biodegradation of frescoes in the Beata Vergine del Pilone Sanctuary (Italy): Microbial analysis and minero-chemical aspects. Int. Biodeterior. Biodegradation 2015, 98, 6–18. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, H.; Du, Y.; Tian, T.; Xiang, T.; Liu, X.; Wu, F.; An, L.; Wang, W.; Gu, J.-D.; Feng, H. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci. Rep. 2015, 5, 7752. [Google Scholar] [CrossRef]
- Veneranda, M.; Prieto-Taboada, N.; de Vallejuelo, S.F.O.; Maguregui, M.; Morillas, H.; Marcaida, I.; Castro, K.; Madariaga. J.M.; Osanna, M. Biodeterioration of Pompeian mural paintings: fungal colonization favoured by the presence of volcanic material residues. Environ. Sci. Pollut. Res. 2017, 24, 19599–19608. [Google Scholar] [CrossRef]
- Caselli, E.; Pancaldi, S.; Baldisserotto, C.; Petrucci, F.; Impallaria, A.; Volpe, L.; D’Accolti, M.; Soffritti, I.; Coccagna, M.; Sassu, G.; Bevilacqua, F.; Volta, A.; Bisi, M.; Lanzoni, L.; Mazzacane, S. Characterization of biodegradation in a 17th century easel painting and potential for a biological approach. PLoS One 2018, 13, e0207630. [Google Scholar] [CrossRef]
- Ion, R.M.; Iancu, L.; Turcanu Carutiu, D.; Schroder, V.; Tincu, S.; Roman, C.; Ion, N.; Alin Bucurica, I.; Teodorescu, S.; Dulama, I.D.; Stirbescu, R.M.; Gheboianu, A. Traditional building materials and modern restoration products identified at the painted Matia-fresco Loggia, Corvins' Castle, Romania. In EGU General Assembly Conference Abstracts, 2018; p. 5198.
- Zubin Ferri, T.; Pustijanac, E.; Kovačić, I.; Bilić, J. Micro-analytical evidence of copper-based pigment and fungal contamination of medieval mural paintings in Beram, Croatia. Microsc. Microanal. 2019, 25, 1471–1481. [Google Scholar] [CrossRef]
- Kumar, S. ; Priyanka; Kumar, U. Microbial community present on the reverse side of a deteriorated canvas. Microbial Biotechnology Approaches to Monuments of Cultural Heritage. 2020, 1–12. [Google Scholar]
- Ma, W.; Wu, F.; Tian, T.; He, D.; Zhang, Q.; Gu, J.D.; Duan, Y.; Ma, D.; Wang, W.; Feng, H. Fungal diversity and its contribution to the biodeterioration of mural paintings in two 1700-year-old tombs of China. Int. Biodeterior. Biodegradation 2020, 152, 104972. [Google Scholar] [CrossRef]
- Mang, S.M. , Scrano, L.; Camele, I. Preliminary studies on fungal contamination of two rupestrian churches from Matera (Southern Italy). Sustainability 2020, 12, 6988. [Google Scholar] [CrossRef]
- Cennamo, P.; De Luca, D. A metabarcoding approach for the study of biodeterioration of ancient wall paintings in an Italian cave. In Journal of Physics: Conference Series 2022, Vol. 2204, No. 1, p. 012011, IOP Publishing.
- Fomina, M.; Cuadros, J.; Pinzari, F.; Hryshchenko, N.; Najorka, J. , Gavrilenko, M.; Hong, J.W.; Gadd, G. M. Fungal transformation of mineral substrata of biodeteriorated medieval murals in Saint Sophia's cathedral, Kyiv, Ukraine. Int. Biodeterior. Biodegradation 2022, 175, 105486. [Google Scholar] [CrossRef]
- Kavkler, K.; Humar, M.; Kržišnik, D.; Turk, M.; Tavzes, Č.; Gostinčar, C.; Džeroski, S.; Popov, S.; Penko, A.; Gunde - Cimerman, N.; Zalar, P. A multidisciplinary study of biodeterio-rated Celje Ceiling, a tempera painting on canvas. Int. Biodeterior. Biodegradation 2022, 170, 105389. [Google Scholar] [CrossRef]
- Ljaljević Grbić, M.; Dimkić, I.; Savković, Ž.; Stupar, M.; Knežević, A.; Jelikić, A.; Unković, N. Mycobiome Diversity of the Cave Church of Sts. Peter and Paul in Serbia—Risk Assessment Implication for the Conservation of Rare Cavern Habitat Housing a Peculiar Fresco Painting. J. Fungi 2022, 8, 1263. [Google Scholar] [CrossRef] [PubMed]
- Suphaphimol, N.; Suwannarach, N.; Purahong, W.; Jaikang, C.; Pengpat, K.; Semakul, N.; Yimklan, S.; Yimklan, S.; Jongjit-ngam, S.; Jindasu, S.; Thiangtham, S.; Chantawannakul, P.; Disayathanoowat, T. Identification of microorganisms dwelling on the 19th century Lanna mural paintings from Northern Thailand using culture-dependent and -independent approaches. Biol. 2022, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Văcar, C.L.; Mircea, C.; Pârvu, M.; Noohi, N.; Papizadeh, M. Study of biodeterioration potential of microorganisms isolated in the paintings storeroom of Mouze Makhsus museum, Golestan palace, Tehran. Stud. Conserv. 2022, 1–11. [Google Scholar]
- Podar, D. Diversity and metabolic activity of fungi causing biodeterioration of canvas paintings. J. Fungi 2022, 8, 589. [Google Scholar]
- Zucconi, L.; Canini, F.; Isola, D.; Caneva, G. Fungi affecting wall paintings of historical value: A worldwide meta-analysis of their detected diversity. App. Sci. 2022, 12, 2988. [Google Scholar] [CrossRef]
- Kavkler, K.; Demšar, A. Impact of fungi on contemporary and accelerated aged wool fibres. Polym. Degrad. Stab. 2012, 97, 786–792. [Google Scholar] [CrossRef]
- Błyskal, B. Gymnoascus arxii's potential in deteriorating woollen textiles dyed with natural and synthetic dyes. Int. Biodeterior. Biodegradation 2014, 86, 349–357. [Google Scholar] [CrossRef]
- Elamin, A.; Takatori, K.; Matsuda, Y.; Tsukada, M.; Kirino, F. Fungal biodeterioration of artificial aged linen textile: Evaluation by microscopic, spectroscopic and viscometric methods. Mediterr. Archaeol. Archaeom. 2018, 18, 103–120. [Google Scholar]
- Marcu, F.; Ilieș, D.C.; Wendt, I.A.; Indrie, L.; Ilieș, A.; Burta, L.; Caciora, T.; Herman, G.V.; Todoran, A.; Baias, S.; Albu, A.; Gozner, M. Investigations regarding the biodegradation of the cultural heritage. Case study of traditional embroidered peasant shirt (Maramures, Romania). Rom. Biotechnol. Lett. 2020, 25, 1362–1368. [Google Scholar] [CrossRef]
- Breuker, M.; McNamara, C.; Young, L.; Perry, T.; Young, A.; Mitchell, R. Fungal growth on synthetic cloth from Apollo spacesuits. Ann. Microbiol. 2003, 53, 47–54. [Google Scholar]
- Mai, B.; Liu, N.; Liu, X.; Teri, G.; Liu, P.; Wang, J.; Li, Y.; Cao, J. Mould prevention of archive packaging based microenvironment intervention and regulation. J. Cult. Herit. 2022, 57, 16–25. [Google Scholar] [CrossRef]
- Shamsian, A.; Fata, A.; Mohajeri, M.; Ghazvini, K. Fungal contaminations in historical manuscripts at Astan Quds museum library, Mashhad, Iran. Int. J. Agric. Biol. 2006, 8, 420–422. [Google Scholar]
- Bankole, O.M. A review of biological deterioration of library materials and possible control strategies in the tropics. Libr. Rev. 2010, 59, 414–429. [Google Scholar] [CrossRef]
- Michaelsen, A.; Piñar, G.; Pinzari, F. Molecular and microscopical investigation of the microflora inhabiting a deteriorated Italian manuscript dated from the thirteenth century. Microbial Ecol. 2010, 60, 69–80. [Google Scholar] [CrossRef] [PubMed]
- El Bergadi, F.; Laachari, F.; Elabed, S.; Mohammed, I.H.; Ibnsouda, S. K. Cellulolytic potential and filter paper activity of fungi isolated from ancients manuscripts from the Medina of Fez. Ann. Microbiol. 2014, 64, 815–822. [Google Scholar] [CrossRef]
- Di Bella, M.; Randazzo, D.; Di Carlo, E.; Barresi, G.; Palla, F. Monitoring biological damage on paper-based documents in the historical archive of the Palermo astronomical observatory. Conserv. Sci. Cult. Herit. 2015, 15, 85–94. [Google Scholar]
- Borrego, S.; Guiamet, P.; Vivar, I.; Battistoni, P. Fungi involved in biodeterioration of documents in paper and effect on sub-strate. Acta Microsc. 2018, 27, 37–44. [Google Scholar]
- Hassan, R.R.; Mansour, M. M. A microscopic study of paper decayed by Trichoderma harzianum and Paecilomyces variotii. J. Polym. Environ. 2018, 26, 2698–2707. [Google Scholar] [CrossRef]
- Koul, B.; Upadhyay, H. Fungi-mediated bio-deterioration of household materials, libraries, cultural heritage and its control. In Fungi and their Role in Sustainable Development: Current Perspectives, 1st ed; Gehlot, P., Singh, J., Eds.; Springer: New York, USA, 2018; pp. 597–615. [Google Scholar]
- Kraková, L.; Šoltys, K.; Otlewska, A.; Pietrzak, K.; Purkrtová, S.; Savická, D.; Puškárová, A.; Bučková, M.; Szemes, T.; Budiš, J.; Demnerová, K.; Gutarowska, B.; Pangallo, D. Comparison of methods for identification of microbial communities in book collections: Culture-dependent (sequencing and MALDI-TOF MS) and culture-independent (Illumina MiSeq). Int. Biodeterior. Biodegradation 2018, 131, 51–59. [Google Scholar] [CrossRef]
- Sakr, A.; Ghaly, M.; Reda, F.; Ezzat, S.M.; Hameid, E.A. Characterization of microbiota deteriorating specific coptic manuscripts, Coptic Museum, Egypt. IJRSB 2018, 6, 1–15. [Google Scholar]
- Al-Gharawi, H.J.; Jeaz, E. T. Isolation and identification of contaminated fungi of books and manuscripts in the libraries of a number of Iraqi universities and holy sites. Plant Arch. 2019, 19, 2359–2362. [Google Scholar]
- Fouda, A.; Ab-del-Maksoud, G.; Abdel-Rahman, M.A.; Eid, A.M.; Barghoth, M.G.; El-Sadany, M.A.H. Monitoring the effect of biosynthesized nanoparticles against biodeterioration of cellulose-based materials by Aspergillus niger. Cellulose 2019, 26, 6583–6597. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, K.H.; Hong, J.Y.; Lee, J.M.; Kim, S.J.; Jo, C.W.; Jeong, S.Y. Investigation of Microorganisms Deteriorating Ancient Ola Leaf Manuscripts. International Journal for the Preservation of Library and Archival Material 2020, 41, 119–129. [Google Scholar] [CrossRef]
- Givar, L.; Sodaei, B.; Hamedi, S. Investigation of fungal contamination in some manuscript of Malek Museum. Iran. J. Wood Paper Sci. Res. 2021, 36, 170–178. [Google Scholar]
- Glevitzky, M.; Aleya, L.; Vică, M.L.; Dumitrel, G.A.; Avram, M.; Tit, D.M.; Popa, M.; Popa, V.C.; Behl, T.; Bungau, S. Assessing the microbiological contamination along with environmental factors of old books in the 1490-founded Bistrița Monastery, Romania. Environ. Sci. Pollut. Res. 2021, 28, 8743–8757. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Maksoud, G.; Abdel-Nasser, M.; Sultan, M.H.; Eid, A.M.; Alotaibi, S.H.; Hassan, S.E.D.; Fouda, A. Fungal biodeterioration of a historical manuscript dating Back to the 14th century: an insight into various fungal strains and their enzymatic activities. Life 2022, 12, 1821. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A. , Abdel-Nasser, M., Khalil, A. M. A., Hassan, S. E. D., & Abdel-Maksoud, G. Investigate the role of fungal communities associated with a historical manuscript from the 17th century in biodegradation. NPJ Mater. Degrad. 2022, 6, 88. [Google Scholar]
- Rahmani, T.P.D.; Ismail, I.; Aziz, I. R. Biodeterioration and biodegradation of cultural and religious heritage made of paper as a wood derivative. Islam Sci. 2022, 9, 52–57. [Google Scholar] [CrossRef]
- Mohammadi, P.; Shokrzadeh, L.; Bahreini, M.; Behdani, S. Investigation on microbial deterioration of exquisite collection of old manuscripts in Iran. Iran. J. Microbiol. 2023, 15, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Carpino, C., Loukou, E., Andersen, B., Settino, J., & Arcuri, N. Biodeterioration in historic buildings. Indoor environmental conditions and risk of fungal growth. In Proceedings of the MEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Consenca, Italy; 2022; pp. 19-21.
- Johansson, P.; Ekstrand-Tobin, A.; Svensson, T.; Bok, G. Laboratory study to determine the critical moisture level for mould growth on building materials. Int. Biodeterior. Biodegradation 2012, 73, 23–32. [Google Scholar] [CrossRef]
- Johansson, P.; Svensson, T.; Ekstrand-Tobin, A. Validation of critical moisture conditions for mould growth on building materials. Build. Environ. 2013, 62, 201–209. [Google Scholar] [CrossRef]
- Johansson, P.; Ekstrand-Tobin, A.; Bok, G. An innovative test method for evaluating the critical moisture level for mould growth on building materials. Build. Environ. 2014, 81, 404–409. [Google Scholar] [CrossRef]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal degradation of wood: Emerging data, new insights and changing perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Wösten, H. A. Filamentous fungi for the production of enzymes, chemicals and materials. Curr. Opin. Biotechnol. 2019, 59, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Dantigny, P.; Nanguy, S.P.M. Significance of the physiological state of fungal spores. Int. J. Food Microbiol. 2009, 134(1-2), 16-20. [CrossRef] [PubMed]
- Mensah-Attipoe, J.; Toyinbo, O. Fungal growth and aerosolization from various conditions and materials. Fungal Infect. 2019, 1–10. [Google Scholar]
- Ali, S. R. , Fradi, A. J., & Al-Aaraji, A. M. Effect of some physical factors on growth of five fungal species. Eur. Acad. Res. 2017, 2, 1069–1078. [Google Scholar]
- Ferrari, C. , Santunione, G., Libbra, A., Muscio, A., Sgarbi, E., Siligardi, C., & Barozzi, G. S. (2015). Review on the influence of biological deterioration on the surface properties of building materials: organisms, materials, and methods. Int. J. Des. Nat. Ecodynamics 2015, 10, 21–39. [Google Scholar]
- Kavkler, K. , Gunde-Cimerman, N., Zalar, P., & Demšar, A. Fungal contamination of textile objects preserved in Slovene museums and religious institutions. Int. Biodeterior. Biodegradation 2015, 97, 51–59. [Google Scholar]
- Karpovich-Tate, N. , & Rebrikova, N. L. Microbial communities on damaged frescoes and building materials in the cathedral of the nativity of the virgin in the Pafnutii-Borovskii monastery, Russia. Int. Biodeterior. 1991, 27, 281–296. [Google Scholar]
- Tonon, C. , Breitenbach, R., Voigt, O., Turci, F., Gorbushina, A. A., & Favero-Longo, S. E. Hyphal morphology and substrate porosity-rather than melanization-drive penetration of black fungi into carbonate substrates. J. Cult. Herit. 2021, 48, 244–253. [Google Scholar]
- Vanpachtenbeke, M. , Van den Bulcke, J., Van Acker, J., & Roels, S. (2020). Performance of wood and wood-based materials regarding fungal decay. In 12th Nordic Symposium on Building Physics (NSB) (Vol. 172). EDP Sciences.
- Nielsen, K. F. , Holm, G., Uttrup, L. P., & Nielsen, P. A. Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int. Biodeterior. Biodegradation 2004, 54, 325–336. [Google Scholar]
- Morel-Rouhier, M. Wood as a hostile habitat for ligninolytic fungi. In Advances in Botanical Research (Vol. 99,). Academic Press: Cambridge, Massachusetts, USA, 2021, pp. 115-149, 199.
- Caratelli, A.; Siani, A.M.; Casale, G.R.; Paravicini, A.; Bertolin, C.; Camuffo, D. Indoor measurements of microclimate parameters in the Mithraeum in the Baths of Caracalla (Rome, Italy). In Proceedings of the Conference Built Heritage; 2013. [Google Scholar]
- Bonora, A.; Costanzo, V.; Fabbri, K.; Pretelli, M.; Schito, E. Indoor Microclimate and conservation issues of the Medicean Villa La Petraia. A Preliminary Assessment. In International Conference Florence Heri-Tech: The Future of Heritage Science and Technologies. Cham: Springer International Publishing: New York, USA 2022. pp. 155-168.
- Valentín, N. Microbial contamination in archives and Museums: Health hazards and preventive strategies using air ventilation systems. The Getty Conservation Institute 2007, 1–26. [Google Scholar]
- Smedemark, S.H. , Ryhl-Svendsen, M.; Toftum, J. Distribution of temperature, moisture and organic acids in storage facilities with heritage collections. Build. Environ. 2020, 175, 106782. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J.; Grygierek, K. HVAC control methods for drastically improved hygrothermal museum microclimates in warm season. Build. Environ. 2019, 149, 90–99. [Google Scholar] [CrossRef]
- Norros, V. , Karhu, E.; Nordén, J.; Vähätalo, A.V.; Ovaskainen, O. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi. Ecol. Evol. 2015, 5, 3312–3326. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Pérez-Velón, D.; Prieto, B. Effects of changes in UV-B radiation levels on biofilm-forming organisms commonly found in cultural heritage surfaces. Environ. Res. 2022, 214, 114061. [Google Scholar] [CrossRef] [PubMed]
- Irga, P.J.; Burchett, M.D.; O’Reilly, G.; Torpy, F.R. Assessing the contribution of fallen autumn leaves to airborne fungi in an urban environment. Urban Ecosyst. 2016, 19, 885–898. [Google Scholar] [CrossRef]
- Aydin, H.; İlkiliç, C. Air pollution, pollutant emissions and harmfull effects. J. Eng. Technol. 2017, 1, 8–15. [Google Scholar]
- Steiger, M. Air pollution damage to stone. In Urban pollution and changes to materials and building surfaces 2016. pp. 65-102.
- Turkington, A. V. , Martin, E., Viles, H. A., & Smith, B. J. (2003). Surface change and decay of sandstone samples exposed to a polluted urban atmosphere over a six-year period: Belfast, Northern Ireland. Build. Environ. 2003, 38, 1205–1216. [Google Scholar]
- Jacobson, R.S.; Korte, A.R.; Vertes, A.; Miller, J. H. The molecular composition of soot. Angew. Chem. Int. Ed. 2020, 132, 4514–4520. [Google Scholar] [CrossRef]
- Baldrian, P. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 2003, 32, 78–91. [Google Scholar] [CrossRef]
- Tereschenko, I.E.; Filonov, A.E. Air temperature fluctuations in Guadalajara, Mexico, from 1926 to 1994 in relation to urban growth. Int. J. Climatol. 2001, 21:483–94.
- Brazel, A.; Selover, N.; Vose, R.; Heisler, G. The tale of two climates—Baltimore and Phoenix urban LTER sites. Clim Res. 2000, 15:123–35. [CrossRef]
- McLean, M.A.; Angilletta, M.J.; Williams, K.S. If you can’t stand the heat, stay out of the city: termal reaction norms of chitinolytic fungi in an urban heat island. J. Therm. Biol. 2005, 20:384–91. [CrossRef]
- Maravelaki, P. N. Surface cleaning: implications from choices & future perspectives. In Conserving Stone Heritage: Traditional and Innovative Materials and Techniques, 1st ed.; Gherardi, F., Maravelaki, P.N., Eds.; Springer: New York, USA 2000; 37-74. [Google Scholar]
- Tyagi, P.; Verma, R.K.; Jain, N. Fungal degradation of cultural heritage monuments and management options. Curr. Sci. 2021, 121, 1553–1560. [Google Scholar] [CrossRef]
- Liu, X.; Meng, H.; Wang, Y.; Katayama, Y.; Gu, J.D. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Int. Biodeterior. Biodegradation 2018, 133, 9–16. [Google Scholar] [CrossRef]
- Hogan, D.M.; Jarnagin, S.T.; Loperfido, J.V.; Van Ness, K. Mitigating the effects of landscape development on streams in urbanizing watersheds. J. Am. Water Resour. Assoc. 2014, 50, 163–178. [Google Scholar] [CrossRef]
- Londoño, A.C.; Williams, P.R.; Hart, M.L. A change in landscape: Lessons learned from abandonment of ancient Wari agicultural terraces in Southern Peru. J. Environ. Manage. 2017, 202, 532–542. [Google Scholar] [CrossRef]
- Collins, C.M.; Safiuddin, M. Lotus-leaf-inspired biomimetic coatings: different types, key properties, and applications in infrastructures. Infrastructures 2022, 7, 46. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24(1-2), 47-55. [CrossRef]
- Cleofas, M.E.A.; Abnasan, S.J.B.; Garbo, M.C.B.; Paragas, E.C.A.; Sevilla, P.D.O.; Tobias-Altura, M.C. Prevalence of fungal growth in flood-prone public elementary schools in district 3, Malabon, Philippines. Southeast Asian J. Trop. Med. Public Health 2020, 51, 80–97. [Google Scholar]
- Fidanza, M.R.; Caneva, G. Natural biocides for the conservation of stone cultural heritage: A review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Kakakhel, M.A.; Wu, F.; Gu, J.D.; Feng, H.; Shah, K.; Wang, W. Controlling biodeterioration of cultural heritage objects with biocides: A review. Int. Biodeterior. Biodegradation 2019, 143, 104721. [Google Scholar] [CrossRef]
- Aldosari, M.A.; Darwish, S.S.; Adam, M.A.; Elmarzugi, N.A.; Ahmed, S. M. Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites. Archaeol. Anthropol. Sci. 2019, 11, 3407–3422. [Google Scholar] [CrossRef]
- Piętka, J.; Adamczuk, A.; Zarzycka, E.; Tulik, M.; Studnicki, M.; Oszako, T.; Aleksandrowicz-Trzcińska, M. The application of copper and silver nanoparticles in the protection of fagus sylvatica wood against decomposition by Fomes fomentarius. Forests 2022, 13, 1724. [Google Scholar] [CrossRef]
- Giorgi, R.; Baglioni, M.; Berti, D.; Baglioni, P. New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Acc. Chem. Res. 2010, 43, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Chelazzi, D.; Giorgi, R.; Baglioni, P. Microemulsions, micelles, and functional gels: how colloids and soft matter preserve works of art. Angew. Chem. Int. Ed. 2018, 57, 7296–7303. [Google Scholar] [CrossRef]
- Pfendler, S.; Einhorn, O.; Karimi, B.; Bousta, F.; Cailhol, D.; Alaoui-Sosse, L.; Alaoui-Sosse, B.; Aleya, L. UV-C as an efficient means to combat biofilm formation in show caves: evidence from the La Glacière Cave (France) and laboratory experiments. Environ. Sci. Pollut. Res. 2017, 24, 24611–24623. [Google Scholar] [CrossRef]
- Mascalchi, M.; Osticioli, I.; Riminesi, C.; Cuzman, O.A.; Salvadori, B.; Siano, S. Preliminary investigation of combined laser and microwave treatment for stone biodeterioration. Stud. Conserv. 2015, 60(sup1), S19–S27. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Rivas, T.; López, A.J.; Fiorucci, M.P.; Ramil, A. Effectiveness of granite cleaning procedures in cultural heritage: A review. Sci. Total Environ. 2016, 571, 1017–1028. [Google Scholar] [CrossRef]
- Gemeda, B.T.; Lahoz, R.; Caldeira, A.T.; Schiavon, N. Efficacy of laser cleaning in the removal of biological patina on the volcanic scoria of the rock-hewn churches of Lalibela, Ethiopia. Environ. Earth Sci. 2018, 77, 1–12. [Google Scholar] [CrossRef]
- Lin, J.Y.; Li, B.J.; Cheng, C.; Zhang, Y.D.; Gao, M.; Long, M.Z. Research status of bioweathering control of stone buildings. J. App. Ecol. 2021, 32, 3023–3030. [Google Scholar]
- Kohli, R. Applications of solid carbon dioxide (dry ice) pellet blasting for removal of surface contaminants. In Developments in surface contamination and cleaning: applications of cleaning techniques, 1st Ed; Kohli, R., Mittal, K.L., Eds.; Elsevier: New York, USA, 2019; pp. 117–169. [Google Scholar]
- Romeo, S.; Zeni, O. Microwave Heating for the Conservation of Cultural Heritage Assets: A Review of Main Approaches and Challenges. IEEE J. Electromagn. 2022, 7, 110–121. [Google Scholar] [CrossRef]
- Marco, A.; Santos, S.; Caetano, J.; Pintado, M.; Vieira, E.; Moreira, P.R. Basil essential oil as an alternative to commercial biocides against fungi associated with black stains in mural painting. Build. Environ. 2020, 167, 106459. [Google Scholar] [CrossRef]
- Russo, R.; Palla, F. Plant essential oils as biocides in sustainable strategies for the conservation of cultural heritage. Sustainability 2023, 15, 8522. [Google Scholar] [CrossRef]
- Salvadori, O.; Charola, A. E. Methods to prevent biocolonization and recolonization: an overview of current research for architectural and archaeological heritage. In Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series (No. 2). Smithsonian Institution Scholarly Press Washington, DC, USA, 2011; pp. 37-50.
- Schröer, L.; Fiers, G.; Deprez, M.; Boon, N.; Cnudde, V.; Soens, L.; De Kock, T. Examining the potential of enzyme-based detergents to remove biofouling from limestone heritage. Coatings 2022, 12, 375. [Google Scholar] [CrossRef]
- Goredema, N.; Ndowora, T.; Shoko, R.; Ngadze, E. In vitro suppression of pathogenic fungi by Streptomyces spp. Afr. J. Crop Sci. 2020, 28, 141–149. [Google Scholar] [CrossRef]
- Ali, A.; Zeshan, M.A.; Mehtab, M.; Khursheed, S.; Mudasir, M.; Abid, M.; Mahdi, M.; Rauf, H.A.; Ameer, S.; Younis, M.; Altaf, M.T.; Tahir, A. A comprehensive note on Trichoderma as a potential biocontrol agent against soil borne fungal pathogens: a review. Plant Prot. 2021, 5, 171–196. [Google Scholar] [CrossRef]
- Karatasios, I.; Theoulakis, P.; Kalagri, A.; Sapalidis, A.; Kilikoglou, V. Evaluation of consolidation treatments of marly lime-stones used in archaeological monuments. Constr. Build. Mater. 2009, 23, 2803–2812. [Google Scholar] [CrossRef]
- Cerretini, G.; Giacomin, G. Structural Reinforcement of a Masonry Building. Key Engineering Materials 2019, 817, 673–679. [Google Scholar] [CrossRef]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent advances in protective coatings for cultural heritage–an overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef]
- Ershad-Langroudi, A.; Fadaei, H.; Ahmadi, K. Application of polymer coatings and nanoparticles in consolidation and hydrophobic treatment of stone monuments. Iran. Polym. J. 2019, 28, 1–19. [Google Scholar]
- Polyakova, A.V.; Goryashnik, Y.S.; Bukharev, G.M.; Eliseev, O.A. Fungal resistance of sealants. Polym. Sci. Ser. D 2016, 9, 195–198. [Google Scholar] [CrossRef]
- Cooper, H. Thoughts on thoughts on replication. Tate Papers 2007, 19. [Google Scholar]
- Quist, W.J. Replacement of natural stone in conservation of historic buildings. Heron 2009, 54, 259–267. [Google Scholar]
- Auras, M.; Snethlage, R.; Meinhardt, J. Natural Stone Monitoring as a Tool for Sustainable Conservation of Cultural Heritage. In EGU General Assembly Conference Abstracts, Aprim 2012; p. 7206.
- Aira, M.J.; Rodríguez-Rajo, F.J.; Jato, V.; Piontelli, E. Análisis cuantitativo y cualitativo de la aeromicota aislada de la catedral de Santiago de Compostela (Galicia, España). Bol. Micol. 2006, 21. [Google Scholar] [CrossRef]
- Aira, M.J.; Jato, V.; Stchigel, A.M.; Rodríguez-Rajo, F.J.; Piontelli, E. Aeromycological study in the Cathedral of Santiago de Compostela (Spain). Int. Biodeterior. Biodegrad. 2007, 60, 231–237. [Google Scholar] [CrossRef]
- Oliveira, M.; Ribeiro, H.; Delgado, J.L.; Abreu, I. Aeromycological profile of indoor and outdoor environments. J. Environ. Monit. 2009, 11, 1360–1367. [Google Scholar] [CrossRef]
- Oliveira, M. , Lage, O., & Araujo, R. Airborne fungi and bacteria in public indoor environments. In: Indoor air quality: bioindicators, improvements methods, and health effects. Nova Science Publishers: Hauppauge, New York, USA, 2012, pp. 53-84.
- Grinzato, E. IR thermography applied to the cultural heritage conservation. In 18th world conference on nondestructive testing (2012, April). (Vol. 46).
- Cuca, B.; Zaina, F.; Tapete, D. Monitoring of damages to cultural heritage across europe using remote sensing and earth observation: assessment of scientific and grey literature. Remote Sens. 2023, 15, 3748. [Google Scholar] [CrossRef]
- Eom, T.H.; Lee, H. S. A study on the diagnosis technology for conservation status of painting cultural heritage using digital image analysis program. Heritage 2023, 6, 1839–1855. [Google Scholar] [CrossRef]
- Lombardo, L.; Parvis, M.; Corbellini, S.; Arroyave Posada, C.E.; Angelini, E.; Grassini, S. Environmental monitoring in the cultural heritage field⋆. Eur. Phys. J. Plus 2019, 134, 1–10. [Google Scholar] [CrossRef]
- Oliveira, M.; Azevedo, L. Molecular markers: An overview of data published for fungi over the last ten years. J. Fungi 2022, 8, 803. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, B.; Tang, M.; Wang, X.; Li, Q.; Hu, Y.; Zhang, B. Analysis of the microbiomes on two cultural heritage sites. Geomicrobiol. J. 2023, 40, 203–212. [Google Scholar] [CrossRef]
- Kioussi, A.; Karoglou, M.; Labropoulos, K.; Bakolas, A.; Moropoulou, A. Integrated documentation protocols enabling deci-sion-making in cultural heritage protection. J. Cult. Herit. 2013, 14, e141–e146. [Google Scholar] [CrossRef]
- Scherer, G.W.; Flatt, R.; Wheeler, G. Research for the Conservation of Sculpture and Monuments. MRS Bulletin 2001, 45. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
